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Nitric oxide: A core signaling
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(CO2, CH4, N2O, O3)-mediated
abiotic stress in plants
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Nitric oxide (NO), an ancient molecule with multiple roles in plants, has gained

momentum and continues to govern plant biosciences-related research. NO,

known to be involved in diverse physiological and biological processes, is a

central molecule mediating cellular redox homeostasis under abiotic and biotic

stresses. NO signaling interacts with various signaling networks to govern the

adaptive response mechanism towards stress tolerance. Although diverging

views question the role of plants in the current greenhouse gases (GHGs)

budget, it is widely accepted that plants contribute, in one way or another, to

the release of GHGs (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O)

and ozone (O3)) to the atmosphere, with CH4 and N2O being the most

abundant, and occur simultaneously. Studies support that elevated

concentrations of GHGs trigger similar signaling pathways to that observed

in commonly studied abiotic stresses. In the process, NO plays a forefront role,

in which the nitrogen metabolism is tightly related. Regardless of their

beneficial roles in plants at a certain level of accumulation, high

concentrations of CO2, CH4, and N2O-mediating stress in plants exacerbate

the production of reactive oxygen (ROS) and nitrogen (RNS) species. This

review assesses and discusses the current knowledge of NO signaling and its

interaction with other signaling pathways, here focusing on the reported

calcium (Ca2+) and hormonal signaling, under elevated GHGs along with the

associated mechanisms underlying GHGs-induced stress in plants.
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Introduction

Nitric oxide (NO) was first described as nitrous air by Joseph

Priestly in 1772 (Yu et al., 2014). However, NO production in

plants was reported for the first time by Klepper (1979) about 43

years ago. Since then, our understanding of the diverse roles of NO

in plant physiology and biology has increased significantly (Kolbert

et al., 2019). The discovery of NO as a signaling molecule revealed

novel facets of free radicals from their previous portrait as toxic by-

products of oxidative metabolism to central regulators of diverse

plant metabolic pathways. Unlike in animals where it is well

established that a family of NO synthase (NOS) enzymes are the

primary source of NO, the presence of such NOS enzyme in plants

remains obscure and controversial. Whereas, some lines of

evidence reported NOS-like activity in plants (del Rıo et al.,

2004; Domingos et al., 2015; Phillips et al., 2018; Singh et al.,

2021). During the last two decades, NO has gained momentum

due to its multiple roles in plant growth and development (Sanz

et al., 2015). As per some evidence (Arc et al., 2013; Signorelli &

Considine, 2018), NO attenuates dormancy, while promoting seed

germination, in crosstalk with the abscisic acid (ABA) signaling

pathway. Similarly, several studies support that NO is a key player

in the control of cell proliferation via a functional interaction with

cytokinin (Shen et al., 2013). NO also plays an important role in

the cell cycle (Correa-Aragunde et al., 2006; Novikova et al., 2017)

and auxin-mediated activation of cell division (Ötvös et al., 2005).

In the same way, Sánchez-Vicente et al. (2021) indicated that NO

altered the pattern of auxin maxim and PIN-FORMED1 (regulates

auxin basipetal transport) during shoot development. In addition,

it is well established that NO is a key signaling molecule during

abiotic or biotic stress conditions in plants (Magalhaes et al., 1999;

Hancock & Neill, 2019; Singh et al., 2021). Available data suggest

that NO generation in plants occurs by at least eight prominent

processes that include enzymatic and nonenzymatic (Khan et al.,

2014; Kolbert et al., 2019; Hussain et al., 2022).

Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),

and ozone (O3) play important roles in plant physiology. CO2 is

required for photosynthesis and is fixed to store energy in the

form of carbohydrates (Blankenship, 2021). Although the

utilization of CO2 can be affected by factors such as light, water,

nutrition, humidity and temperature, the atmospheric CO2

concentration has a greater influence. The increase in CO2 level

has been shown to result in increased growth rate and biomass

production (Ainsworth et al., 2004; Thompson et al., 2017). From

another perspective, Sigurdsson (2001) reported variabilities in the

response of plants to elevated CO2. Similarly, CH4, previously

considered a physiological inert gas, is currently emerging as a

signaling molecule that would interact with reactive oxygen (ROS)

or nitrogen (RNS) species during abiotic or biotic stress events (Li

et al., 2020; Wang et al., 2020). In the same way, N2O, of which the

molecular mechanism underlying its production has been widely
Frontiers in Plant Science 02
investigated, was reported to be produced in the mitochondria of

plants fromNO. In the soil, N2O is formed during the nitrification

and denitrification processes (Lenhart et al., 2019; Timilsina et al.,

2020a). Meanwhile, O3 causes both beneficial outcomes for plants

and the environment (Pasqualini et al., 2009; Wargent & Jordan,

2013; Mukherjee, 2022; Yin et al., 2022), and oxidative stress,

which may result in cell death (Riehl Koch et al., 1998; Rao &

Davis, 2001). Although CO2, CH4, N2O, and O3 play beneficial

roles in plant physiology and biology, these molecules have been

identified as potent greenhouse gases (GHGs) (Khalil & Aslam,

2009; Timilsina et al., 2020b; Timilsina et al., 2022). However, in

terms of global warming potential (GWP), N2O and CH4 come on

top with a GWP of 300 times and 25 times, respectively, greater

than that of CO2 in the atmosphere.

Studies show that high amounts of atmospheric CO2 (Niu

et al., 2011), CH4 (Li et al., 2020), N2O, and O3 (Sharma & Davis,

1995) trigger various signaling cascades that serve as messengers

to activate the adequate defense system to tackle the stress.

During these events, plants enhance the production of ROS, such

as hydrogen peroxide (H2O2), superoxide anion (O• −
2 ), hydroxyl

radical (·OH−), singlet oxygen (1O2), and RNS (NO,

peroxynitrite (ONOO−), etc.). In the process, NO signaling has

proven essential and plays a central role. NO interacts with other

signaling pathways, and the results of this interaction confer

beneficial outcomes for plants. Generally, ROS and RNS are

produced by plants under normal conditions and are harmless at

low concentrations. However, upon stress induction by either

abiotic stimuli or living organisms, the production of ROS and

RNS increases up to the point of causing oxidative or nitro-

oxidative stress, which may result in oxidative damage and

culminate in cell death. To alleviate the detrimental effects of

ROS or RNS overproduction, plants activate antioxidant

(enzymatic and non-enzymatic) systems and induce several

stress-responsive genes as part of the adaptive response

mechanisms toward stress tolerance. This review assesses the

current knowledge of the regulatory role of NO in plants under

elevated CO2, CH4, N2O, or O3. This work also highlights the

crosstalk between NO signaling and the above-mentioned

potent GHGs, as well as the causative effects of elevated CO2,

CH4, N2O, or O3 on NO production and signaling events.

Likewise, we discuss the possible interplay between CO2, CH4,

or N2O-induced stress with NO and other stress signaling

pathways in plants to maintain a balanced reduction-

oxidation status.
Exogenous carbon dioxide induces
nitric oxide in plants

In the current era identified as the Anthropocene, CO2 is the

most important GHG (considering its emission abundance)
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emitted globally through human activities (Lashof and Ahuja,

1990; Butler and Montzka, 2016; Liu et al., 2020). Studies

investigating NO signaling or biosynthesis in plants increased

with climate change, of which the impact on the five critical

dimensions of the sustainable development goals (SGDs, also

known as the 5Ps: people, planet prosperity, peace and

patnership) is no longer to be demonstrated. Like in the event

of drought (Xiong et al., 2012; Lau et al., 2021), salinity

(Bhardwaj et al., 2021; Fatima et al., 2021), heat stress (Kong

et al., 2012; Parankusam et al., 2017), flooding (Khan et al., 2019;

Da-Silva and do Amarante, 2022; Park et al., 2022), or heavy

metal toxicity (Saxena and Shekhawat, 2013; Cerana and

Malerba, 2015), elevated CO2 level triggers NO production

and activates NO signaling in plants. Under these conditions,

several stress-responsive pathways, including hormonal, Ca2+

(Besson-Bard et al., 2008; Niu et al., 2011) are induced, during

which process NO plays a preponderant role. Niu et al. (2011)

observed that elevated CO2 caused an increase in carbohydrates

production, which in turn activated the auxin or ethylene-related

signal transduction pathways that subsequently induced the

production of endogenous NO.
Elevated carbon dioxide induces
nitric oxide-mediated nitrogen
uptake and assimilation

Carbon dioxide supplementation enhances the root and

shoot growth, resulting in the rapid growth of plants. This

could be explained, in part, by the greater uptake of nutrients

from soil mediated by the enhanced root development (Yue

et al., 2009; Thompson et al., 2017). Under these conditions,

available nutrients can be exhausted rapidly in the soil and plants

may experience nutrient shortage or deficiency at their advanced

growth stage. To sustain an increased growth rate under high

CO2 conditions, plants will require higher amounts of inorganic

nutrients, including nitrogen. To compensate the gap created

due to nutrient deficiency, mineral fertilizers are applied (Wong,

1979; Tissue et al., 1997; Stitt and Krapp, 1999). However,

excessive N-rich fertilizer applications cause an increase in

CH4 and N2O production (Takeda et al., 2022; Timilsina et al.,

2020a; Xu et al., 2016). Nitrogen is the most abundantly used

essential macronutrient in agriculture. Nitrogen is available to

the plant as nitrate (NO3) and NH4, with NO3 being the major

form of nitrogen taken up by plants. The efficiency of nitrogen

use by plants is mediated by several genes encoding nitrate

reductase (NR) or belonging to five distinct high-, dual-, or low-

affinity NO3 transporters protein families, including NRT1,

NRT2, chloride channel (CLC), and slow anion channel-

associated/slow anion channel-associated homologs (SLAC/

SLAH) (Buchanan et al., 2015). In higher plants, NR is the
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first enzyme and the rate-limiting factor in the NO3 assimilation

pathway (Buchanan et al., 2015). NR undergoes changes under

elevated CO2 as reported by Stitt and Krapp (1999). As

previously reported, elevated CO2 increases the use efficiency

of organic nitrogen (NUE) (Wong, 1979; Hocking and Meyer,

1991a; Hocking and Meyer, 1991b; Pettersson et al., 1993;

Rogers et al., 1993; McKee and Woodward, 1994). This could

be partially explained by the low NO3 and NH4 contents (Purvis

et al., 1974; Hocking and Meyer, 1985; Hocking and Meyer,

1991b; Yelle et al., 1987).

As per some evidence, the activity of NR varies across plant

species, and different conditions under the influence of NO (Du

et al., 2016; Adavi and Sathee, 2019). Thus, plants exposed to

elevated CO2 recorded differential patterns, including an

increase (Geiger et al., 1998; Constable et al., 2001; Hofmann

et al., 2013; Du et al., 2016), a decrease (Stitt and Krapp, 1999;

Matt et al., 2001), or unaffected (Agüera et al., 2006; Natali et al.,

2009) NR activity. Interestingly, a study conducted by Frungillo

et al. (2014) revealed that S-nitrosothiols regulate NO

production and storage in plants through the nitrogen

assimilation pathway. The authors emphasized that although

NO production is mediated by various enzymatic and

nonenzymatic pathways (including L-arginine), some amount

of NO2 reduced from NO3 in the nitrogen metabolism is

transported to the chloroplast. There, NO2 is converted to

NH4 for further incorporation into amino acids, as part of the

assimilation process. Another fraction of NO2 is converted to

NO in the cytosol (Zheng et al., 2013).

In higher plants, S-nitrosoglutathione (GSNO, a stable,

mobile, less toxic form of NO) is the major cellular reservoir

of NO, and its accumulation is controlled by GSNO reductase

(GSNOR1 that negatively regulates the process of protein S-

nitrosation, thus controlling endogenous NO levels). GSNOR

catalyzes the reduction (irreversible reaction) of GSNO to

glutathione disulfide (GSSG, the oxidized glutathione form of

GSH) and ammonia (NH3) (Yun et al., 2011; Medina-Rivera

et al., 2015; Jahnová et al., 2019; Khajuria et al., 2019; Hurali

et al., 2022). It was reported that GSNO exerts an inhibitory

effect on NO3 uptake and reduction, which would occur via the

inhibition of NR activity. Similarly, GSNOR catalyzes the

reaction of NO with GSH (the reduced glutathione) (Feechan

et al., 2005; Rustérucci et al., 2007). According to Chaki et al.

(2009), the activity of GSNOR helps balance the cellular (RNS)

reduction-oxidation (redox) homeostasis under various stressful

conditions. Likewise, NO, which is one of the end products of

the nitrogen metabolism, inhibits the activity of GSNOR. In

turn, the latter prevents the degradation of GSNO. Therefore,

building on the above mechanism, Frungillo et al. (2014)

suggested that NO feedback regulates its flux via the

assimilation of nitrogen by controlling its bioavailability and

modulating its own consumption; knowing that high amounts of

NO and its derived SNO result from the N assimilation pathway.
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Crosstalk between nitric oxide and
salicylic acid signaling under
elevated carbon dioxide

Plant hormones are key players in plant growth and

development, operating either antagonistically or in synergy

with one another. Plant hormones are also well-known for

their involvement in signaling events during abiotic or biotic

stress. For instance, salicylic acid (SA) signaling regulates plant

response to stress (Khan et al., 2015). Other studies

demonstrated that the interplay between NO and SA signaling

pathways activates appropriate defense mechanisms and

enhances resistance to a wide range of plant pathogens

(Klessig et al., 2000). According to Li et al. (2019), SA acts

upstream of NO under elevated CO2, which in turn mediates the

induction of flavonoid biosynthesis in tea (Comellia sinensis L.).

The authors observed that SA, NO, and flavonoid contents

increased in plants exposed to elevated CO2.
Elevated carbon dioxide-induced
nitric oxide generation regulates
stomatal conductance

Stomata are epidermal pores through which gas exchange is

regulated, including CO2 assimilation. Several studies support

that the regulation of stomatal aperture size is achieved through

a complex sensory and signaling network (Kim et al., 2010;

Merilo et al., 2014). Stomata aperture facilitates more CO2

uptake, which enhances photosynthesis (a process by which

CO2 is captured from the atmosphere and is converted to sugar

as a source of energy for plant cell, growth and development, as

well as plant fitness). It is widely known that plant guard cells are

essential for photosynthesis and transpiration, and the stomata

aperture is sensitive to environmental stimuli. Recent progress in

stress signaling revealed that high levels of CO2-induced stomata

closure suggest ROS such as hydrogen peroxide (H2O2), as key

factors. ROS are major regulators of stomatal conductance in

response to internal or external stress inducers (Sun et al., 2021).

Pharmacological and genetic studies showed that NADPH

oxidases and cell wall peroxidases-mediated ROS regeneration

participate in elevated CO2-induced stomatal closure. Whereas,

elevated CO2-mediated inhibition of light-induced stomatal

opening would rely on ROS derived from NADPH oxidases,

and not from cell wall peroxidases (He et al., 2020). From

another perspective, Wang et al. (2015) demonstrated that NR

and NOS-like enzymes are involved in CO2-induced NO

accumulation in plants, under which conditions the regulation

of stomata and photosynthesis are differentially affected. In a

converse approach, Cornic (2000) observed the inhibition of

photosynthesis by a decrease in stomatal aperture, as a result of a

decrease in CO2 acquisition. In the same way, Garcia-Mata and
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Lamattina (2007) reported that light-induced stomatal opening

via calcium (Ca2+) and NO-mediated signaling pathways is

inhibited by ABA. The authors suggested that NO and Ca2+

are active components of ABA-induced stomatal closure.

Similarly, Chater et al. (2015) suggested that ABA synthesis

and signaling are required during elevated CO2-induced

stomatal regulation.

Moreover, Hsu et al. (2018) supported that elevated CO2-

mediated stomatal closure via an ABA-independent pathway

would involve the OST1/SnRK2 (OPEN STOMATA 1/SNF1-

related protein kinases 2) kinases family. In addition, studies

have suggested that the signaling pathway for elevated CO2-

induced stomatal closure shares several elements with but does

not overlap with (Hu et al., 2010; Tian et al., 2015), the ABA

signaling pathway in guard cells. Such induction of OST1 and its

target SLOW-TYPE ANION CHANNEL 1 (SLAC1, also known

as one of the five major NO3 transporter protein families), ROS

and NO production, enhanced Ca2+ level (Webb et al., 1996; Xue

et al., 2011; Shi et al., 2015; Geng et al., 2017). Lines of evidence

demonstrated that NO acts as an important secondary

messenger in guard cells during stomatal closure (Gayatri

et al., 2013). As for Sami et al. (2021), NO enhances the

photosynthetic efficiency, among other plant metabolisms.

This evidence would be attributed to the increase in biomass,

and greater leaf area, causing an increase in productivity (Lawlor

and Mitchell, 1991). As for Haworth et al. (2016), elevated CO2

would cause a reduction in photosynthetic physiology in plants.

A study conducted by De Souza et al. (2008) supported that

elevated CO2 levels (720 ppm) increased photosynthesis in

sugarcane plants compared to those grown under ambient

(370 ppm) CO2 level. This evidence was supported in several

CO2-enrichment studies (Lawlor and Mitchell, 1991). As

illustrated in Figure 1, we have proposed a signaling model

involving NO and other signaling pathways in plants exposed to

high concentrations of CO2.

In plants, the cytoskeleton (a structure made up offilamentous

proteins responsible for the morphology and intracellular

organization of the cell) provides mechanical support to the cell

and enables the cell to execute essential functions (Kost and Chua,

2002; Hawkins et al., 2013). The actin cytoskeleton plays a

fundamental role in diverse biological processes in plants, such

as cell division and expansion, organelle movement, vesicle

trafficking, and the establishment of polar cell growth (Kost and

Chua, 2002; Paez-Garcia et al., 2018). Drøbak et al. (2004)

supported that, in addition to its role in maintaining cell shape

and structure, the actin cytoskeleton and its associated elements

serve as a key target in various signaling events, as well as a signal

transducer. Furthermore, the actin cytoskeleton has been

identified as a major target and an effector of various signaling

cascades in plants, including Ca2+, mitogen-activated protein

kinase/kinase (MAPK/MAPKK) signaling, phytohormone

signaling, etc. (Hussey et al., 2006; Wang et al., 2011). Evident

findings revealed that the reorganization of cytoskeleton
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components under stress conditions is regarded as a crucial cell

survival response (Wang and Hussey, 2015; Soda et al., 2016a;

Sampaio et al., 2022). As indicated in previous paragraphs, high

CO2 levels-mediated changes in the stomatal conductance require

ABA and ABA signaling (Chater et al., 2015). Stomatal movement

is regarded as a means used by plants to increase their adaptability

to environmental change. A recent review report discussing the

progress on the dynamics of actin filaments and microtubules in

the guard cell (Li et al., 2022) revealed that the cytoskeleton is an

important factor influencing stomatal conductance. This

implication would occur through the change in turgor pressure

guard cells. Studies highlight that the shape, structure, and

mechanics of guard cells are affected by cytoskeleton-mediated

cell division and cell wall synthesis (Panteris et al., 2018;

Woolfenden et al., 2018; Muroyama et al., 2020).
Frontiers in Plant Science 05
Advances in the molecular mechanism underlying NO

signaling in plants revealed that NO regulates the function of

target proteins through post-translational modifications

(PTMs), including tyrosine nitration or S-nitrosation

previously referred to as S-nitrosylation (Yemets et al., 2011),

thus affecting their activity. Likewise, evidence support that the

cytoskeleton is involved in the NO-signaling network (directly

or indirectly); while, NO-mediated regulation of cytoskeleton

functions occurs through PTMs. Meanwhile, Kasprowicz et al.

(2009) found that the organization of the actin cytoskeleton is

modulated via NO levels in a cell-type-specific fashion. Findings

from diverse studies sustain the existence of a tight association

between changes in atmospheric CO2 levels and structural

adaptation in plants. Although studies present diverging views

on the actual effects of high CO2 levels on photosynthesis,
FIGURE 1

Illustration of elevated carbon dioxide (CO2)-mediated NO signaling in plants. Unlike other abiotic stresses, elevated CO2 levels have been
shown to have both beneficial and detrimental effects on plant growth and development. Beneficial effects are resumed in enhancing the
photosynthetic capacity and promotion of growth and development. However, at a certain accumulation level, CO2 induces various signaling
cascades, in which NO is said to play a central role. In the process, nitrate reductase and transporter encoding genes are induced, along with
the Ca2+ and ABA signaling, ROS and/or RNS signaling, resulting in differential stomatal conductance, enhancement of NO3 uptake and
assimilation, and eventually better growth and productivity. Continuous black lines with an arrow indicate positive regulation or induction, while
dash red lines with a perpendicular bar denote negative regulation or inhibition in case of over production/accumulation of compounds.
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evidence revealed the alteration of plant structure by impairing

the rate of cell division, cell expansion, and cell cycling due to

high CO2 concentrations. Under these circumstances, metabolic

changes could be induced at the cellular level (Masle, 2000;

Sharma et al., 2014). Given the role of the cytoskeleton in the

stress signaling events as portrayed earlier, coupled with the

interplay between NO signaling and the cytoskeleton function in

plants, it has become evident that the cytoskeleton plays a crucial

role in the adaptive response against abiotic stimuli (Soda et al.,

2016b), including elevated CO2.
Interplay between nitric oxide and
calcium signaling during elevated
carbon dioxide

Depicting the mechanisms underlying plants response to

abiotic stress helps improve the understanding of genetic factors

associated with stress tolerance in plants. Although investigating

the role of each signaling molecule independently provides some

useful information on their level of implication in the regulatory

mechanisms during abiotic stress events, a genome-wide

approach gives new insights on the possible interactions

between signaling molecules and their impact at the whole

plant level. Generally, signaling pathways do not operate solo.

Rather, they are activated along with other signaling networks

with which they may establish a certain level of interaction. This

interaction may occur in a balanced way since it is a high-energy

demanding process consisting of antagonistic or synergetic

relationships. This may result in what could be referred to as

signaling cascades, allowing the induction or suppression of

downstream adaptive response mechanisms. Just like other

stress-related conditions where NO plays an active role (Ma

et al., 2012; Niu et al., 2017; Sun et al., 2017; Khan et al., 2020), a

study conducted by Wang et al. (2013a) revealed crosstalk

between NO and Ca2+ signaling (also known as a secondary

messenger) during episodes of elevated CO2, which led to

enhanced lateral root development. The authors equally

indicated that a CO2-mediated increase in NO production

triggers the accumulation of cytosolic Ca2+ that acts as a co-

factor for NO. In a converse approach, Young et al. (2006)

investigated the CO2 signaling in guard cells and indicated that

low–high CO2 transitions modulate the cytosolic Ca2+

transient patterns.
Enhanced methane concentration
triggers nitric oxide and ROS
signaling in plants

Methane (CH4) was previously regarded as a physiologically

inert gas but is now emerging as a possible signaling molecule in
Frontiers in Plant Science 06
plants (Li et al., 2020). Some lines of evidence suggest that there

could be an interaction between CH4 and ROS, as well as other

signaling molecules such as NO, GSH, and hydrogen sulfide

(H2S) (Figure 2). Li et al. (2020) indicated that CH4 production

occurs through abiotic or biotic pathways. The latter is proposed

to be the major pathway of CH4 production through the

decomposition of organic compounds as well as microbial

activity (Emmanuel and Ague, 2007; Fiebig et al., 2009; Wang

et al., 2013b). CH4 exerts a protective effect through the

reduction of oxidative stress (Wang, 2014). Similarly, Hu et al.

(2018) observed that CH4 delayed post-harvest senescence by re-

establishing redox homeostasis. Likewise, Wang et al. (2009)

indicated that physically injured plants- and hypoxic conditions-

mediated generation of ROS stimulated CH4 emission. These

facts nourish the idea that the production of CH4 by plants

would be part of a survival strategy during stress conditions.

Zhang et al. (2018) exposed Mung bean plants to polyethylene

glycol-induced osmotic stress and discovered that NO

contributed to CH4-induced osmotic stress tolerance. In a

converse approach, Qi et al. (2017) investigated the role of

CH4 in inducing the development of adventitious roots in

cucumber found that CH4 triggers accumulation NO. The

interaction between NO and CH4 has recently been reported

(Boros and Keppler, 2019). From another perspective, Zhang

et al. (2018) reported that exogenous CH4 triggered NO

production under polyethylene glycol-induced osmotic stress,

and alleviated the inhibition of seed germination. Therefore, this

evidence suggests that CH4-induced abiotic stress tolerance

would be NO-dependent, which might involve NR and NOS-

like protein.

Studies aiming at elucidating the unexplored facets of NO in

plants discuss the possible interplay between NO and oxygen

(O2) availability in plants. It is believed that NH4 and NO3 are

the major sources of nitrogen for plants, with NO3 being the

most abundant. O2 differentially influences GHGs emission

patterns, acting on the activity of specific soil microorganisms,

such as methanogens and methanotrophs. In addition, as

indicated in previous paragraphs, the influential role of NO on

nitrogen assimilation events positions this molecule at the core

center of interest in various stress-related studies. It was reported

that NO contributes to CH4-mediated induction of osmotic

stress tolerance in mung bean (Zhang et al., 2018). Cucumber

adventitious rooting was reported to be induced by CH4-rich

water via heme oxygenase/carbon monoxide and Ca2+ pathways.
Nitric oxide and nitrous oxide are
tightly related

Nitrous oxide (N2O) is a potent GHG with a GWP much

higher than CO2 and CH4. N2O is emitted by diffusion from soil

or via plant transpiration (Chang et al., 1998). The release of
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N2O to the atmosphere by plants occurs during the nitrification

and denitrification processes. The latter are mediated by soil

microbial activities in the soil as well as in the shoot of plants via

the action of certain enzymes of the nitrogen metabolism, in

which NO takes an active part (Timilsina et al., 2020a). It is

established that NO3 is a precursor for N2O formation in both

plants (Hakata et al., 2003; Lenhart et al., 2019) and soil (Andrew

et al., 2012). In their study, Burlacot et al. (2020) found that the

conversion of NO to N2O in Chlamydomonas reinhardtii (Alga)

occurs during the photosystem I (PSI)-dependent

photoreduction of the photosynthesis. This was similarly

observed by Schützenmeister et al. (2020). Meanwhile, Gupta

et al. (2005) observed that in higher plants, only root

mitochondria, but not leaf mitochondria reduce nitrite to NO.

Both N2O and NO are known as NOx, and react with volatile

organic compounds and hydroxyl, resulting in organic NO3 and

nitric acid (HNO3) formation (Cassia et al., 2018). Unlike in
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animal and prokaryotic organisms (Arai et al., 2003), the

molecular mechanism underlying N2O-induced stress in plants

has not been elucidated. Nevertheless, considering the NO-

dependent N2O formation, an imbalance in NO synthesis or

signaling would affect N2O production in plants.
Ozone-induced stress triggers nitric
oxide signaling in plants

Like during other abiotic stresses, when plants are exposed to

ozone (O3), they undergo various physiological and biochemical

changes. In the process, various signaling pathways are activated

and act as messengers to trigger an adequate adaptive response

mechanism towards stress tolerance, along with the induction or

suppression of stress-related genes (Delaney et al., 1994; Sharma

and Davis, 1995; Pasqualini et al., 2009). Under the same
FIGURE 2

Methane induces nitric oxide accumulation in plants. High concentration of methane in the atmosphere or within the plant triggers activation of
various signaling and biosynthetic pathways, including NO. NO requires Ca2+, among others, as cofactors to govern the adaptive response
mechanisms towards abiotic stress in plants. The crosstalk between NO and Ca2+ along with other signaling cascades helps the plant to activate
the appropriate defense system to tackle the stress, by inducing related stress-responsive genes and accumulation of various antioxidant
systems that detoxify the effect of reactive oxygen (ROS) and nitrogen (RNS) species over accumulation. Persistent over production of ROS and/
or RNS leads to oxidative stress/damage that may culminate to cell death and plant necrosis. Continuous black lines with an arrow indicate
positive regulation or induction, while dash red line with a perpendicular bar denote negative regulation or inhibition.
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conditions, antioxidant systems are activated (Nogués et al.,

2008; Caregnato et al., 2010), including GSH and ascorbate-GSH

cycle (Zhang et al., 2020). The molecular basis of O3-induced

stress signals in plants has been widely investigated, of which an

SA-dependent signaling pathway was reported to be activated in

plants exposed to O3 (Sharma and Davis, 1997). As indicated in

previous paragraphs, GSNOR catalyzes the reaction of NO and

GSH. A study conducted by Alscher and Hess (1993) sustained

that O3 treatment affects the glutathione metabolism in plants.

Similarly, Gupta et al. (1991) observed an overtime increase in

GSH, GSSG, and total GSH levels in poplar upon O3 treatment.

As to Guri (1983), a correlation exists between differential O3

sensitivity and accumulation levels of GSH and the activity GR

in tolerant Phaseolus vulgaris cultivars.

Furthermore, a study revealed that dual application of NO

and O3 induced a large set of stress-responsive genes, therefore

suggesting their possible interplay (Ahlfors et al., 2009a). In the

same way, Ahlfors et al. (2009) demonstrated that O3-mediated

NO accumulation coincided with the hypersensitive response

(HR) in Arabidopsis, followed by O3-mediated induction of SA

biosynthesis and signaling pathway genes, and ethylene

accumulation. Interestingly, Xu et al. (2012) supported that

NO3 reductase is responsible for O3-triggered NO generation

and secondary metabolites in Ginkgo biloba plants. Moreover,

useful information that would allow enhancing our

understanding of the molecular mechanism underlying O3-

mediating induction of various signaling pathways and ROS in

plants is well summarized by Hasan et al. (2021), who

highlighted the role of key protein families associated with the

nitrogen metabolism, such as slow anion channel 1 (SLAC1) and

that of diverse phytohormone signaling pathways, which

regulate stomatal conductance. Likewise, Domingos et al.

(2015) highlighted the multidimensional roles of NO in gas

signaling in plants. In a recent study, Mukherjee (2022)

emphasized the forefront role of NO in mediating O3-induced

stress signaling in plants.

Moreover, land plants rely on light for photosynthesis, and

leaves serve as light-capturing organs. However, as an undesired

corollary, they also absorb damaging light, especially ultraviolet

B (UV-B) radiation (280–320 nm waveband of the solar

irradiation) (Gupta et al., 2011), a kind of UV light that

directly affects plants and microorganisms, and alters the

species-specific interactions (Vanhaelewyn et al., 2020), and

causes cell death in plants (Nawkar et al., 2013), which was

manifested by cell shrinkage, condensation of chromatin in

perinuclear areas, and formation of micronuclei in UV-B

treated BY-2 tobacco cells (Lytvyn et al., 2010). On the one

hand, exposure to UV-B radiation has been shown to impair the

genome stability of plants by damaging nucleic acids (Ries et al.,

2000; Tanaka et al., 2002). The good news is that the O3 layer in

the stratosphere helps absorb UV-B radiation. However, in

modern times, exposure to UV-B radiation increases gradually

due to the thinning of the protective O3 layer caused by human
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activities (Andrady et al., 2010). Plants have evolved

sophisticated strategies to adapt to the incidence of UV-B

light, such as increasing leaf thickness, UV-B reflective

properties, and the cellular levels of UV-B absorbing

metabolites. In the UV-B signal transduction network,

members of the bZIP (basic leucine zipper) transcription

factor (TF) family, ELONGATED HYPOCOTYL5 (HY5, a key

effector of the UV RESISTANCE LOCUS 8 (UVR8)) and HY5-

HOMOLOG (HYH) that mediate several photomorphogenic

pathways, and the E3-ubiquitin ligases (COP1) are required for

UV-B-induced gene expression (Oravecz et al., 2006; Tohge

et al., 2011). Reports indicate that low doses of UV-B induce

distinct signaling pathways from the high doses-stress response

pathways (Frohnmeyer et al., 1999; Jenkins et al., 2001; Brown

et al., 2005). In addition to UV-B radiation, Danon and Gallois

(1998) investigated the molecular response of Arabidopsis

thaliana plants exposed to UV-C radiation (10–50 kJ/m2), and

observed the induction of an oligonucleosomal DNA

fragmentation, which characterizes apoptotic-like changes in

the nucleus, similar to that observed in human cells (Martin &

Cotter, 1991). Reports have shown that UV-C (below 280 nm) is

not physiologically relevant to plants because it is effectively

intercepted by the earth’s stratosphere (Brash, 1997); however,

UV-C radiation yields similar DNA photoproducts to that

obtained with UV-B radiation, which reaches the surface of

the earth. Thus, several studies employed UV-C radiation to

explorer potential DNA damages. In this context, Danon et al.

(2004) observed that overexposure of Arabidopsis plants to UV-

C radiation induced programmed cell death (PCD), the latter

being suggested to be mediated by Caspase-like activities, which

in turn would modulate DNA fragmentation. In the process,

Caspase inhibitors suppress DNA fragmentation and cell death,

where two AtDAD1 and AtDAD2, earlier identified as homologs

of Defender against Apoptotic Death-1, are proposed to suppress

the onset of DNA fragmentation while supporting an

involvement of the endoplasmic reticulum in this form of the

plant PCD pathway.

On the other hand, UV radiation triggers the production of

free radicals, including ROS and NO (Tossi et al., 2009; Zhang

et al., 2011), as well as the counteracting plant defense

antioxidants such as ascorbate and glutathione (Jansen et al.,

1998; Santa-Cruz et al., 2014). The involvement of NO signaling

in mediating plant response to UV-B-induced oxidative stress

has been proposed. In this regard, Lytvyn et al. (2016)

highlighted the multiple functions of inositol biosynthesis in

plants exposed to UV-B. Their study revealed that the response

mechanism to NO-dependent oxidative stress induction in

Arabidopsis involves the inositol-3-phosphate synthase (IPS1),

a key enzyme for biosynthesis ofmyo-inositol and its derivatives.

Other studies showed that the role of ROS are important

elements of a wide signaling web that composes with other

signaling mediators to activate cellular protective mechanisms in

response to UV-B radiation. For instance, Arabidopsis plants
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treated with the NO scavenger PTIO (2-phenyl-4,4,5,5-

tetramethylimidazolin-L-oxyl-3-oxide) and/or with L-NAME

(NG-monomethyl-L-arginine), an NOS (NO synthase)

inhibitor, suppressed the induction of chalcone synthase

(CHS)-encoding gene; therefore suggesting that UV-B-

triggered the expression of CHS would require NO (Soheila

et al., 2001). One should keep in mind that the presence of NOS

in planta remains obscure. In another perspective, Tossi et al.

(2014) showed that the Arabidopsis UVR8 photoreceptor

regulates plants’ response to UV-B-induced stomatal closure in

a NO-dependent manner. Likewise, Wu et al. (2016) revealed

that the induction of anthocyanin under UV-B radiation is

regulated by the interaction between H2O2, NO and UVR8 in

radish. Similarly, Cassia et al. (2019) proposed that UV-B

triggers the accumulation of ABA, which increases the

production of H2O2 and NO. In the process, the UV-B

receptor UVR8 is activated. The latter is stabilized by

endogenous NO followed by the induction of HY5 TF. In turn,

HY5 TF has the potential to regulate the expression and activity

of NR, as well as CHs and chalcone isomerase (CHI) resulting in

a downstream increase in flavonoid and anthocyanin contents

capable of absorbing UV-B radiation and scavenging ROS.
Conclusion and perspectives

Nitric oxide (NO) is at the core center of interest in many

biosciences and environmental-related research programs,

mainly due to its involvement in almost all physiological and

biological processes in plants. Since the initial report of NO in

plants about four decades ago, our understanding of the

molecular mechanism underlying NO biosynthesis and

signaling in plants increased during the last two decades, and

the physiology of NO has been widely investigated under both

normal and stressful conditions. In this work, we assessed and

presented the current knowledge on the regulatory network

involving NO and its derived molecules in the adaptive

response mechanism of plants towards elevated CO2, CH4,

N2O, O3 or UV light. This review also gives insights into the

interaction of NO with other signaling pathways and highlights

the involvement of the nitrogen metabolism and the flavonoid

pathway genes in NO-mediated stress signaling during elevated

GHGs. These GHGs present both beneficial outcomes and

detrimental effects to the plant, depending on their level of

accumulation in the atmosphere. Therefore, taking advantage of

the current understanding of NO in its diverse dynamic roles in

various stressful conditions, NO can be regarded as a game

changer in the efforts towards the mitigation of the impact of

climate change, while providing a novel path to enhancing the
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resilience of agricultural and food production systems. In the

context of climate change, depicting the molecular basis of NO-

mediated plants’ response to elevated CO2, CH4, N2O, or O3

would help elucidate the regulatory mechanisms underlying

plants’ response to these GHGs. In addition, exploring the

interplay between NO-mediated nutrient acquisition and use

efficiency, and the associated defense mechanisms against GHGs

would provide more insights towards a paradigm shift for a

more resilient agriculture.
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