
Frontiers in Plant Science 01 frontiersin.org

Bulk segregant 
analysis-sequencing and 
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Inheritable albino mutants are excellent models for exploring the mechanism 

of chloroplast biogenesis and development. However, only a few non-lethal 

albino mutations have been reported to date in Brassica species. Here, 

we  describe a resynthesized Brassica napus mutant, whose leaf, stem, and 

silique tissues showed an inheritable albino phenotype under field conditions 

after the bud stage but green phenotype in the greenhouse during the 

whole growing season, indicating that the albino phenotype depends on 

environmental conditions. Compared with the green leaves of the field-grown 

wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of 

the field-grown mutant (WL) showed significantly lower chlorophyll contents 

and structural defects in chloroplasts. Genetic analysis revealed that the 

albino phenotype of WL is recessive and is controlled by multiple genes. Bulk 

segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions 

responsible for the albino phenotype spanned a total physical distance of 

approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and 

C07. To gain insights into the molecular mechanisms that control chloroplast 

development in B. napus, we  performed transcriptome (RNA-Seq) analysis 

of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested 

that differentially expressed genes (DEGs) associated with leaf color were 

significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll 

metabolism. Further analysis indicated that DEGs involved in chloroplast 

development and chlorophyll metabolism were likely the main factors 

responsible for the albino phenotype in B. napus. A total of 59 DEGs were 

screened in the candidate regions, and four DEGs (BnaC03G0522600NO, 

BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) 

were identified as the most likely candidates responsible for the albino 

phenotype. Altogether, this study provides clues for elucidating the molecular 

mechanisms underlying chloroplast development in B. napus.
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Introduction

Chloroplast-defective mutants usually exhibit albino, 
variegated, striped, etiolated, pale-green, and zebra leaves (Jung 
et al., 2003; Qiao et al., 2011, 2013; Kato et al., 2012; Hayashi-
Tsugane et al., 2014; Yang et al., 2015; Ye et al., 2016; Chen et al., 
2019; Feng et al., 2019; Zhao et al., 2020b). Albino mutants with 
defective chloroplast development are valuable resources for 
understanding chloroplast biogenesis and development, but they 
are usually seedling lethal under natural growth conditions. Over 
the last two decades, considerable progress has been made in 
deciphering the molecular mechanisms underlying the white/
albino leaf phenotype, and a large number of genes associated with 
chloroplast development have been isolated (Aluru et al., 2006; Yu 
et al., 2007; Yoo et al., 2009; Gong et al., 2013; Song et al., 2014; 
Pogson et al., 2015; Tang et al., 2017; Wang et al., 2017; Zhang 
et al., 2018, 2020; Cui et al., 2019). Chloroplast biogenesis and 
development are sensitive to environment, and plants can regulate 
chloroplast translation and protect chloroplasts from injury under 
low temperature stress. Several genes related to the temperature-
sensitive albino phenotype of plants have been identified to date, 
such as V3, St1 (Yoo et al., 2009), OsV4 (Gong et al., 2014), WLP1 
(Song et al., 2014), TCD11 (Wang et al., 2017), and DUA1 (Cui 
et al., 2019). These genes perform different functions in chloroplast 
development. V3, and St1 encode the subunits of ribonucleotide 
reductase, which can affect the expression of plastid genes 
encoding the transcription/translation apparatus. OsV4 and 
DUA1 encode chloroplast-targeted pentatricopeptide repeat 
(PPR) protein, which can bind to the plastid-encoded RNA 
polymerase (PEP) transcript and reduce the transcript levels of 
PEP genes. WLP1 and TCD11 encode the 50S ribosome L13 
protein and the ribosomal small subunit protein S6, which are 
important components for chloroplast biogenesis. However, the 
molecular mechanisms that environment affects chloroplast 
development remain poorly elucidated.

Chloroplasts are important organelles that perform 
photosynthesis and serve as the production and storage sites of 
many plant hormones and metabolites (Pogson and Albrecht, 
2011). Numerous studies have shown that the biogenesis and 
development of chloroplasts require cooperation between the 
nuclear-encoded RNA polymerase (NEP) and PEP, and are 
regulated by developmental and environmental signals (Jarvis and 
López-Juez, 2013). The transcription of PEP subunits (rpoA, rpoB, 
rpoC1, and rpoC2) is regulated by NEP (Liere et al., 2011). Most 
of the NEP is imported into the chloroplasts by translocons at the 
outer/inner envelope membranes of chloroplasts (TOC/TIC; 
Nakai, 2015). Chloroplast RNAs must be processed by a variety of 
NEP, especially PPR proteins. PPR proteins participate in 
posttranscriptional modifications in plants, such as RNA editing, 
splicing, stability, processing, translation, and maturation (Wang 
et al., 2021). Functionally defective PPR proteins usually result in 
abnormal plant development (Saha et al., 2007). GUN1, a PPR 
protein, impacts chloroplast development by regulating the 
tetrapyrrole biosynthesis and retrograde signaling pathways 

(Shimizu et al., 2019; Loudya et al., 2020). In rice, amino acid 
substitution in the PPR protein DUA1 led to the production of 
structurally abnormal chloroplasts and albino leaves (Cui et al., 
2019). Moreover, the expression levels of some plastid-encoded 
ribosomal proteins that are essential for chloroplast development 
are also affected by PPR proteins, such as PPR2 (Williams and 
Barkan, 2003), PPR4 (Schmitz-Linneweber et al., 2006) and PPR5 
(Beick et al., 2008).

Chlorophyll is the primary photosynthetic pigment, and its 
abundance in chloroplasts directly affects leaf color and 
photosynthetic efficiency. Most of the enzymes involved in 
biosynthesis of chlorophyll from glutamyl-tRNA have been well 
characterized (Jung et al., 2003; Tanaka and Tanaka, 2007; Masuda 
and Fujita, 2008; Zhao et al., 2020b). Additionally, phenotypes 
related to mutations in chlorophyll biosynthetic genes have also 
been identified in plants. For example, premature translational 
termination of the OsPORB transcript, which encodes a 
protochlorophyllide oxidoreductase, decreased the chlorophyll 
content of rice leaves below a certain threshold, resulting in severe 
degreening in leaves (Sakuraba et al., 2013b). Inactivation of three 
inactive Mg-chelatase subunits, CHLD, CHLI, and CHLH, 
decreased the chlorophyll content of plants and resulted in 
underdeveloped chloroplasts (Jung et al., 2003; Luo et al., 2013). 
Generally, the photosynthetic capacity of defective chloroplasts is 
lower than that of normal chloroplasts. The efficiency of 
photosynthetic reactions and energy metabolism in chloroplasts 
is determined by photosystem I (PSI), PSII, and photosynthetic 
electron transport (PET) chain (Foyer et al., 2012; Nelson and 
Junge, 2015). Psa and Psb are the core subunits of PSI and PSII, 
respectively. In addition, the light-harvesting chlorophyll protein 
complex (LHC) plays a crucial role in regulating the functions of 
the photosynthetic antenna system, and they can regulate the 
absorption of light energy and protect chloroplasts from light-
induced damage (Johnson et al., 2011).

B. napus is the important oilseed crop in the world. Leaves of 
different colors exhibit different photosynthetic efficiencies, 
which directly affect the growth of B. napus plants, subsequently 
altering yield. Apart from their utility for studying chloroplast 
development and photosynthetic mechanism, the leaf color 
mutants of B. napus are also used as markers in breeding (Zhao 
et al., 2020a). In most studies conducted to date, mutants with 
abnormal chloroplasts generally exhibited yellow or variegated 
leaves (Wang et al., 2016a; Zhu et al., 2017; Zhao et al., 2020a,c; 
Zhang et al., 2021). Moreover, an albino mutant has not yet been 
reported in B. napus. Despite the focus on leaf color, the 
molecular mechanisms responsible for leaf color development in 
B. napus remain unknown. In this study, we  characterized a 
resynthesized B. napus mutant line, which exhibits albino 
phenotype in the field and normal (green) phenotype in the 
greenhouse. BSA-Seq and RNA-Seq analyses of green and albino 
plants revealed a large number of genes associated with 
chloroplast development in B. napus. These results provide a 
foundation for understanding the molecular mechanisms of 
chloroplast development in B. napus.
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Materials and methods

Plant materials and growth conditions

One white-leaf (W7105) and two green-leaf (G7097 and 
2,127) B. napus lines were used in this study. G7097 is a 
resynthesized B. napus line that was developed by interspecific 
hybridization between Brassica oleracea and Brassica rapa (Wen 
et  al., 2008), followed by self-pollination over six flowering 
seasons. W7105 is a spontaneous mutant isolated from G7097. 
2,127 is a green-leaf resynthesized B. napus line originated from 
B. alboglabra and B. rapa (Chen et al., 1988). Reciprocal crosses 
were performed between W7105 and 2,127. The resulting F1 
progeny was then back-crossed with W7105 to produce the BC1 
segregating population. Green-leaf plants in the BC1 segregating 
population were self-pollinated to produce the BC1F2 segregating 
population. G7097 (hereafter designated as GL; Figure  1A), 
W7105 (hereafter field-grown W7105 was designated as WL; 
Figure 1B), 2,127, and their progenies were grown in an open field 
in Huazhong Agricultural University.

The ambient temperature during growing season is 
summarized in Supplementary Table S1. To study whether the 
albino phenotype of field-grown W7105 plants was induced by 
different environment, 10 seedlings of W7105 (hereafter 
greenhouse-grown W7105 was designated as WGL; Figure 1C) 
grown in the field for 30 days were transferred into a greenhouse 
and grown at 25°C under 16 h light/8 h dark photoperiod at all 
development stages. Phenotypes of greenhouse-grown plants were 
then compared with those of their field-grown counterparts.

Trait evaluation

At the early flowering stage, the average albino degree of the 
newest three leaves was investigated in BC1 and BC1F2 individuals 
which were derived from the crosses between W7105 and 2,127. 
Albino degree was defined as the ratio of albino area to the whole 
leaf area. Albino area and leaf area were obtained using the 
methods described by Perez et  al. (2000). To understand the 
impact of albino phenotype on plant reproduction, five 
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FIGURE 1

Phenotypic characterization of B. napus lines G7097 and W7105. (A) Field-grown G7097 (GL). (B) Field-grown W7105 (WL). (C) Greenhouse-grown 
W7105 (WGL). (D) Field-grown GL (left) and WL (right) at the flowering stage. (E) Siliques of GL (left) and WL (right). (F) Phenotype of the leaves of 
BC1F2 plants. (G) Frequency distribution of albino-part/leaf area ratio in the BC1 population (n = 124). (H) Frequency distribution of albino-part/leaf 
area ratio in the BC1F2 population (n = 97).
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representative plants of WL and GL lines were used for trait 
evaluation. As previously described (Ding et al., 2012; Li et al., 
2020), eight yield-related traits were evaluated, including plant 
height, main inflorescence length, number of primary branches, 
silique number per plant, silique length, seed number per silique, 
thousand-seed weight and seed yield per plant. The data were 
analyzed via Microsoft Excel using two tailed Student’s 
t-test analysis.

Measurement of chlorophyll and 
carotenoid contents

At the bud stage, the chlorophyll and carotenoid contents of 
newly emerged leaves of GL, WL, and WGL lines were determined, 
according to the method described by Zhu et al. (2017). A 0.2 g 
fresh leaf sample of each line was immersed in 10 ml of 80% 
acetone for 48 h at 4°C in the dark, following which plant debris 
was removed by centrifugation at 5,000 × g for 10 min. The 
supernatant was analyzed by spectrophotometric scanning at 665, 
649, and 470 nm, with 80% acetone as the control. The 
concentrations of chlorophyll a (Chl a), chlorophyll b (Chl b), and 
carotenoids (Car) were calculated according to the following 
equations (Arnon, 1949):

 Chlorophyll a Chl a A A: . . .= −12 21 2 81663 646

 Chlorophyll b Chl b A A: . . .= −20 13 5 03646 663

 
Carotenoid Car A Chl a 4Chl b: . / .= −( )−1000 3 27 10 229470

Three biological replicates were performed for each line, with 
each replicate containing three technical repeats.

Transmission electron microscopy  
assay

Young leaves were cut into 1 mm × 1 mm sections, and fixed in 
2.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS, pH 
7.2) under vacuum. After overnight incubation at 4°C, the samples 
were rinsed three times with 0.2 M PBS for 10 min each time. 
Then, the samples were fixed in 1% osmium tetroxide in 0.1 M 
PBS for approximately 2 h, and then washed with 0.2 M PBS as 
described above. After washing, the samples were dehydrated with 
a graded acetone series (30, 50, 70, 80, 90, and 100%; 30 min at 
each concentration), and embedded in Polybed 812 (Epon) resin. 
The embedded specimens were sliced using ultramicrotome Leica 
UC6, and sections were stained with 2% (w/v) uranyl acetate and 
2.6% (w/v) lead citrate for 10 and 5 min, respectively. Finally, the 
dried ultrathin sections were observed and photographed using a 

100-kV H-7650 Transmission Electron Microscope (Hitachi, 
Tokyo, Japan), equipped with a digital camera.

Bulk segregant analysis-sequencing

To perform BSA-Seq, leaf samples at the bud stage were 
collected from green-leaf and white-leaf individuals in the BC1F2 
generation, and genomic DNA was extracted using the Hi-DNA 
Secure Plant Kit (Tiangen, Beijing, China). The quality of DNA 
was assessed using NanoDrop 2000 spectrophotometer (Thermo 
Scientific, MA, United States). The DNA samples of 30 individuals 
of each phenotype were mixed in equal quantities to obtain a 
green pool and a white pool. 2,127 and WL were used as parental 
pools. Four DNA libraries were constructed, and sequenced on 
the Illumina HiSeq X Ten platform (Illumina, CA, United States). 
Raw data were filtered using the fastp software to remove 
low-quality reads and adapter sequences (Chen et  al., 2018). 
HISAT2 was used to map the reads to the reference genome of 
B. napus 2,127 (Kim et  al., 2019).1 Single nucleotide 
polymorphisms (SNPs) and insertion/deletion mutations (InDels) 
were conducted using the Genome Analysis Toolkit (GATK) 
software (McKenna et al., 2010). Sliding window analysis was used 
to calculate the average distribution of SNPs across the 19 
chromosomes of B. napus, with 1 Mb window size and 100 kb 
increment. The value of Δ(SNP index) was calculated as the 
difference in SNP indices between the two pools, as described 
previously (Guo et al., 2020). Candidate regions were selected 
based on 95% confidence intervals (Takagi et al., 2013).

RNA extraction and cDNA library 
construction

Total RNA was extracted using the TRIzol kit (Invitrogen, CA, 
United States) from newly emerged leaves harvested from GL, 
WGL, and WL lines at the bud stage, and purified using mRNA 
purification kit (Promega, WI, United States), according to the 
manufacturer’s instructions. With three biological replicates per 
sample, nine cDNA libraries were constructed using the Illumina 
TruSeq RNA Sample Preparation Kit (Illumina, CA, United States), 
according to the manufacturer’s instructions. The concentration 
and quality of each cDNA library were assessed using Agilent 2,100 
Bioanaylzer (Agilent Technologies, CA, United States) and ABI 
Step One Plus Real-Time PCR System (Applied Biosystems, CA, 
United States), respectively. Then, the libraries were sequenced on 
the Illumina HiSeq X Ten platform (Illumina, CA, United States).

RNA-Seq data analysis

Raw RNA-Seq data were processed to remove low-quality 
reads and reads containing adapter sequences and high content of 

1 http://cbi.hzau.edu.cn/rape/download_ext/no2127.genome.fa
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unknown bases (Ns). The resultant clean reads of each sample 
were mapped to the reference genome sequence of B. napus 2,127 
by HISAT2 (Kim et al., 2019).2 Only uniquely mapped reads were 
considered for gene expression analysis. Differential gene 
expression and transcript abundance (expressed as Fragments Per 
Kilobase per Million mapped reads (FPKM) values) were 
calculated using the RESM program (Li and Dewey, 2011). Genes 
with FPKM < 1  in all samples were excluded from subsequent 
analysis. Differentially expressed genes (DEGs) were identified 
using DESeq2 based on two criteria: false discovery rate 
(FDR) < 0.01 and |log2fold change (FC)| > 1 (Love et al., 2014).

Functional annotation of DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional annotations for DEGs were 
retrieved using blast2go3 and blastx/blastp searches against the 
GO database4 and KEGG database,5 respectively. GO terms with 
p values ≤ 0.0001 and KEGG pathways with Q-values ≤ 0.05 were 
considered to be significantly significant.

Quantitative real-time PCR  
validation

Total RNA extracted for transcriptome sequencing was used 
for conducting qRT-PCR. Eight genes relevant to chlorophyll 
synthesis and chloroplast development were selected to validate 
RNA sequencing data by qRT-PCR. The primer pairs were 
designed using Primer 5.0 (Thermo Fisher, MA, United States). 
Details of primer pairs are presented in supplementary Table S2. 
qRT-PCR was performed on an ABI StepOne™ Real-time PCR 
System (Applied Biosystems, CA, United States). All qRT-PCR 
experiments included three technical replicates and three 
biological replicates. The B. napus actin7 gene was used as an 
internal control.

Results

Characterization and genetic analysis of 
the albino mutant

Under field conditions, the GL line G7097 produced green 
leaves throughout the growth period, whereas field-grown W7105 
(WL) showed leaf color variation at the bud stage (Figures 1A,B). 
During the period from the early October to late January, when 

2 http://cbi.hzau.edu.cn/rape/download_ext/no2127.genome.fa

3 http://www.blast2go.com/

4 http://www.geneontology.org/

5 http://www.genome.jp/kegg/genes.html

daily mean temperatures gradually dropped below 10°C for more 
than 2 months (Supplementary Table S1), leaves of WL seedlings 
keep green until the seven-leaf or eight-leaf stage stages. Then the 
newly emerged WL leaves showed albino phenotype from the 
eight or nine-leaf stage onward, and leaves that were already fully 
expanded maintained their green color. Interestingly, all the white 
leaves of WL seedlings emerged under field conditions had green 
leaf margins, and the albino area extended from the midrib to the 
peripheries (Figure 1B). Additionally, WL also exhibited white 
stems and white siliques (not including the silique beak; 
Figures 1D,E). By contrast, each leaf of greenhouse-grown W7105 
(WGL), the counterpart of WL, remained green at a temperature 
of approximately 25°C in the greenhouse (Figure 1C). The results 
indicated that the albino phenotype of W7105 is depend on 
different environment. A period of low temperature plausibly 
changed the phenotype from normal to albino in WL. To study 
the impact of albinism on plant development, eight agronomic 
traits were investigated for WL and GL lines 
(Supplementary Table S3). The results showed that GL had 
significantly higher plant height and main inflorescence length in 
compared to WL. Importantly, several yield-related traits of GL, 
including silique number per plant, silique length, seed number 
per silique was about 1.53–2.61-fold higher than those of WL. The 
average seed yield per plant of WL was only 2.3 g, representing 
only 16.3% of GL, indicating white leaves, stems, and siliques of 
B. napus inevitably resulted in reduced photosynthetic capacity 
and plant yield.

To further determine the inheritance pattern of the albino 
phenotype, we generated F1, BC1, and BC1F2 populations using 
W7105 and green-leaf 2,127 as parents. All F1 plants exhibited 
green leaves, stems, and siliques. In the BC1 and BC1F2 population, 
the leaves of plants exhibited varying degrees of albino phenotype 
(Figure 1F). The frequency of albino degree followed a skewed 
distribution pattern (Figures 1G,H), indicating that the albino 
phenotype of W7105 is a recessive trait and is controlled by 
multiple genes.

Pigment contents of green and white 
leaves

To determine whether the albino phenotype of WL was 
caused by a defect in pigment accumulation, the chlorophyll and 
carotenoid contents of GL, WL, and WGL leaves were measured 
(Figure 2A). In young leaves collected from WL plants, pigment 
contents of the white main part (WL-W) and green leaf margin 
(WL-G) were investigated separately. As expected, the levels of 
chlorophyll a, chlorophyll b, and carotenoids were higher in the 
green leaves of GL and WGL plants and in WL-G. The total 
chlorophyll contents of GL, WGL, and WL-G were 624.32, 
728.26, and 671.93 μg/g, respectively. The carotenoid contents of 
GL, WGL, and WL-G were 126.40, 160.15, and 143.9 μg/g, 
respectively. No significant differences were detected in 
chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid 
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contents among the green tissues of GL, WGL, and 
WL-G. However, nearly no chlorophyll and carotenoid 
accumulations were detected in WL-W. These results suggested 
that the albino phenotype of WL is caused by a dramatic 
reduction in chlorophyll content.

Ultrastructural analysis of leaf 
chloroplasts

To examine whether the lack of chlorophyll in the albino part 
of WL leaves was accompanied by ultrastructural changes in 
chloroplasts, we analyzed the electron micrographs of ultrathin 
sections of leaves (Figures 2B–G). In the green leaves of GL and 
WGL, chloroplasts are crescent-shaped with numerous well-
developed grana thylakoids and unstacked stroma thylakoids, 
and shuttle-shaped starch granules were frequently observed in 
these chloroplasts. Consistent with the results of chlorophyll 

contents, the green sectors of WL leaves showed normal 
chloroplasts, similar to those observed in GL and WGL leaves. 
However, the albino part of WL leaves showed linear-shaped 
chloroplasts with no starch granules. In most cases, the 
chloroplasts were completely devoid of internal membrane 
structures, including stromal thylakoids and stacked grana 
thylakoids. Nonetheless, some chloroplasts contained internal 
membrane systems, albeit poorly developed. In these chloroplasts, 
the grana could not be stacked normally, and grana and stroma 
thylakoids were linear. Additionally, compared with green leaves, 
plastoglobules (PGs) were more abundant in the chloroplasts of 
WL white leaves. PGs often accumulate in plastid loss-of-function 
mutants, particular those with defects in thylakoid formation 
(Wijk and Kessler, 2017). These results collectively indicated that 
the lack of chlorophyll in the albino part of WL leaves was 
accompanied by defects in chloroplast development, and harsh 
environment compromised chloroplast development in 
WL leaves.

FIGURE 2

Pigment contents and transmission electron micrographs of the young leaves of GL, WGL, and WL plants. (A) Pigment contents of young leaves at 
the bud stage. Chl a, chlorophyll a; Chl b, chlorophyll b; Car, carotenoid; Total Chl, total chlorophyll. Error bars represent the standard deviation 
(SD) of three biological replicates. Asterisks indicate statistically significant differences (**p < 0.01; Student’s t-test). (B) Chloroplasts in WGL 
mesophyll cells. Scale bar = 5 μm. (C,D) Ultrastructure of chloroplasts in GL leaf (C) and the green sectors of WL leaf (D). Scale bars = 1 μm. 
(E) Chloroplasts in mesophyll cells of WL albino leaf sectors. Scale bar = 5 μm. (F,G) Ultrastructure of chloroplasts in albino sectors of WL. Scale 
bar = 1 μm. PG, plastoglobule; G, grana thylakoid; S, stroma thylakoid; SG, starch granule.
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BSA-Seq analysis

To identify the candidate genes associated with albino 
phenotype of WL, BSA-Seq analysis was performed using BC1F2 
plants exhibiting extreme leaf color phenotype as materials. After 
filtration, we  obtained a total of 114.60  Gb clean data, which 
included 37.04, 39.21, 17.29, and 21.06 Gb corresponding to the 
green pool, white pool, 2,127 parental pool, and WL parental pool 
(Supplementary Table S4). The Q30 ratio and GC content of each 
pool was greater than 94.90% and greater than 37.37%, respectively. 
A total of 375,283 SNPs were identified in the green pool and white 
pool. Based on Δ(SNP-index), a total of 13 candidate regions were 
identified on chromosomes A03, A07, A08, C03, C04, C06, and 
C07 (Figure 3; Supplementary Table S5). Together, these candidate 
regions spanned a physical distance of approximately 49.68 Mb and 
contained 4,390 annotated genes.

RNA-Seq assembly, unigene annotation, 
and DEG analysis

To gain insights into the genetic and regulatory mechanisms 
underlying the temperature-sensitive albino phenotype, the 
newly emerged leaves of GL, WL, and WGL lines were harvested 
in three independent biological replicates at the bud stage and 
subjected to transcriptome sequencing. After filtering the  
raw data, a total of 18.59, 18.77, and 18.70  Gb clean data  
were obtained for GL, WL and WGL, respectively 
(Supplementary Table S6). More than 70% of these clean reads 
were mapped to unique genomic locations, and the uniquely 
mapped reads were used for further analysis. Pearson correlation 
coefficient analysis of three replicates exhibited consistency, 
indicating that the RNA-Seq results were highly reliable 
(Supplementary Figure S1).

A

B

C

FIGURE 3

Single nucleotide polymorphism-index and Δ(SNP-index) in BSA-seq analysis. (A,B) SNP index distribution of the green pool (A) and white pool 
(B) in the BC1F2 population. (C) Δ(SNP-index) plot of the green and white pools. Red arrows indicate candidate regions.
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FIGURE 4

Analysis of DEGs identified among GL, WL, and WGL leaves. (A) Venn diagram showing the DEGs unique and common to the three comparisons 
(GL vs. WL, GL vs. WGL, and WGL vs. WL). (B,C) GO classifications of up-regulated (B) and down-regulated (C) genes. (D) KEGG pathway 
enrichment analysis of DEGs common to GL vs. WL and WGL vs. WL comparisons. (E) KEGG pathway enrichment of DEGs unique to WGL vs. WL 
comparison.

A total of 58,531, 61,087, and 61,767 expressed genes were 
identified in the leaves of GL, WL, and WGL, respectively. Then, 
three pairwise comparisons of gene transcript levels were 
performed: GL (G7097) vs. WL (W7105), to compare near 
isogenic lines (NILs) that differed in leaf color in the field; WGL 
vs. WL, to compare W7105 grown in the greenhouse (green 
leaves) with W7105 grown in the field (white leaves); GL (G7097) 
vs. WGL (W7105), to compare NILs that exhibited the same 
green leaf color in different growing environments. The 
distribution of DEGs uniquely expressed in each comparison and 
that of DEGs expressed in two or more comparisons are shown 
in Figure 4A. In comparison with GL, we identified 9,457 DEGs 
(4,996 up-regulated and 4,461 down-regulated) in WL, and 

13,630 DEGs (7,111 up-regulated and 6,519 down-regulated) in 
WGL. In comparison with WGL, we found 3,026 up-regulated 
and 3,653 down-regulated genes in WL.

Gene ontology and KEGG enrichment 
analyses of DEGs

To clarify the functional significance of DEGs, further GO 
and KEGG enrichment analysis were performed. All the above-
mentioned DEGs were successfully assigned to three main GO 
categories (Figures  4B,C). Metabolic process, cell, cell part, 
cellular process, and binding were the five most common GO 
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terms in all three comparisons mentioned above. In the GL vs. 
WGL comparison, GO terms related to plant response and 
chloroplast structure, such as response to abiotic stimulus, 
response to oxygen-containing compound, and thylakoid part, 
were the most highly represented. GO terms related to chloroplast 
structure and photosystem, such as thylakoid, thylakoid 
membrane, photosynthetic membrane, photosystem, showed  
the highest enrichment ratios in comparisons between green 
leaves and white leaves (GL vs. WL and WGL vs. WL; 
Supplementary Figure S2).

By and large, the KEGG pathway enrichment analysis 
supported the GO classification. The genes down-regulated in 
WGL compared with GL were mostly enriched in pathways for 
circadian rhythm, photosynthesis-antenna proteins, and 
flavonoid biosynthesis, while the up-regulated genes were 
significantly enriched in cysteine and methionine metabolism, 
MAPK signaling pathway, and ribosome 
(Supplementary Figures S3A,B). Compared with GL, the KEGG 
pathways of photosynthesis, photosynthesis-antenna protein, and 
carbon fixation in photosynthetic organisms were significantly 
enriched among the genes down-regulated in WL, while the 
pathways of ribosome, ribosome biogenesis in eukaryotes, and 
RNA degradation were significantly enriched among genes 
up-regulated in WL (Supplementary Figures S3C,D). In WGL vs. 
WL, the most highly enriched pathways involving down-
regulated genes in WL were photosynthesis, photosynthesis-
antenna protein, and glyoxylate and dicarboxylate metabolism, 
and those involving up-regulated genes were circadian rhythm, 
flavonoid biosynthesis, and phenylpropanoid biosynthesis 
(Supplementary Figures S3E,F). KEGG enrichment analysis of 
DEGs identified in GL vs. WL and WGL vs. WL comparisons 
revealed that the pathways of ribosome biogenesis in eukaryotes, 
porphyrin and chlorophyll metabolism, and carbon fixation in 
photosynthetic organisms were vital and common pathways that 
determined or were affected by defects in chloroplast 
development (Figure 4D). In addition, pathways associated with 
photosynthesis, such as photosynthesis, photosynthesis-antenna 
proteins, oxygenic photosynthesis, Calvin cycle, and 
photorespiration, and those associated with other metabolic 
processes that take place in chloroplasts, such as amino acid 
biosynthesis and starch and sucrose metabolism, were also 
significantly changed. DEGs uniquely identified in the WGL vs. 
WL comparison were mostly enriched in circadian rhythm, 
phenylpropanoid biosynthesis, and plant hormone signal 
transduction (Figure 4E), indicating the important roles of these 
pathways in environment-induced leaf color transition.

Putative DEGs related to chloroplast 
development, chlorophyll metabolism 
and photosynthesis

Chloroplast development is regulated by the coordinated 
expression of nuclear-encoded and plastid-encoded genes, 

especially ribosomal proteins and PPR proteins. As expected, 
we identified 30 DEGs related to ribosome (ko03010), which 
were common between GL vs. WL and WGL vs. WL comparisons 
(Supplementary Table S7). Further investigation revealed that 
the expression levels of 86.67% of these DEGs were significantly 
higher in WL than in GL and WGL. Among the 27 DEGs 
encoding chloroplast PPR proteins (Supplementary Table S7), 
only four genes (BnaC05G0527400NO, BnaC07G0208600NO, 
BnaC08G0027900NO, and BnaA08G0016300NO) were down-
regulated. The highly expressed PPR gene, BnaC03G0102300NO 
(GUN1), which is responsible for retrograde signaling during 
chloroplast development, was up-regulated by 2.29- to 3.42-fold 
in WL. Moreover, the expression levels of BnaC04G0338800NO 
and BnaC02G0358400NO (ropA), which are required for 
initiating chloroplast biogenesis, were up-regulated by 4.54- to 
9995.98-fold in WL (Supplementary Table S7). These results 
indicated that the abovementioned DEGs play critical roles in 
chloroplast development in B. napus.

Chloroplast development is closely related to chlorophyll 
metabolism and photosynthesis. Therefore, DEGs related to 
porphyrin and chlorophyll metabolism were analyzed in detail. 
Nearly all DEGs involved in porphyrin and chlorophyll 
metabolism were down-regulated in white leaves, except for two 
DEGs (BnaA02G0278200NO and BnaA09G0127700NO), both of 
which encode chlorophyllase-2 (CHL2; Figure  5A). In the 
photosynthesis pathway, the transcript levels of all DEGs encoding 
PSI and PSII core subunits (psaD, psaE, psaF, psaG, psaH, psaK, 
psaL, psaN, psaO, psb27, psbA, psbB, psbO, psbP, psbQ, psbR, 
psbS, psbW, and psbY) were significantly reduced (Figures 5B,C). 
Among the DEGs related to cytochrome b6/f complex and 
photosynthetic electron transport, only three DEGs 
(BnaC02G0358300NO, BnaC04G0338900NO, and 
BnaA06G0197400NO) encoding petD proteins were up-regulated, 
while those encoding other subunits (petC, petE, petF, and petH) 
were down-regulated (Figures  5D,E). In addition, all DEGs 
(LHCA1, LHCA2, LHCA3, LHCA4, LHCB1, LHCB4, and LHCB6) 
encoding light-harvesting chlorophyll protein complex were 
down-regulated by 3.54- to 21.16-fold in white leaves relative to 
green leaves (Figure 5F). These results indicated that the defects 
in chloroplast development and chlorophyll metabolism result in 
the down-regulation of a large number of photosynthesis-related 
DEGs in WL.

Putative DEGs related to carotenoid 
biosynthesis

As a component of photosynthetic pigments, carotenoids 
play a crucial role in photoprotective functions (Tanaka et al., 
2008). Since the carotenoid content in the white leaves  
was significantly lower than that in the green leaves, we  then 
focused on the expressional changes of carotenoid synthesis 
genes. As expected, three DEGs (BnaC02G0031000NO, 
BnaA06G0049500NO, and BnaC05G0058700NO) related  
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to carotenoid biosynthesis (ko00906) were identified 
(Supplementary Table S8), which were common between GL vs. 
WL and WGL vs. WL. Compared with green leaves, 
BnaC02G0031000NO encoding phytoene synthase (crtB), and 
BnaA06G0049500NO and BnaC05G0058700NO encoding 
violaxanthin de-epoxidase (VDE), were down-regulated by 2.46- 
to 32.56-fold in white leaves. These results indicated that the 
down-regulated crtB and VDE genes might lead to the reduced 
carotenoid content in WL.

Association analysis between BSA-Seq 
and RNA-Seq data

To rapidly identify candidate genes associated with the albino 
phenotype of WL, association analysis was performed by 
combining the BSA-Seq and RNA-Seq results. Based on the 
transcriptomic data, a total of 59 DEGs were screened out in the 
candidate regions associated with the white-leaf phenotype 
(Supplementary Table S9). Among these, four DEGs including 
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FIGURE 5

Expression differences of DEGs related to chlorophyll metabolism and photosynthesis in the comparison of GL vs. WL and WGL vs. WL. (A–F) 
Expression differences of DEGs related to porphyrin and chlorophyll metabolism (A), photosystem I (B), photosystem II (C), cytochrome b6/f 
complex (D), photosynthetic electron transport (E), and light-harvesting chlorophyll protein complex (F) in the comparison of GL vs. WL and WGL 
vs. WL. The red to green gradient in the heatmaps indicates log2 (fold change) values from high to low, respectively.
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BnaC03G0522600NO (TOC75-3), BnaC07G0481600NO (TIC62), 
BnaC07G0497800NO (arginine-tRNA synthetase gene), and 
BnaA08G0016300NO (PPR protein gene, DYW1), which 
potentially participate in chloroplast development (Ling et al., 
2009; Nakai, 2015; Li et al., 2021), were identified as the most 
likely candidates responsible for the albino phenotype of WL.

qRT-PCR analysis

To validate the reliability of the RNA-Seq analysis and the 
expression profiles of the important homologs related to 
chlorophyll biosynthesis and photosynthesis, qRT-PCR analysis 
was conducted to analyze the expression of eight selected genes 
(BnaC01G0110600NO, POR; BnaC06G0180200NO, LHCA1; 
Bnascaffold2199G0035600NO, LHCA2; BnaA05G0365900NO, 
LHCB4; BnaC05G0081800NO, petF; Bnascaffold2003G0000100NO, 
petE; BnaC09G0230500NO, psbQ; BnaC06G0079900NO, psaG). 
The results showed that the express patterns of the genes 
determined by qRT-PCR were consistent with those identified by 
RNA-Seq (Supplementary Figure S4), suggesting the reliability of 
transcriptional expression results in this study.

Discussion

In higher plants, chloroplast development has been a key 
focus of research. Limited information is available on chloroplast 
development and the underlying regulatory mechanisms, 
especially in Brassica species. In kale (B. oleracea), a temperature-
sensitive chlorophyll mutant called “white dove” was identified, 
which exhibited an albino phenotype in the interior of the plant 
under low temperature conditions (Zhou et al., 2013). A recent 
study reported that the cool-temperature-induced albinism of 
ornamental kale was controlled by one semi-dominant gene, 
which was mapped to an approximately 60 kb interval on 
chromosome C03 (Yan et al., 2020). To the best of our knowledge, 
W7105 is the first albino mutant reported in B. napus. W7105 
differs from seedling lethal mutants, as it can survive and produce 
progeny under field conditions. The albino phenotype of W7105 
may be induced by a period of low temperature, and it did not 
revert back to green phenotype under field conditions after the 
bud stage when the temperature gradually increases. Therefore, 
W7105 is an excellent resource for understanding the molecular 
mechanisms of chloroplast development and for investigating how 
environment affects chloroplast development in B. napus.

Putative genes for chloroplast 
development in Brassica napus

Bulk segregant analysis-sequencing (BSA-Seq) is a good 
approach to rapidly identify candidate regions and help accurately 
map the candidate genes in various plants. This approach has been 

successfully used to map the genes for various quantitative traits, 
such as fruit color (Oren et al., 2019), fruit texture (Wu et al., 2021) 
and grain length (Wang et al., 2022). In this study, a total of 13 
candidate regions, associated with the temperature-sensitive albino 
phenotype of B. napus, were identified using BSA-Seq. Combined 
with RNA-Seq analysis, four genes encoding TOC75-3 
(BnaC03G0522600NO), TIC62 (BnaC07G0481600NO), arginine-
tRNA synthetase (BnaC07G0497800NO), and PPR protein DYW1 
(BnaA08G0016300NO), were identified as the most likely 
candidate genes that potentially associated with chloroplast 
development. TOC75-3 and TIC62 are component of the TOC/
TIC complex. Growing evidence indicate that the TOC/TIC 
complex participates in plastid biogenesis through directly 
regulating accompany proteome remodeling (Richardson and 
Schnell, 2020). Arginine-tRNA synthetase is one of the aminoacyl-
tRNA synthetases and may affect chloroplast development and 
ribosomal biogenesis. Previous studies showed that the dysfunction 
of the Val-tRNA synthetase and the glyctl-tRNA synthetase gene, 
which play important roles in ribosomal biosynthesis, resulted in 
defective chloroplast development and albino leaves at seedling 
stage in rice (Wang et al., 2016b; Zheng et al., 2019). PPR protein 
DYW1 contains a conserved DYW domain and is necessary for 
editing of ndhD-1 (Boussardon et al., 2014). However, the functions 
of the above candidate genes have not been validated in B, napus, 
and further experiments will help clarify the involvement of these 
candidate genes in chloroplast development.

Abnormal chloroplast development led 
to Brassica napus albinism

Leaf color is directly determined by pigment accumulation in 
chloroplasts. Thus, abnormal chloroplast development or defective 
chlorophyll metabolism will lead to color change in leaves (Pogson 
et al., 2015). In the unique example of an albino mutant in Brassica 
crops, the protoplasts of albino kale tissues had abnormal 
chloroplasts, exhibiting defective grana thylakoids (Yan et al., 2020). 
In this study, the transmission electron microscope observation in 
albino leaves of WL showed that most of the chloroplasts were 
poorly developed and devoid of internal membrane structures 
(Figures  2B–G). Accordingly, a number of genes related to 
chloroplast development were significantly differentially expressed 
in WL when compared to GL and WGL, indicating defects in 
chloroplast development were responsible for the albino phenotype 
in B. napus. Plastid gene transcription requires strict coordination 
among PEP, NEP, and GUN1-mediated retrograde signaling (Tadini 
et al., 2020). In this study, BnaC04.rpoA (BnaC04G0338800NO), 
BnaC02.rpoA (BnaC02G0358400NO), and BnaC03.GUN1 
(BnaC03G0102300NO) were up-regulated in WL, which may 
directly affect plastid transcription, resulting in defective chloroplast 
development. PPR proteins play crucial functions in regulating 
organelle gene expression (Saha et  al., 2007). For example, 
Arabidopsis DG1 and YS1 are both chloroplast-targeted PPR 
proteins, and YS1 was characterized by editing rpoB transcripts. 
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The mutation of DG1 and YS1 genes in Arabidopsis led to an albino 
and a yellow seedling phenotype, respectively (Chi et al., 2008; Zhou 
et al., 2009). Similarly, essential ribosomal proteins edited by PPR 
proteins are required for chloroplast development. Any defects in 
these ribosomal proteins such as RPS17 (Schultes et al., 2000), ASL1 
(Gong et al., 2013), ASL2 (Lin et al., 2015), RPL12 (Zhao et al., 
2016), RPL13 (Song et al., 2014), and TCD11 (Wang et al., 2017) led 
to abnormal chloroplast development. Apart from rpoA and GUN1, 
we also found that a majority of genes encoding ribosomal and PPR 
proteins were up-regulated in WL (Supplementary Table S5). These 
genes may also play critical roles in chloroplast development in 
B. napus.

Chloroplast biogenesis and development were usually 
accompanied by chlorophyll accumulation (Pogson et al., 2015). 
Plants with defective chloroplasts usually exhibit a defect in 
chlorophyll accumulation. In support of this, our results showed 
that the levels of chlorophyll contents were significantly higher in 
the green leaves of GL and WGL plants when compared to WL 
(Figure 2A). In agreement with the chlorophyll results, the key 
genes involved in chlorophyll metabolism, including magnesium 
protoporphyrin IX methyltransferase (CHLM), CHLD, inactivation 
of the geranylgeranyl reductase (CHLP), oxygen-dependent 
coproporphyrinogen III oxidase (HEMF), 8-vinyl-reductase (DVR), 
protochlorophyllide oxidoreductase (POR), non-yellow coloring 1 
(NYC1), and red chlorophyll catabolite reductase (RCCR), and 
significantly down-regulated in WL (Figure 5A). Mg-chelatase 
consists of three subunits (CHLH, CHLI and CHLD) and 
participates in the insertion of magnesium into protoporphyrin 
IX in chlorophyll metabolism (Willows et al., 1996). A single 
amino acid change of CHLD altered chloroplast ultrastructure 
and chlorophyll accumulation, resulting in the yellow-green leaf 
in foxtail millet (Li et al., 2016). Previous studies suggested that 
POR is essential for chlorophyll synthesis, and when PORB and 
PORC mutated, the plants exhibited decreased chlorophyll 
content and defects in chloroplast development (Su et al., 2001; 
Sakuraba et  al., 2013b). NYC1 and RCCR are chlorophyll 
catabolic enzymes and paly essential roles in chlorophyll 
degradation (Kusaba et al., 2007; Pruzinská et al., 2007; Sakuraba 
et al., 2013a). It is unexpected to find that the expression levels of 
two CHL2 genes (BnaA02G0278200NO and BnaA09G0127700NO) 
in the white leaves were significantly higher than those in the 
green leaves. CHL is considered to be a rate-limiting enzyme that 
participates in chlorophyll degradations (Harpaz-Saad et  al., 
2007). However, some evidence suggested that CLH2 is not 
essential for chlorophyll breakdown during senescence in plans 
(Schenk et  al., 2007; Hu et  al., 2015). Overall, Chlorophyll 
metabolism is a complex process in B. napus, and the function of 
CHL2 in chlorophyll degradations needs to be investigated in 
further experiments.

Protein complexes, PSI, PSII, cytochrome b6/f complex, 
photosynthetic electron transport chain, and light-harvesting 
complexes, are embedded in thylakoid membrane and responsible 
for photosynthesis (Allen et al., 2011). Light energy is captured by 
light-harvesting complexes, and then transferred to PSI and PSII 
(Goral et al., 2012). Our results showed that a defect in chlorophyll 

accumulation led to reduced photosynthesis, which was consistent 
with previous research (Kim et al., 2009). Thus, we speculate that 
rpoA, GUN1, some specific ribosomal and PPR genes may regulate 
chloroplast biogenesis and development, while CHLM, CHLD, 
CHLP, HEMF, DVR, POR, NYC1, and RCCR participate in 
chlorophyll metabolism in B. napus. Changes in the above genes 
expression may directly affect photosynthesis and result in the 
albino phenotype in W7105.
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