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General volatile anesthetic diethyl ether blocks sensation and responsive 

behavior not only in animals but also in plants. Here, using a combination of 

RNA-seq and proteomic LC–MS/MS analyses, we  investigated the effect of 

anesthetic diethyl ether on gene expression and downstream consequences 

in plant Arabidopsis thaliana. Differential expression analyses revealed 

reprogramming of gene expression under anesthesia: 6,168 genes were 

upregulated, 6,310 genes were downregulated, while 9,914 genes were 

not affected in comparison with control plants. On the protein level, out of 

5,150 proteins identified, 393 were significantly upregulated and 227 were 

significantly downregulated. Among the highest significantly downregulated 

processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and 

photosynthesis. However, measurements of chlorophyll a fluorescence did 

not show inhibition of electron transport through photosystem II. The most 

significantly upregulated process was the response to heat stress (mainly heat 

shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, 

we  showed transient increase of cytoplasmic calcium level [Ca2+]cyt in 

response to diethyl ether application. In addition, cell membrane permeability 

for ions also increased under anesthesia. The plants pre-treated with diethyl 

ether, and thus with induced HSPs, had increased tolerance of photosystem 

II to subsequent heat stress through the process known as cross-tolerance 

or priming. All these data indicate that diethyl ether anesthesia may partially 

mimic heat stress in plants through the effect on plasma membrane.
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Introduction

General volatile anesthetics (GVAs) are usually defined as 
compounds, which induce reversible loss of consciousness in 
humans (Franks, 2006). The clinical definition of anesthesiology 
states that it is the practice of medicine providing insensibility to pain 
during surgical, obstetric, therapeutic, and diagnostic procedures. 
Diethyl ether and chloroform were used as sole agents in a general 
anesthetic procedure for almost a century, and the term anesthesia 
was introduced soon after the discovery of etherization. In fact, the 
term anesthesia was coined to describe what happens during the 
process of etherization. GVAs produce unconsciousness, analgesia, 
amnesia, immobility, and lack of stress and hemodynamic responses 
in response to noxious stimulation (Urban and Bleckwenn, 2002). 
However, such narrow definitions are applicable only for subset of 
organisms with cortical networks that are susceptible to being 
anesthetized. Because the anesthetic drugs are also effective in 
organisms from protists, through plants, to primate, Kelz and 
Mashour (2019) proposed new definition for anesthetics applicable 
across whole tree of life as compounds which cause disconnection 
from environment, both in receptive (e.g., sensation) and expressive 
(e.g., motoric responses) arms of interaction.

If plants are exposed to GVAs, they indeed lost ability to sense 
their environment. In previous studies, it was shown that plants 
exposed to diethyl ether anesthesia were neither able to sense 
mechanical stimuli, wounding, or light and lack also expressive 
motoric responses. For example, touch-induced leaf movement in 
sensitive plant Mimosa pudica, trap closing reactions in carnivorous 
plant Dionaea muscipula, trap bending movement in carnivorous 
sundew Drosera capensis and autonomous circumnutations 
movements of tendrils of pea (Pisum sativum) were completely 
stopped (Milne and Beamish, 1999; De Luccia, 2012; Yokawa et al., 
2018; Pavlovič et al., 2020; Böhm and Scherzer, 2021; Scherzer 
et al., 2022). We found that disappearance of some of these plant 
reactions were caused by inhibition of electrical signal generation 
and propagation, a target of anesthetics is remarkably similar to 
animal organisms. Also in the case of Arabidopsis thaliana plants, 
in which motoric responses are not easily observable, etherized 
individuals lost ability of systemic electrical and Ca2+ signals 
propagation from damaged to neighboring leaves after heat 
wounding (Jakšová et al., 2021). Since electrical and Ca2+ signal 
propagation is dependent on ligand-gated glutamate receptor like 
channels (GLRs, Mousavi et al., 2013; Toyota et al., 2018), and 
diethyl ether attenuated also glutamate-induced Ca2+ signal 
(Jakšová et al., 2021; Scherzer et al., 2022), GLR channels have been 
suspected as the possible targets of anesthesia in plants, like in 
animals. In the absence of electrical signals in etherized plants, the 
downstream sequence of events in systemic leaves were blocked, 
including accumulation of phytohormones of the jasmonates (JA) 
group and expression of JA-responsive genes, indicating the 
inhibition of sensing as well as responsive behavior in plants 
(Pavlovič et al., 2020; Jakšová et al., 2021).

The exact mode of GVA action in animals and plants is still a 
mystery. In the membrane theory, Meyer (1899) and Overton 

(1901) assumed that solubilization of lipophilic GVA in lipid 
bilayer of the neurons causes their fluidizing and malfunction, and 
anesthetic effect. In the modern lipid hypothesis, anesthetics do 
not act directly through the membrane, but rather perturb 
specialized lipid matrices at the protein-lipid interface (Lerner, 
1997; Pavel et al., 2020). The protein theory of GVA action was put 
forward, when Franks and Lieb (1984) demonstrated that the 
anesthetic effect can be reproduced on a soluble luciferase protein 
in the absence of lipids. It was believed that GVAs bind to their 
target ion channel by a key-lock mechanism and change their 
structure dramatically from open to closed conformation. The 
modern protein theory suggests that GVAs do not change 
structure of membrane channel but change its dynamics, 
especially dynamics in the flexible loops that connect α-helices in 
a bundle and are exposed to the membrane-water interface (Tang 
and Xu, 2002). Recent findings indicate that GVAs disrupt lipid 
rafts, regions of ordered lipids which allow nanoscale 
compartmentalization of proteins and lipids (Pavel et al., 2020).

In this study, we focused on molecular responses to diethyl 
ether anesthesia in A. thaliana using transcriptomic (RNA-seq) 
and proteomic (LC–MS/MS) analyses. Although recent studies 
have shown that diethyl ether anesthesia blocks sensation and 
responsive behavior in plants, here we show for the first time that 
it also induced huge reprogramming of gene expression. Our data 
strongly suggest that GVA diethyl ether mimics a heat stress 
probably through the effect on plasma membrane.

Materials and methods

Plant material, culture conditions, and 
experimental setup

Plants of Arabidopsis thaliana (L.) Heynh. (Col-0) and transgenic 
A. thaliana (L.) Heynh. (Col-0), expressing the APOAEQUORIN 
gene under control of the CaMV 35S promoter, were grown on a soil 
substrate (Potgrond H, Klasmann-Deilmann, Germany) in a growth 
chamber (AR75L; Percival-Scientific, United States) for 6–7 weeks 
under 8 h light (100 μmol photons m−2  s−1 PAR)/16 h dark cycle 
(21/21°C) and 60% relative air humidity. The 6–7 weeks old plants 
were enclosed into polypropylene bags or transparent boxes and 
diethyl ether was applied. By adding a corresponding volume of 
liquid phase of diethyl ether to a certain volume of air, 15% vapor of 
diethyl ether was obtained (see Yokawa et al., 2018). Then, after 2.5 
and 5.5 h, the leaf samples were collected and immediately frozen in 
liquid nitrogen and stored at −80°C. At the same time the leaf 
samples from controlled bagged plants without diethyl ether were 
also sampled by the same way.

RNA-seq analyses

A single eighth leaf (for leaf numbering see Jakšová et al., 
2021) of 2.5 h etherized and control plants of A. thaliana were cut, 

https://doi.org/10.3389/fpls.2022.995001
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pavlovič et al. 10.3389/fpls.2022.995001

Frontiers in Plant Science 03 frontiersin.org

immediately frozen in liquid nitrogen and weighted. 50–60 mg of 
leaf material was homogenized in a Geno/Grinder® 2010 (Spex 
Sample Prep, Stanmore, United  Kingdom) equipped with 
aluminum racks. The racks were cooled in liquid nitrogen prior to 
usage to prevent a thawing of leaf material during the whole 
homogenization process. RNA was extracted and purified using 
Trizol reagent (Invitrogen, Carlsbad, CA, United States) followed 
by the RNA Clean & Concentrator TM-5 kit (Zymo Research, 
Irvine, CA, United States), including DNase digestion to remove 
genomic DNA contamination. A total amount of 1 μg RNA per 
sample was used as input material for the RNA sample 
preparations. Sequencing libraries were generated using 
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, 
United States) following manufacturer’s recommendations and 
index codes were added to attribute sequences to each sample. 
Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using 
divalent cations under elevated temperature in NEBNext First 
Strand Synthesis Reaction Buffer (5X). First strand cDNA was 
synthesized using random hexamer primer and M-MuLV Reverse 
Transcriptase (RNase H-). Second strand cDNA synthesis was 
subsequently performed using DNA Polymerase I  and RNase 
H. Remaining overhangs were converted into blunt ends via 
exonuclease/polymerase activities. After adenylation of 3′ ends of 
DNA fragments, NEBNext Adaptor with hairpin loop structure 
were ligated to prepare for hybridization. In order to select cDNA 
fragments of preferentially 150–200 bp in length, the library 
fragments were purified with AMPure XP system (Beckman 
Coulter, Beverly, United States). Then 3 μl USER Enzyme (NEB, 
United States) was used with size-selected, adaptor ligated cDNA 
at 37°C for 15 min followed by 5 min at 95°C before PCR. Then 
PCR was performed with Phusion High-Fidelity DNA polymerase, 
Universal PCR primers and Index (X) Primer. At last, PCR 
products were purified (AMPure XP system) and library quality 
was assessed on the Agilent Bioanalyzer 2100 system. The 
clustering of the index-coded samples was performed on a cBot 
Cluster Generation System using PE Cluster Kit cBot-HS 
(Illumina) according to the manufacturer’s instructions. After 
cluster generation, the library preparations were sequenced on an 
Illumina platform and paired-end reads were generated. Raw data 
(raw reads) of FASTQ format were firstly processed through 
FASTP. In this step, clean data (clean reads) were obtained by 
removing reads containing adapter and poly-N sequences and 
reads with low quality from raw data. At the same time, Q20, Q30, 
and GC content of the clean data were calculated. All the 
downstream analyses were based on the clean data with high 
quality. Differential expression analysis between two conditions/
groups four biological replicates per condition was performed 
using DESeq2R package. DESeq2 provides statistical routines for 
determining differential expression in digital gene expression data 
using a model based on the negative binomial distribution. The 
resulting p values were adjusted using the Benjamini and 
Hochberg’s approach for controlling the False Discovery Rate 
(FDR). Genes with an adjusted p value <0.05 found by DESeq2 

were assigned as differentially expressed. Gene Ontology (GO) 
enrichment analysis of differentially expressed genes was 
implemented by the clusterProfiler R package, in which gene 
length bias was corrected. GO terms with corrected p value less 
than 0.05 were considered significantly enriched by differential 
expressed genes. The RNA-seq experiment was commercially 
done by NovoGene.

LC–MS/MS analyses

A single eight leaf from etherized A. thaliana plants for 5.5 h 
and non-etherized leaf from control plants were homogenized by 
mortar and pestle in liquid nitrogen after diethyl ether treatment. 
Homogenates were then lysed in SDT buffer (4% SDS, 0.1 M DTT, 
0.1 M Tris/HCl, and pH 7.6) in a thermomixer (Eppendorf 
ThermoMixer® C, 60 min, 95°C, 750 rpm). After that, samples 
were centrifuged (15 min, 20,000 × g) and the supernatants (ca 
100 μg of total protein) used for filter-aided sample preparation 
(FASP) as described elsewhere (Wiśniewski et al., 2009) using 
0.75 μg of trypsin (sequencing grade; Promega). Resulting 
peptides were analyzed by LC–MS/MS.

LC–MS/MS analyses of all peptides were done using 
nanoElute system (Bruker) connected to timsTOF Pro 
spectrometer (Bruker). Two column (trapping column: Acclaim™ 
PepMap™ 100 C18, dimensions 300 μm ID, 5 mm long, 5 μm 
particles, Thermo Fisher Scientific; separation column: Aurora 
C18, 75 μm ID, 250 mm long, 1.6 μm particles, IonOpticks) mode 
was used on nanoElute system with default equilibration 
conditions (trap column: 10 volumes at 217.5 bars; separation 
column: 4 column volumes at 800 bars). Sample loading was done 
using three pickup volumes +2 μl at 100 bars. Trapped peptides 
were eluted by 120 min linear gradient program (flow rate 
400 nl min−1, 3–80% of mobile phase B; mobile phase A: 0.1% FA 
in water; and mobile phase B: 0.1% FA in ACN). The analytical 
column was placed inside the Column Toaster (40°C; Bruker) and 
its emitter side was installed into CaptiveSpray ion source 
(Bruker). MSn data were acquired in m/z range of 100–1,700 and 
1/k0 range of 0.6–1.6 V × s × cm−2 using DDA-PASEF method 
acquiring 10 PASEF scans with scheduled target intensity of 
20,000 and intensity threshold of 2,500. Active exclusion was set 
for 0.4 min with precursor reconsideration for 4× more 
intense precursors.

For data evaluation, we used MaxQuant software (v1.6.17; Cox 
and Mann, 2008) with in built Andromeda search engine (Cox et al., 
2011). Search was done against protein databases of A. thaliana 
(27,468 protein sequences, version from 2020-12-02, downloaded 
from ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/reference_proteomes/Eukaryota/UP000006548/
UP000006548_3702.fasta.gz) and cRAP contaminants (112 
sequences, version from 2018-11-22, downloaded from http://www.
thegpm.org/crap). Modifications were set as follows for database 
search: oxidation (M), deamidation (N, Q), and acetylation (Protein 
N-term) as variable modifications, with carbamidomethylation (C) 
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as a fixed modification. Enzyme specificity was tryptic with two 
permissible miscleavages. Only peptides and proteins with false 
discovery rate threshold under 0.01 were considered. Relative protein 
abundance was assessed using protein intensities calculated by 
MaxQuant. Intensities of reported proteins were further evaluated 
using software container environment (https://github.com/
OmicsWorkflows/KNIME_docker_vnc; version 4.1.3a). Processing 
workflow is available upon request and it covers, in short, reverse hits 
and contaminant protein groups (cRAP) removal, protein group 
intensities log2 transformation and normalization (loessF), and 
LIMMA statistical tests. Significantly up/downregulated protein 
groups were further subjected to functional enrichment analysis 
using g:Profiler web tool (significance threshold g:SCS; user 
threshold 0.05; Raudvere et al., 2019).

Western blotting

Total protein from the eighth leaf of 5.5 h etherized and control 
plants of A. thaliana was isolated using extraction buffer containing 
28 mM DTT, 28 mM Na2CO3, 175 mM sucrose, 5% SDS, 10 mM 
EDTA, and protease inhibitors (Set VI, Calbiochem, Darmstadt, 
Germany). The samples were heated for 30 min at 70°C. The 
concentration of total soluble proteins in the samples was 
determined using the Bicinchoninic Acid Kit for Protein 
Determination (Sigma-Aldrich, St. Louis, MO, United States), and 
absorbance was measured at 562 nm (Thermo Spectronic UV500, 
UV–Vis Spectro, MA, United States). The same amount of protein 
was separated in a 10% (v/v) SDS–polyacrylamide gel (Schägger, 
2006) followed by transfer to a nitrocellulose membrane (Bio-Rad, 
Germany) by Trans-Blot SD Semi-Dry Electrophoretic Transfer 
Cell (Bio-Rad, Hercules, CA, United States). To check the correct 
protein transfer, the membranes were stained by Ponceau-S. After 
blocking in TBS-T containing 5% BSA overnight at 4°C, the 
membranes were incubated with the primary antibody at room 
temperature with soft agitation. Antibodies against proteins HSP70 
(AS08371), HSP90-1 (AS08346), GluTR (AS10689), LPOR 
(AS05067), RbcL (AS03037), and actin (AS13 2640) were purchased 
from Agrisera (Vännäs, Sweden). After washing, the membrane was 
incubated 1 h with the secondary antibody [goat anti-rabbit IgG 
(H + L)-horseradish peroxidase conjugate] with dilution 1:10,000 
(Bio-Rad, Hercules, CA, United States). Signals were visualized and 
quantified using Immobilon Western chemiluminescent HRP 
substrate (Millipore, Billerica, MA, United States) on an Amersham 
Imager 600 (GE HealthCare Life Sciences, Japan). The data were 
checked for homogeneity of variance and significant differences 
were evaluated by Student’s t-test. If non-homogeneity was present, 
Welch’s t-test was used instead (Microsoft Excel).

Aequorin luminescence imaging

Transgenic A. thaliana (L.) Heynh Col-0 wild-type expressing 
the APOAEQUORIN gene under control of the CaMV 35S 

promoter was used for [Ca2+]cyt analyses (Kiep et  al., 2015). 
Aequorin was reconstituted by spraying plants with 10 μM 
coelenterazine (Invitrogen, Eugene, OR, United States) in 0.01% 
Tween 20 (Sigma-Aldrich, United  Kingdom) and subsequent 
incubation for 5 h in the dark. Aequorin luminescence imaging 
was performed using a highly sensitive CCD camera iKon-XL 
(Oxford Instruments plc, Tubney Woods, Abingdon, 
United Kingdom). To reduce the dark current, CCD camera was 
cooled down to −100°C. The CCD camera was equipped with a 
50-mm focal distance lens with an f-number of 1.2 (Nikon, Tokyo, 
Japan) to enhance the light collecting efficiency. Spectral sensitivity 
of CCD camera was within the range of λ = 200–1,000 nm with 
almost 90% quantum efficiency in the visible range of the 
spectrum. The spectral sensitivity was limited to λ = 350–1,000 nm 
by the lenses. CCD camera parameters were as follows: scan rate, 
100 kHz; gain, 2. Photons were captured in photon-counting mode 
with a 5 min acquisition time. Signal acquisition and processing 
were performed with Andor Solis (Oxford Instruments plc, 
Tubney Wood, Abingdon, United  Kingdom) and ImageJ 1.49 
(NIH, United States), respectively. The CCD camera was situated 
in the experimental dark room (3 m × 1.5 m × 2.5 m) painted in 
black. The door in the experimental dark room was protected 
completely with a black curtain to restrict any external light. The 
plants were imaged 10 min before, during and 2.5 h after diethyl 
ether application. All experiments were repeated several times to 
ensure reproducibility.

Chlorophyll a fluorescence quenching 
analysis

Chlorophyll a fluorescence quenching analysis was measured 
using a FluorCam imaging system (800–0, PSI, Czech Republic) 
on the plants enclosed in the transparent boxes. The plants were 
treated by diethyl ether for 5.5 h and measured immediately still 
under the effect of diethyl ether. Control plants were also enclosed 
in the box before and during the measurement in order to 
maintain the same optical conditions of the measurement. Before 
measurements, the plants were dark-adapted for 20 min. A 
kinetics of three parameters—an effective quantum yield of 
photosystem II (PSII; ΦPSII), excitation pressure on PSII (1–qP), 
and non-photochemical quenching of chlorophyll fluorescence 
(NPQ) were evaluated after switching on actinic light (red light, 
100 μmol photons m−2  s−1 PAR) and during subsequent dark 
relaxation. ΦPSII was calculated as ΦPSII = (FM´ – Ft)/FM´, the 
excitation pressure 1–qP = 1 – (FM´ – Ft)/(FM´ – F0´), and 
NPQ = (FM – FM´)/FM´ (Maxwell and Johnson, 2000). Maximum 
fluorescence in dark (FM) and light-adapted state (FM´) was 
determined by applying the 1.6 s saturating pulse (blue light, 
3,000 μmol photons m−2 s−1 PAR). The actual fluorescence signal 
at the time t of actinic illumination (Ft) was measured immediately 
prior to the application of saturating pulse. Minimum fluorescence 
in light-adapted state (F0´) was estimated by the formula F0´ ≈ F0 
/[(FM – F0)/FM + F0/FM´]. F0 (minimum fluorescence in 
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dark-adapted state) was determined by applying several 
μ-seconds-long measuring flashes (red light, 0.1 μmol photons 
m−2 s−1 PAR) at the beginning of the procedure. The data were 
checked for homogeneity of variance and significant differences 
were evaluated by Student’s t-test, if non-homogeneity was 
present, Welch’s t-test was used instead (Microsoft Excel).

Measurements of fast chlorophyll a 
fluorescence transient

To investigate the effect of diethyl ether mediated cross-
tolerance or priming on subsequent heat–stress response, 
we  measured fast chlorophyll a fluorescence transient. The 
measurements were done in control plants and plants incubated 
5.5 h in diethyl ether. Then the plants were removed from the 
boxes and after 30 min of their recovery (15 min under dim light 
and then 15 min in darkness), leaves were detached from the 
plants and incubated for 5 min in a water bath at room temperature 
(RT) or at 40, 42, 43, 45, and 46°C (in darkness). Immediately after 
the heat treatment, chlorophyll a fluorescence induction transient 
(OJIP curve) was measured by a Plant Efficiency Analyzer 
(Hansatech Instruments, United Kingdom) at RT from the adaxial 
side of the leaves. Excitation light intensity of 2,500 μmol photons 
m−2 s−1 PAR (red light) and 2 s detection time were used for the 
measurement. A maximal quantum yield of PSII photochemistry 
was estimated as FV/FM = (FM – F0)/FM, where FM is maximal 
fluorescence (corresponding to the fluorescence intensity in 
P-level in the OJIP curve) and F0 minimal fluorescence in dark-
adapted leaves (Maxwell and Johnson, 2000). The measured O(K)
JIP curves were normalized to variable fluorescence (FV = FM – F0) 
and to variable fluorescence at 2 ms [FV(2ms) = F(2ms) – F0] in order to 
better visualize a K-band indicating high temperature-induced 
inhibition of oxygen evolving complex (Guissé et  al., 1995; 
Srivastava et al., 1997). The data were checked for homogeneity of 
variance and significant differences were evaluated by Student’s 
t-test, if non-homogeneity was present, Welch’s t-test was used 
instead (Microsoft Excel).

Measurements of cell membrane 
permeability for ions

For the determination of the extent of ion leakage from leaf 
tissue, as a measure of cell membrane permeability for ions 
associated with membrane damage and/or increased fluidity, leaf 
disks (diameter of 12 mm) were cut out from leaves of the control 
plants and plants, which had been incubated in diethyl ether for 
5.5 h before. Three leaf disks (representing one sample) were 
immediately put into test tube containing 5 ml of deionized water 
and incubated in water bath at RT or temperature of 42 or 
45°C. The electrical conductivity (EC) of the solutions was 
measured in 10 min intervals (at RT) or after 60 min of incubation 
of the samples at a given temperature with a digital conductivity 

meter (GMH 3430, Greisinger, Germany). The total electrical 
conductivity (ECT) was measured after autoclaving the samples for 
15 min at 121°C. The relative conductivity (%) was calculated as 
EC/ECT 100. The data were checked for homogeneity of variance 
and significant differences were evaluated by Student’s t-test, if 
non-homogeneity was present, Welch’s t-test was used instead 
(Microsoft Excel).

Results

Transcriptomic analyses

We performed transcriptomic studies with A. thaliana plants 
that were exposed to diethyl ether anesthesia for 2.5 h. Differential 
expression analyses revealed that under anesthesia 9,914 genes 
were not affected, 6,168 genes were upregulated and 6,310 genes 
were downregulated at p < 0.05 in comparison to control plants 
(Figure 1). The complex lists of upregulated and downregulated 
genes are available in Supplementary Table S1. For annotation and 
categorization a gene product’s molecular function (MF), cell 
compartment (CC) and associated biological process (BP) gene 
ontology enrichment analyses (GO) were performed (Figure 2). 
Among the top 20 downregulated processes in etherized plants 
were biological processes (GO-BP) involved in photosynthesis, 
chlorophyll/tetrapyrrole biosynthesis, amino acids metabolism, 
and cofactor/coenzyme biosynthesis (Figure 2A). Not surprisingly, 
the locations relative to cellular structures in which the 
downregulated gene products perform a function (GO-CC) were 
chloroplasts and thylakoid membranes (Figure 2C). Molecular 
function activities (GO-MF) involved ligase, isomerase, 
transferase, oxidoreductase, and galactosidase activities 
(Figure 2E). Among the top 20 upregulated processes in etherized 
plants were biological processes (GO-BP) involved in heat 
response, response to chitin and bacterium, vesicle-mediated 
transport, immune system responses, response to (organo)
nitrogen compounds etc. (Figure 2B). The locations where the 
upregulated genes perform their function (GO-CC) were mainly 
in endomembrane system (Figure 2D). The upregulated molecular 
functions (GO-MF) were represented by protein degradation 
(ubiquitin system), modification (phosphatases), folding (heat 
shock protein binding), vesicular transport (clathrin and SNARE 
binding), and calcium ion and calmodulin binding (Figure 2F). 
The complex lists of significantly enriched GO terms are available 
in Supplementary Table S2.

Proteomic analysis

To validate the RNA-seq data and to confirm if increased/
decreased level of mRNA is mirrored also on protein level, 
we performed proteomic analysis of plants etherized for 5.5 h. 
This longer treatment was chosen based on the fact that proteins 
have slower turnover rate than mRNA. Out of 5,150 proteins 
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detected and identified, 393 proteins were significantly 
upregulated, and 227 proteins were significantly downregulated 
at p < 0.05 in etherized plants in comparison to control plants. The 
list of upregulated and downregulated proteins is available as 
Supplementary Table S3. As in the case of RNA-seq experiment, 
GO analysis was performed (Figure 3). Among the significantly 
downregulated processes in etherized plants were biological 
processes involved in chlorophyll/tetrapyrrole biosynthesis, 
uronic acid and galacturonate metabolic processes and thiamine 
metabolism (GO-BP, Figure 3A), which were located in different 
parts of plastid/chloroplast and Golgi network (GO-CC, 
Figure  3C). UDP-glucuronate 4-epimerase activity and Rho 
GDP-dissociation inhibitor activity were the only two 
significantly downregulated molecular functions (GO-MF, 
Figure 3E). Among the significantly upregulated processes in 
etherized plants were biological processes involved in response to 
cadmium/metal ions, responses to different biotic/abiotic stimuli, 
response to heat etc. (GO-BP, Figure 3B) in different cell parts 
(Figure  3D). The upregulated molecular functions (GO-MF) 

involved glucosyltransferase activity, xyloglucan/xyloglucosyl 
transferase activity and cis/trans zeatin O-beta-D-
glucosyltransferase activity, protein folding (heat-shock protein 
binding, misfolded protein binding, and protein folding 
chaperone) etc. (GO-MF, Figure 3F).

Anesthesia with diethyl ether 
downregulated chlorophyll metabolism 
and upregulated heat shock proteins

When comparing RNA-seq experiments and proteomic 
analyses one might notice that anesthesia with diethyl ether 
upregulated genes and proteins involved in reparation of 
misfolded proteins (mainly HSPs) and downregulated 
photosynthesis/chlorophyll metabolism. Among other 
processes were upregulation of endomembrane/vesicular 
transport associated genes and downregulated vitamin/
thiamine metabolic processes. Indeed heat maps indicate that 

FIGURE 1

Summary of the RNA-seq results and differentially expressed genes (DEG) in response to diethyl ether anesthesia in Arabidopsis thaliana. Volcano 
plot representation of differential expression analysis of genes in the control vs. diethyl ether treated plants. Green and red points mark the genes 
with significantly decreased or increased expression, respectively in diethyl ether treated plants compared to controls (p < 0.05). Blue points mark 
the genes that are not significantly differentially expressed. The x-axis shows log2 fold changes in expression and the y-axis the log10 p values of a 
gene being differentially expressed. On the right, top 20 upregulated and top 20 downregulated genes based on log2 fold change are listed. The 
complete list of DEG is available as Supplementary Table S1.
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majority of HSPs mRNA/proteins were significantly upregulated 
and mRNA/proteins involved in chlorophyll metabolism were 
significantly downregulated (Figure 4). The proteins involved in 
photosynthesis were significantly downregulated only in three 

cases (PsaO, Lhca5, and Lhca6) despite significant 
transcriptional downregulation of many genes involved in 
photosynthesis (Figure 4). This was probably caused by the high 
abundance of majority of photosynthesis-related proteins which 

A B

C D

E F

FIGURE 2

Gene ontology (GO) functional analysis of differentially expressed genes (DEGs) in Arabidopsis thaliana. The 20 most significantly (p < 0.05) 
enriched downregulated GO terms in biological process (A), cellular component (C), and molecular function (E) branches in etherized plants 
compared to control are presented. The 20 most significantly (p < 0.05) enriched upregulated GO terms in biological process (B), cellular 
component (D), and molecular function (F) branches in etherized plants compared to control are presented. All the adjusted statistically significant 
values of the terms were negative 10-base log transformed. Asterisks (*) denote significantly different GO terms at p < 0.05. A complete list of GO 
terms is available as Supplementary Table S2.
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accumulated 6–7 weeks before short diethyl ether treatment 
(5.5 h) what was a too short time to reverse the accumulation. 
This is in line with chlorophyll concentration which did not 
differ significantly between control and etherized plants (data 
not shown).

Western blotting using commercial antibodies reacting 
with different isoforms of heat shock proteins HSP70 and 
HSP90 showed only negligible increase of HSP70 isoforms 
(reacting with HSP70-1, HSP70-2, and HSP70-3) in response 
to diethyl ether treatment, however antibodies against HSP90 
reacting with HSP90-1 and HSP90-2 showed significant 
increase in etherized plants. The key regulatory enzymes in 

chlorophyll biosynthesis glutamyl-tRNA reductase (GluTR or 
HEMA) and light-dependent protochlorophyllide 
oxidoreductase (POR) were also immunoblotted. The antibody 
against GluTR reacting with two isoforms (HEMA1 and 
HEMA2) in Arabidopsis showed slightly higher enzyme 
abundance in etherized plants but not significant. On the 
contrary, POR was significantly less abundant in etherized 
plants (Figure 5). The antibody against large subunit of Rubisco 
(RbcL) and actin were used as loading controls and their 
content was not affected by diethyl ether treatment as data 
from proteomic analyses indicates. Western blotting analyses 
confirmed RNA-seq and proteomic data.

A B

C D

E F

FIGURE 3

Gene ontology (GO) functional analysis of differentially expressed proteins (DEPs) in Arabidopsis thaliana. All the significantly (p < 0.05) enriched 
downregulated GO terms in biological process (A), cellular component (C), and molecular function (E) branches in etherized plants compared to 
control are presented. All the significantly (p < 0.05) enriched upregulated GO terms in biological process (B), cellular component (D), and 
molecular function (F) branches in etherized plants compared to control are presented. All the adjusted statistically significant values of the terms 
were negative 10-base log transformed. Crosses (+) denote the same or very similar GO terms, which were enriched also in RNA-seq experiments. 
“+” denote similar GO term from RNA-seq experiments (vitamin metabolic and vitamin biosynthetic processes) which contain downregulated 
genes for thiamine biosynthesis. A complete list of DEP is available as Supplementary Table S3.
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Diethyl ether induced calcium entry into 
the cells

Because heat shock response and accumulation of HSPs were 
attributed to the entry of Ca2+ into the cytosol (Saidi et al., 2009), 
we measured [Ca2+]cyt in transgenic A. thaliana plants expressing 
APOAEQUORIN treated with coelenterazine for AEQUORIN 

reconstitution, in response to diethyl ether application. Within 
few minutes after diethyl ether application, the rapid rise of 
[Ca2+]cyt signal was detected and the signal slowly decayed later 
(Figure 6; Supplementary Video S1). To prove that the signal is 
not an ultra-weak photon emission, the experiments were 
repeated also with transgenic plants without coelenterazine 
treatment. No clear signal in response to diethyl ether application 
was detected (Figure 6; Supplementary Video S2) confirming 

A B C

FIGURE 4

Heat maps showing the expression pattern of HSPs (A), chlorophyll metabolism (B), and photosynthesis-related genes (C) in Arabidopsis thaliana. 
Log2 fold changes in the mRNA (from RNA-seq experiment) and proteins (LC–MS/MS analysis) in diethyl ether treated plants compared to controls 
(asterisk denote significant differences at p < 0.05, n = 4).
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that the signal in AEQUORIN plants came from increased 
[Ca2+]cyt.

Diethyl ether affected photosynthetic 
parameters in etherized plants

Due to the significant effect of diethyl ether on chlorophyll 
biosynthesis and photosynthesis, we  investigated changes in 
chlorophyll a fluorescence parameters reflecting transition of 
photosynthetic apparatus from dark- to light-adapted state by 
measurements of chlorophyll a fluorescence quenching analysis. 
We found that etherized plants exhibited lower ФPSII, higher 1-qP, 
and lower NPQ during the first 30 s of actinic illumination. Later, 
after steady-state conditions were achieved, higher ФPSII, lower 
1-qP, and higher NPQ were found in etherized plants (Figure 7).

Diethyl ether anesthesia protected OEC 
and PSII against subsequent heat stress

Because anesthesia induced HSPs, we decided to investigate a 
possible protective role of diethyl ether anesthesia against 
subsequent heat stress. Among the primary target of thermal 
damage in plants is the oxygen evolving complex (OEC) in PSII, 
which can be easily monitored by measurements of fast induction 
kinetics of chlorophyll a fluorescence. We  monitored the 
appearance of K-step which is a sensitive indicator of OEC and 
PSII damage (Lazár et al., 1997; Srivastava et al., 1997) in response 
to increasing temperature. At room temperature, no clear K-step 
was detectable, but increasing the temperature above 40°C for 
5 min resulted in appearance of K-step at about 0.5 ms (Figure 8) 
and decrease of maximum quantum yield of PSII (Fv/Fm, Figure 9). 
Both the less pronounced K-step and the significantly reduced 
decrease of Fv/Fm upon increasing temperature in diethyl ether 
exposed plants indicate protective effects of diethyl ether anesthesia 
against high temperatures caused damage of OEC and PSII.

FIGURE 5

Western blotting of selected proteins involved in heat stress 
response and chlorophyll metabolism in Arabidopsis thaliana. 
The same protein amount was separated in 10% (v/v) SDS-PAGE 
and subjected to Western blot analysis. Antibodies against HSP70, 
HSP90, GluTR, LPOR, RbcL, and actin were used. The 
representative blots from three independent isolations are 
shown. The quantification of chemiluminescence signal is shown 
above the corresponding band. Means ± SD. C, control plants; E, 
etherized plants. Asterisks (*) denote significant differences 
at p < 0.05 (Student’s or Welch’s t-test), n = 3.

A B

FIGURE 6

The cytoplasmic Ca2+ [Ca2+]cyt signals in whole Arabidopsis thaliana rosette expressing APOAEQUORIN in response to diethyl ether application. 
(A) Representative images of selected time points of plants treated (upper row) and non-treated (lower row) with coelenterazine. (B) Time course 
(0–250 min) of average [Ca2+]cyt accumulation in whole rosette in response to diethyl ether application. Plants treated with coelenterazine (closed 
circles) or without it (open circles). The diethyl ether was applied at time point 1 min. Means ± SD, n = 4. The time lapse video of [Ca2+]cyt is available 
as Supplementary Videos S1, S2.
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Diethyl ether increased membrane 
permeability for ions in etherized plants 
at room temperature

Because cell membranes including their permeability for ions 
are strongly affected by higher temperatures (Saidi et al., 2009), 

we next investigated the effect of diethyl ether on ion leakage from 
leaf samples. At room temperature, the relative electrical 
conductivity was slightly but significantly higher in etherized 
plants for the first 20 min of measurements indicating higher ion 
leakage (Figure 10A). Later, the difference between etherized and 
control plants were not significant probably due to longer 
measuring period and recovery from diethyl ether treatment. In 
an additional experiment, we compared the relative conductivity 
of leaves exposed for 60 min to RT, 42 and 45°C. Typically, the 
relative conductivity increased with increasing temperature 
reflecting an increase in membrane permeability for ions due to 
membrane changes not related to damage (leading probably to the 
efflux of K+ ions together with their counter ions, Demidchik et al., 
2014; Ilík et al., 2018). Diethyl ether had no additional effect on 
the ion leakage at higher temperature (Figure 10B).

Discussion

Recent studies showed that the anesthetic diethyl ether strongly 
suppresses the sensing of different stimuli in plants (e.g., light, 
touch, or wounding, Milne and Beamish, 1999; De Luccia, 2012; 
Yokawa et al., 2018; Pavlovič et al., 2020; Böhm and Scherzer, 2021; 
Jakšová et  al., 2021; Scherzer et  al., 2022). Here we  show it 
concomitantly triggers also a strong cellular response. This omics-
based study demonstrates that exposure of plants to GVA diethyl 
ether strongly reprogrammed gene expression in A. thaliana. 
Among the most obvious upregulated genes/proteins were HSPs 
(Figure  4), but also other heat responsive genes (e.g., WRKY 
transcription factors, Cheng et al., 2021). Studies on animals also 
found that GVA profoundly changed gene expression pattern 
(Sergeev et al., 2004) and increased expression of HSPs (HSP-10, 
HSP-27, and HSP70-1; Sergeev et al., 2004; Coghlan et al., 2018; 
Upton et al., 2020). HSPs are essential components contributing to 
cellular homeostasis under both optimal and detrimental 
conditions and are responsible for protein folding, assembly, 
translocation, and degradation during growth and development 
(Park and Seo, 2015). They originally were described in relation to 
heat shock (Ritossa, 1962) but are induced also by various stresses, 
such as cold, osmotic stress, anoxia, salinity, water stress, UV-B 
light etc. (Park and Seo, 2015). Several proposed models tried to 
explain the increased expression of HSPs in response to heat stress. 
The protein unfolding model suggests that heat-damaged proteins 
in the cytoplasm presumably recruit the cytoplasmic chaperones, 
thereby allowing inactive heat shock transcription factors (HSFs) 
to undergo phosphorylation, oligomerization, and translocation to 
the nucleus to transcribe HSP genes (Morimoto, 1998). The plasma 
membrane model suggests that heat-induced increase of 
membrane fluidity and changes in microdomain organization (i.e., 
lipid rafts) can generate a significant HSP expression (Horváth 
et al., 1998; Vigh et al., 2007; Saidi et al., 2009). Saidi et al. (2009) 
showed that increased expression of HSPs is strongly dependent on 
a preceding Ca2+ transient through Ca2+ permeable channel, which 
is also activated by membrane fluidizers. Changes in membrane 

FIGURE 7

Chlorophyll a fluorescence parameters in Arabidopsis thaliana. A 
kinetics of effective photochemical quantum yield of PSII (ΦPSII), 
excitation pressure on PSII (1–qP), and non-photochemical 
quenching (NPQ) of chlorophyll a fluorescence after switching 
on actinic light (time point 0 min) in control and etherized plants. 
Asterisks denote significant difference at p < 0.01 (**) 
and p < 0.05 (*), (Student t-test). Means ± SD, n = 5 (Student’s 
t-test).
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fluidity have been previously found to impact ion channel activity 
(Collins et  al., 1993). This may explain the increased HSP 
expression after diethyl ether treatment in our study, because 
diethyl ether also increased [Ca2+]cyt (Figure 6) and ion leakage at 
room temperature (Figure 10), membrane fluidity, and disrupted 
lipid rafts (Lerner, 1997; Pavel et al., 2020). Significantly upregulated 
GO-MF categories of “calcium ion binding” and “calmodulin 
binding” are in accordance with the role of Ca2+ in signaling during 
anesthesia (Figure 2F). This finding is partially interesting in the 
view of recent studies showing that diethyl ether blocked wound-
induced glutamate-dependent Ca2+ transient and systemic response 

mediated by GLR channels in A. thaliana (Jakšová et al., 2021) and 
D. muscipula (Scherzer et al., 2022). Different kinetics of these 
[Ca2+]cyt responses suggest participation of two different Ca2+ 
channels. This different effect of diethyl ether on Ca2+ transient in 
response to wounding in etherized plants and ether itself is another 
piece of evidence of complicated network of so called calcium 
signature (McAinsh and Pittman, 2009). A third model for HSPs 
induction suggests the role of reactive oxygen species (ROS). In 
addition to their detrimental character, ROS are also considered as 
important signaling molecules, which can induce expression of 
HSPs (Volkov et al., 2006; Scarpeci et al., 2008; Driedonks et al., 

FIGURE 8

Effect of high-temperature treatment on chlorophyll a fluorescence induction transient in leaves of control and diethyl ether pre-treated 
Arabidopsis thaliana plants. Detached leaves were incubated for 5 min in a water bath of given temperature in darkness. RT, room temperature. 
The transients are normalized to variable fluorescence (FV = FM – F0) or to variable fluorescence at 2 ms [FV(2ms) = F(2ms) – F0; inlets]. Means ± SD, n = 5.
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2015). ROS formation after plant exposure to diethyl ether 
anesthesia was recently documented in A. thaliana roots (Yokawa 
et al., 2018, 2019).

The role of HSPs in multiple stress responses might explain 
the phenomenon of cross-tolerance or priming, where exposure 
to a certain stress factors improves tolerance to a subsequent 

different stress factors in plants (Bowler and Fluhr, 2000; 
Driedonks et  al., 2015; Nair et  al., 2022). In animals, such 
anesthetic preconditioning has been also suggested (Sergeev et al., 
2004; Kitahata et al., 2008; Pagel, 2008). Therefore, we investigated 
whether GVA application and HSP induction can protect plant 
against subsequent heat stress by measuring a fast chlorophyll a 
fluorescence induction. One of the target site for elevated 
temperature-induced damage is PSII. Heat stress induces 
detachment of OEC proteins, loss of cofactors (Mn) from PSII and 
cleavage of D1 protein (Yoshioka et al., 2006). Our results showed 
increased thermal stability of PSII in plants exposed to diethyl 
ether for 5.5 h prior to subsequent heat–stress (Figure  8), 
indicating that diethyl ether provided protective role against heat–
stress probably through induced HSPs. Indeed, the experiments 
of other authors demonstrated that HSPs can associate with 
thylakoids and protects O2 evolution and OEC proteins of PSII 
against heat stress. It has been considered that HSPs in chloroplasts 
do not participate in the repair of stress-related damage but rather 
function as molecular chaperons to prevent protein denaturation 
and aggregation (Downs et al., 1999; Allakhverdiev et al., 2008). 
Saidi et al. (2009) also documented increased thermotolerance of 
PSII after priming with membrane fluidizer benzylalcohol in 
Physcomitrella patens, what is in accordance with our study.

Other class of genes/proteins upregulated by diethyl ether is 
involved in vesicle-mediated transport (Figure 2D). This finding 
is interesting and in accordance with a previous study, where it has 
been shown that the 15% diethyl ether and 1% lidocaine 
treatments slowed the rate of endocytic vesicle recycling in 
Arabidopsis root epidermal cells (Yokawa et al., 2018). Although 

A B

FIGURE 10

Relative conductivity reflecting ion leakage from leaf samples of Arabidopsis thaliana. (A) Relative conductivity at room temperature (RT) measured 
in 10 min intervals immediately after diethyl ether treatment and in control samples. (B) Relative conductivity after 60 min incubation of leaf 
samples at given temperature. Expressed in % of maximum conductivity measured in leaf samples with fully disintegrated membranes. Means ± SD, 
n = 5. Asterisks (*) indicate statistically significant difference from untreated samples (p < 0.05; Student’s or Welch’s t-test).

FIGURE 9

Maximal quantum yield of PSII photochemistry (FV/FM) in leaves of 
control and diethyl ether pre-treated Arabidopsis thaliana plants. 
Detached leaves were incubated for 5 min in a water bath of 
given temperature in darkness. RT, room temperature. 
Means ± SD, n = 5. Asterisks (***) indicate statistically significant 
difference from untreated samples (p < 0.001; Student’s or 
Welch’s t-test).
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the mechanism involved remains unclear, these results indicate 
that anesthetics alter normal membrane properties and interact 
with vesicle trafficking in plants (Yokawa et  al., 2019). The 
important implication of this finding in plants is applicable for 
presynaptic release of neurotransmitter in animal neurons. Worms 
with altered sensitivity to GVA were found to have mutation in 
syntaxin forming the SNARE complex that regulates presynaptic 
neurotransmitter release (van Swinderen et al., 1999). Interestingly, 
genes encoding “SNARE binding” were among enriched GO-MF 
categories also in Arabidopsis (Figure 2F).

Our recent study has found inhibition of chlorophyll 
accumulation during de-etiolization under diethyl ether anesthesia 
in garden cress (Yokawa et al., 2018). In our experiments with 
circadian grown plants, the chlorophyll a + b concentration was not 
significantly different (data not shown) due to the high amount of 
chlorophylls which were pre-synthetized 6–7 weeks before 5.5 h 
diethyl ether treatment. However, our analysis found that 
chlorophyll biosynthesis is transcriptionally downregulated also in 
mature circadian-grown plants, because 26 out of 34 genes 
encoding proteins involved in tetrapyrrole biosynthesis were 
significantly downregulated (Figure 4). This was mirrored also on 
protein level (Figure 4). Concomitantly, the transcription of many 
photosynthesis-related genes was also downregulated (Figure 4). If 
this was a result of plastid to nucleus retrograde redox signaling 
(e.g., through changes of redox state of plastoquinone pool 
indicating by differences in 1-qP, Figure 7) or direct effect of diethyl 
ether remains unknown. Recently, it was found that increased 

[Ca2+]cyt, which was also documented in this study (Figure 6), is 
responsible for repression of LHCB genes mediated by MAP 
kinases phosphorylation of ABI4 (Guo et al., 2016). Chlorophyll 
metabolism is tightly regulated by different factors like heat, light, 
cold, phytohormones and is also non-specific indicator of any plant 
stress (Kruse et al., 1997; Tewari and Tripathy, 1998; Matsumoto 
et al., 2004; Mohanty et al., 2006; Yaronskaya et al., 2006; Kobayashi 
and Masuda, 2016). It is known for decades that GVA and lidocaine 
inhibited photosynthetic reactions in isolated chloroplasts (Wu and 
Berkowitz, 1991; Nakao et al., 1998). In our study, we measured 
photosynthetic reactions by in vivo chlorophyll a fluorescence in 
intact plants and we did not find anesthesia-induced inhibition of 
photosynthesis. On the contrary, after reaching steady-state 
conditions, the rate of photosynthetic electron transport (expressed 
as ФPSII) was even slightly higher in etherized plants (Figure 7).

Our study showed that plants under anesthesia with diethyl 
ether had not only decreased ability to sense their environment 
(Yokawa et al., 2018; Pavlovič et al., 2020; Jakšová et al., 2021; 
Scherzer et al., 2022) but surprisingly also strongly reprogrammed 
gene expression. The possible underlying mechanism involved 
Ca2+ entry into the cells through the effect on plasma membranes 
and thus resembles the effect of heat stress (Figure 11). While the 
effect on primary photosynthetic reactions is rather marginal in 
etherized plants, exposure of plants to anesthetic may protect the 
PSII against subsequent heat stress through the effect of cross-
tolerance or priming. This study has shown that the effects of 
anesthesia and term anesthesia go far beyond consciousness and 

FIGURE 11

The hypothesis about similar action of diethyl ether anesthesia and heat stress on HSP expression. Both, anesthesia and heat stress fluidizes a 
membrane and affect Ca2+ channel function. The consequent Ca2+ entry into the cytoplasm triggers signaling cascade leading to the changes of 
gene expression (e.g., induction of HSPs). Created in BioRender.com.
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modern medicine having wider implications for a variety of 
organisms and deserve our further attention.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and 
accession number(s) can be found at: https://datadryad.org/stash, 
doi: 10.5061/dryad.wm37pvmqq.

Author contributions

AP designed the research, analyzed the data, and wrote the 
manuscript. AP and AM provided material and financial support. 
JJ did Western blots and isolated RNA for RNA-seq experiments. 
PR performed proteomic analysis. MŠ and ZK measured 
chlorophyll a fluorescence and relative conductivity. MR and AP 
measured [Ca2+]cyt signals. All authors contributed to the article 
and approved the submitted version.

Funding

The study was supported by the Czech Science Foundation 
Agency GAČR (21-03593S). CIISB, Instruct-CZ Center of 
Instruct-ERIC EU consortium, funded by MEYS CR infrastructure 
project LM2018127, is also gratefully acknowledged for the 
financial support of the measurements at the CF Prot.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2022.995001/
full#supplementary-material

SUPPLEMENTARY TABLE S1

The complete list of significantly upregulated and downregulated 
differentially expressed genes (DEGs) in A. thaliana arranged from the 
highest to lowest log2 fold change (p < 0.05).

SUPPLEMENTARY TABLE S2

The complete list of significantly enriched GO terms at p < 0.05 arranged 
from the lowest to highest adjusted p values (padj) in A. thaliana.

SUPPLEMENTARY TABLE S3

The complete list of significantly upregulated and downregulated 
differentially expressed proteins (DEPs) in A. thaliana arranged from the 
highest to lowest log2 fold change (p < 0.05).

SUPPLEMENTARY VIDEO S1

Luminescence in whole A. thaliana rosette expressing the 
APOAEQUORIN gene with coelenterazine in response to diethyl ether 
application at time point 1 min. The plants were sprayed with 
coelenterazine and the signal is indicator of [Ca2+]cyt. Photons were 
captured in photon-counting mode with a 5 min acquisition time.

SUPPLEMENTARY VIDEO S2

Luminescence in whole A. thaliana rosette expressing the 
APOAEQUORIN gene without coelenterazine in response to diethyl ether 
application at time point 1 min. The plants were not sprayed with 
coelenterazine before measurements and the possible signal is indicator 
of ROS production. Photons were captured in photon-counting mode 
with a 5 min acquisition time.
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