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Sorghum (Sorghum bicolor) is an economically important cereal crop that can

be used as human food, animal feed, and for industrial use such as bioenergy. In

sorghum breeding programs, development of cultivars with desirable seed

quality characteristics is important and development of rapid low-cost

screening methods for seed nutritional traits are desired, since most standard

methods are destructive, slow, and less environmentally friendly. This study

investigates the feasibility of single kernel NIR spectroscopy (SKNIRS) for rapid

determination of individual sorghum seed components. We developed

successful multivariate prediction models based on partial least squares (PLS)

regression for protein, oil, and weight in sorghum. The results showed that for

sorghum protein content ranging from 8.92% to 18.7%, the model coefficients

of determination obtained were R2
CAL = 0:95 (RMSEC= 0.44) and R2

PRED = 0:87

(RMSEP= 0.69). Themodel coefficients of determination for oil prediction were

R2
CAL = 0:92 (RMSEC= 0.23) and R2

PRED = 0:71 (RMSEP= 0.41) for oil content

ranging from 1.96% to 5.61%. For weight model coefficients of determination

were R2
CAL = 0:81 (RMSEC= 0.007) and R2

PRED = 0:63 (RMSEP= 0.007) for seeds

ranging from 4.40 mg to 77.0 mg. In conclusion, mean spectra SKNIRS can be

used to rapidly determine protein, oil, and weight in intact single seeds of

sorghum seeds and can provide a nondestructive and quick method for

screening sorghum samples for these traits for sorghum breeding and

industry use.
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Introduction

Sorghum (Sorghum bicolor) ranks fifth in world cereal

production after corn, wheat, rice, and barley, with over 66

million tons produced (FAOSTAT, 2019). The United States is

the leading sorghum producer (25% of world’s production and

$2.4 billion in economic value) and Kansas is the leading state

with half of the U.S. sorghum production (FAOSTAT, 2019;

Hacisalihoglu and Armstrong, 2022). It is an economically

important cereal and major grain crop for animal feed, and

biofuels. Recent research on biofortification has focused on

increasing seed nutrient value including protein, amino acids,

beta carotene, and vitamins to make crops more nutritious

without reducing crop yield (Hacisalihoglu et al., 2010; Murgia

et al., 2013; Hacisalihoglu, 2020; Hacisalihoglu and Vallejos,

2005; Hacisalihoglu and Settles, 2017).

As a gluten-free source of protein, sorghum is increasingly used

in human food, in antioxidant health promoting compounds and in

snack foods. Therefore, measurement of seed nutritional quality

traits and their variation are important as breeding parameters.

(Ciampitti and Prasad, 2019). The current standard methods to

quantify seed composition are costly, slow, destructive in nature,

and sometimes not considered environmentally friendly. Near

infrared spectroscopy (NIRS) coupled with multivariate

calibration is an environmentally friendly, nondestructive, and

fast method for seed nutrition quality analysis (Armstrong et al.,

2011; Peiris et al. (2019)). More recently, single kernel NIR

spectroscopy (SKNIRS) has been used in quality trait

characterization of food crops such as corn, soybean, peas, and

beans (Hacisalihoglu et al., 2010; Gustin et al., 2013; Hacisalihoglu

et al., 2016; and Spielbauer et al. (2009); Hacisalihoglu et al., 2020). It

has shown potential in variety identification, sorting based on

protein content, and separating damaged from sound single

wheat kernels (Delwiche, 1995; Delwiche, 1998; Peiris and

Dowell, 2011). There also exists potential to identify double

haploid seeds which can decrease cultivar development by several

years as has been done in other crops such as maize in which
Frontiers in Plant Science 02
haploid and hybrid seeds can be discriminated based on oil content

(Hussain and Franks, 2019; Gustin et al., 2020).

It is highly useful for crop breeders and industry to measure

single seed quality composition and subsequently select the

desired traits easily and nondestructively. In this regard, NIR

spectroscopy has significant advantages such as working with

limited sample size, fast quantification without sample

preparation and cost effectiveness (Armstrong, 2006).

It is challenging to develop SKNIRS methods for small-seeded

crops such as sorghum and particularly for sorghum oil content

which is small in concentration. Therefore, the objectives of the

current study were: 1) to assess the feasibility of using SKNIRS for

small-seeded crops; and 2) to evaluate calibration models to predict

protein, oil, and weight in single intact sorghum seeds that could be

used to indicate seed trait variability in samples as well as potentially

sorting seeds by traits for breeders.
Materials and methods

Sorghum seed samples

A collection of 108 widely diverse sorghum accessions (Sorghum

bicolor) were selected and obtained from the U.S. Department of

Agriculture (USDA) National Germplasm Center (https://npgsweb.

ars-grin.gov/gringlobal). The samples were selected to maximize

diversity based on size and country of origin, Figure 1.
NIR spectroscopy measurements

NIR spectra were collected with a custom-built single-seed

instrument. Armstrong (2006) provides a detailed description of

the instrument and spectral data collection. Briefly, the instrument

used was a 907-1689 nm InGaAs-based spectrometer (CD NIR-256-

1.7T1, Control Development, South Bend, IN) where two fiber-optic

cables were positioned at each end of an inclined, 8 mm diameter,
FIGURE 1

Sorghum accessions used for single NIR spectroscopy calibration prediction model development in the current study.
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glass tube and reflected light from seeds falling through the tube was

collected. The glass tube was illuminated by 48 miniature halogen

lamps along its length and circumference. Spectra were collected at 1

nm intervals and converted to absorbance values.
Protein wet lab analysis and seed weight

Protein content (%, as-is) was measured from single whole

seeds using a Leco FP-628 nitrogen combustion analyzer (St.

Joseph, MI, USA) according to AACC Method 46-30.01 as

described elsewhere (Hacisalihoglu et al., 2020). Individual seed

weights were measured in triplicate with a balance. Total protein

was calculated as N x 6.25.
Oil analysis

Oil content (%, as-is) of the intact seeds was measured by a

Bruker MiniSpec mq20 NMR Analyzer (Bruker Biospin,

Billerica, MA, USA) as described previously (Hacisalihoglu

et al., 2020). The oil content was obtained by placing 1 g of

seeds into a 20 mm test tube warmed to 40°C, then inserting the

tube in the NMR instrument using the standard procedures

suggested by the manufacturer. The analyzer was calibrated

prior to measurements and optimized for the range of oil to

be measured. This small bulk sample was used as a reference for

single seed oil as there is no practical way to measure oil content

on such small seeds.
Calibration model development and
validation

Spectral data were analyzed using Unscrambler X

software (CAMO Analytics, Oslo, Norway). Standard
Frontiers in Plant Science 03
normal variate (SNV) was used as a pre-processing method

for oil and protein. Partial least squares (PLS) regression was

performed and evaluated using leave-one-out cross validation

to select the optimal models. The samples were further

subdivided into training (2/3 of total samples) and

validation (1/3 of total samples) sets based on creating

equal variability, as much as possible, in the biochemical

seed parameter reference values. Model evaluation and

selection were based on model factor levels as suggested by

the Unscrambler software and evaluation of independent

spectral data in the validation sets. For protein models,

reference protein was the average protein from the three

kernels from each accession. These values were indexed to

the nine averaged spectra from the same kernels. For oil

models, the nine averaged spectra were indexed to the oil

content measured by NMR as previously described. Weight

models indexed the three spectra average of a single seed to its

true seed weight. Table 1 summarizes the PLS modelling data.
Results and discussion

Mean spectra and single kernel NIR
spectroscopy seed composition and
weight parameters

Seed parameters of 108 diverse sorghum accessions represented

by their means, standard deviations (SD), and ranges are

summarized in Table 2 and Figure 2. Analytical data from

sorghum accessions showed a wide variation in protein content

(8.92% - 18.7%), oil (1.96% - 5.61%), and weight (4.40 mg – 77.0

mg) (Figure 2). Furthermore, there were no statistically significant

correlations detected between seed weight and protein or oil content

(p< 0.01; Table 3). This is in agreement with Hacisalihoglu et al.

(2020) who reported no strong relationship between protein and

seed weight in peas.
TABLE 1 PLS modelling data.

Single Seed Model Reference Spectra Average Model Reference Spectra Model Reference Trait

Protein 3 spectra averaged for each seed 9 spectra from 3 seeds averaged Single seed-LECO

Oil 3 spectra averaged for each seed 9 spectra from 3 seeds avg 1 gm sample-NMR

Weight 3 spectra averaged for each seed NA Single seed-weight
TABLE 2 Reference protein, oil, and weight of 108 single sorghum seeds.

Parameter Mean SD Range

Protein (%, as-is) 12.1 1.94 8.92-18.7

Oil (%, as-is) 3.23 0.79 1.96-5.61

Weight (mg) 28.8 13.5 4.40-77.0
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Figure 3 shows examples of contrasting spectra pairs of

sorghum protein, oil, and weight. Each line represents average

original SKNIR spectra of nine sorghum seeds. Absorbance

differences were found between high- and low-protein sorghum
Frontiers in Plant Science 04
accessions (Figure 3A), weight sorghum accessions (Figure 3C), and

oil sorghum accessions (Figure 3B). The results show that average

spectral absorbance differences between seeds with high or low

composition and weight.
B

C

A

FIGURE 2

Frequency distribution for (A) protein, (B) Oil, and (C) weight for the sorghum accession.
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Protein, oil, and weight calibration
development

The predicted vs. reference plots of external validation sets

for protein, oil, and weight models are shown in Figure 4 and

model statistics Table 4. The PLS regression protein model using

validation mean spectra showed good prediction accuracy (R2 =
TABLE 3 Phenotypic correlations between seed nutritional traits and
weight in sorghum.

Traits Protein Oil

Oil 0.32

Weight -0.27 -0.13
B

C

A

FIGURE 3

Examples of contrasting spectra of high- and low-contents of (A) protein, (B) Oil, and (C) weight in sorghum seeds.
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B

C D

A

FIGURE 4

Scatter plots of predicted and analytically wet-lab measured (A) protein from using mean spectra, (B) oil from using mean spectra, (C) protein
from single sorghum seeds, and (D) weight from single sorghum seeds.
TABLE 4 Summary of calibration and prediction statistics for protein, oil, and weight models using mean and single seed spectra of sorghum.

CALIBRATION PREDICTION

Parameter N factors RMSEC R2 N RMSEP R2

Average spectra

Protein 76 12 0.44 0.95 33 0.69 0.87

Oil 74 12 0.23 0.92 34 0.41 0.71

Single seed

Protein 678 12 1.48 0.55 299 1.96 0.23

Weight 228 10 0.007 0.81 100 0.007 0.63
Frontiers in Plant Science 06
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0.87, RMSEP= 0.69, Figure 4A). Similarly, the oil model showed

reasonable accuracy for validation data (R2 = 0.71, RMSEP=

0.41, Figure 4B) and would be appropriate for screening low or

high oil sorghum samples. The weight model showed reasonable

accuracy (R2 = 0.63, RMSEP= 0.007, Figure 4D) but was lower

than previous research on maize (Gustin et al., 2013) and

common beans (Hacisalihoglu et al., 2010).

The protein model from single sorghum seeds showed poor

prediction (R2 = 0.23, RMSEP= 1.96, Figure 4C). Overall, mean

spectral based models for weight determination in single intact

sorghum seeds gave the best results for both calibration and

prediction performances. Similar results have been reported with

another small-seeded crop, namely chia seeds for bulk oil

prediction (Serson et al., 2020).
PLS regression coefficients and NIRS
regions associated with sorghum traits

Figure 5 shows regions of influence for PLS model coefficients.

These regions are distinguished by large positive and negative

coefficients which more heavily contribute to protein and oil

prediction. The peaks for protein were observed for calibration

models around 2nd overtone N-H stretching (973-1020 nm; 1035-
Frontiers in Plant Science 07
1040 nm; and 1498 nm). The peaks for oil were observed for

calibration models around 3rd overtone C-H stretching (992-1025

nm and 1210 nm) and 3rd overtone O-H stretching (960 nm),

Table 5. Prediction of weight cannot be explained in relationship to

chemical composition and is thought to be more related to light

quantity, i.e. large seeds may create different total reflectance over

smaller seeds. As such better methods of modelling such as a

summation of the absorbance spectra might provide better weight

predictions over PLS modeling.
Summary and conclusions

To the best of our knowledge, this is the first study which has

applied SKNIRS to predict sorghum seed protein, oil, and

weight. Our findings in this paper are applicable to a broad

range of sorting implementations in the field, industry, as well as

sorghum breeding programs. The SKNIRS technique provides

numerous advantages including: i) as wet chemistry methods of

sorghum quality assessments are slow and costly, the SKNIRS

method is a suitable, non-chemical alternative for classification

or screening for protein, oil, and weight, nondestructively; ii)

SKNIRS may provide a powerful, fast, high-throughput seed

nutrient quality technique for sorghum breeding as well as
B

C

A

FIGURE 5

Beta-coefficient plots based on the optimal PLS models of (A) protein, (B) oil, and (C) weight in single sorghum seeds.
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uniformity screening activities; iii) SKNIRS can simultaneously

quantify sorghum seed constituents; and iv) SKNIRS does not

require sample preparation and therefore minimizes potential

errors in the sample preparation process.
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