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Members of the YABBY gene family play significant roles in lamina development

in cotyledons, floral organs, and other lateral organs. The Orchidaceae family is

one of the largest angiosperm groups. Some YABBYs have been reported in

Orchidaceae. However, the function of YABBY genes in Cymbidium is currently

unknown. In this study, 24 YABBY genes were identified in Cymbidium

ensifolium, C. goeringii, and C. sinense. We analyzed the conserved domains

and motifs, the phylogenetic relationships, chromosome distribution, collinear

correlation, and cis-elements of these three species. We also analyzed

expression patterns of C. ensifolium and C. goeringii. Phylogenetic

relationships analysis indicated that 24 YABBY genes were clustered in four

groups, INO, CRC/DL, YAB2, and YAB3/FIL. For most YABBY genes, the zinc

finger domain was located near the N-terminus and the helix-loop-helix

domain (YABBY domain) near the C-terminus. Chromosomal location

analysis results suggested that only C. goeringii YABBY has tandem repeat

genes. Almost all the YABBY genes displayed corresponding one-to-one

relationships in the syntenic relationships analysis. Cis-elements analysis

indicated that most elements were clustered in light-responsive elements,

followed by MeJA-responsive elements. Expression patterns showed that YAB2

genes have high expression in floral organs. RT-qPCR analysis showed high

expression of CeYAB3 in lip, petal, and in the gynostemium. CeCRC and

CeYAB2.2 were highly expressed in gynostemium. These findings provide

valuable information of YABBY genes in Cymbidium species and the function

in Orchidaceae.

KEYWORDS

YABBY genes, Orchidaceae, Cymbidium, expression pattern, genome-wide
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.995734/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.995734/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.995734/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.995734/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.995734/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.995734&domain=pdf&date_stamp=2022-11-24
mailto:zjliu@fafu.edu.cn
mailto:lkzx@fafu.edu.cn
https://doi.org/10.3389/fpls.2022.995734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.995734
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2022.995734
Introduction

The seed plant-specific YABBY gene family, belonging to the

zinc-finger superfamily, plays significant roles in lamina

development in cotyledons, floral organs, and outer ovule

integuments (Finet et al., 2016). YABBY genes encode

transcription factors which contain two domains: a zinc finger

domain located near the N-terminus and a helix-loop-helix

domain (YABBY domain) located near the C-terminus

(Bowman and Smyth, 1999). Six genes have been identified in

Arabidopsis thaliana, and were clustered into five subfamilies:

FIL/YAB3, CRC, INO, YAB2, and YAB5 (Siegfried et al., 1999).

FIL, YAB2, YAB3, and YAB5 are expressed in leaf and floral

organs and have been termed ‘vegetative YABBYs’. CRC and

INO are essential in developing carpels and ovules, respectively,

and have been termed ‘reproductive YABBYs’ (Bowman and

Smyth, 1999; Siegfried et al., 1999; Villanueva et al., 1999;

Bartholmes et al., 2012; Soundararajan et al., 2019).

According to previous studies from expression

characterization in Arabidopsis YABBY genes, FIL, YAB2 and

YAB3 play essential roles in lateral organ development (Siegfried

et al., 1999; Rudall and Bateman, 2002; Lora et al., 2011). CRC is

restricted to carpels and nectaries in angiosperms (Siegfried

et al., 1999). INO functions in the development of the outer

integument of the ovule to the seed coat in Arabidopsis, and INO

expresses in eudicots, eumagnoliids, and some basal

angiosperms (Bowman, 2000; Yamada et al., 2003; McAbee

et al., 2005; Lora et al., 2011; Yamada et al., 2011).

The genome-wide YABBY gene family has been identified in

Averrhoa carambola (star fruit), Cucumis sativus (cucumber),

Lycopersicon esculentum (tomato), Oryza sativa (rice), Triticum

aestivum (wheat) and Vitis vinifera (grape) (Toriba et al., 2007;

Han et al., 2015; Zhang et al., 2019; Hao et al., 2022;

Li et al., 2022; Yin et al., 2022). In monocot plants, YABBY

genes show functional divergence and are crucial for vegetative

and reproductive development. For example, the YAB3 clade

genes ZYB9 and ZYB14 play essential roles in flower

development and regulate lateral outgrowth (Juarez et al.,

2004). OsDL, a member of the CRC subfamily in O. sativa, is

necessary for the development of the leaf midrib and the flower

carpel specification (Nagasawa et al., 2003; Yamaguchi et al.,

2004; Ohmori et al., 2008; Zhang et al., 2020). OsYAB1,

belonging to the YAB2 clade, is mainly expressed in the

primordia of the carpel and stamen (Jang et al., 2004). The

OsYAB3 gene may be necessary for the development of lateral

organs and the growth and differentiation of leaf cells (Jang

et al., 2004).

With an estimated > 28000 species, the Orchidaceae family is

one of the largest angiosperm groups (Christenhusz and Byng,

2016). There are five subfamilies of Orchidaceae: Apostasioideae,

Cypripedioideae, Vanilloideae, Orchidoideae, and Epidendroideae
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(Chase et al., 2003). The Orchidaceae show considerable diversity in

epiphytic and terrestrial life forms and show unique flower

morphologies and reproductive biology (Hsiao et al., 2011).

Orchidaceae flowers show a variety of reliable floral morphological

synapomorphies, such as a gynostemium (a fused structure of the

pistils and stamens), a highly evolved petal termed labellum, and

flowers with pollinia (Chase et al., 2003; Tsai et al., 2004). In the

Orchidaceae family, genome-wide identification and expression

patterns of YABBY genes were analyzed in Apostasia shenzhenica

(Apostasioideae), Dendrobium catenatum (Epidendroideae),

Gastrodia elata (Epidendroideae), and Phalaenopsis equestris

(Epidendroideae) (Chen et al., 2020). However, studies of

YABBY genes in the orchid tribe Cymbideae are still limited.

Cymbidium is one of the most significant orchid genera for

ornamental value because of its beautiful flowers (Ramya et al.,

2019). Given the considerable role of YABBY genes in both

vegetative and reproductive development, the identification of

Cymbidium ensifolium, C. goeringii, and C. sinense will be

employed, and the expression patterns of C. ensifolium will be

analyzed in this study. This study provides new insights into the

roles of YABBY genes and their contribution to the

development of flower morphologies in Cymbidium subfamily

of Orchidaceae.
Methods

Identification of YABBY genes from three
Cymbidium species

The YABBY domain (PF04690) from PFAM was used as a

query to search the protein database (El-Gebali et al., 2019). The

genomes from Cymbidium ensifolium, C. goeringii, and C.

sinense can be downloaded from their whole-genome

sequencing data (Sun et al., 2021; Yang et al., 2021; Ai et al.,

2021). HMM analysis (built in Tbtools) was used at an e value of

10-5 (Chen et al., 2018). BLASTP (https://blast.ncbi.nlm.nih.gov/

Blast.cgi) was also used to search the protein database using A.

thaliana’s YABBY sequences, which can be downloaded in the

TAIR database (https://www.arabidopsis.org). Then, the CDD

website (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi) was used to confirm the retrieved putative

sequences. The aliphatic index (AI), grand average of

hydrophobicity (GRAVY), instability index (II), and isoelectric

points (pI) of the YABBY proteins were predicted using the

ExPASy website (https://www.expasy.org/; Artimo et al., 2012).

AtSubP (http://bioinfo3.noble.org/AtSubP/) was used to predict

the subcellular localization of YABBY genes (Kaundal et al.,

2010). The secondary structure was predicted using the SOPMA

(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=

npsa_sopma.html) program (Rozewicki et al., 2019).
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Phylogenetic relationship analysis of
YABBY genes

The TAIR database (https://www.arabidopsis.org/) was used

to download the protein sequences of Arabidopsis thaliana. The

sequences of Oryza sativa, Phalaenopsis equestris, V. vinifera,

and Zea mays were downloaded from the NCBI website (https://

www.ncbi.nlm.nih.gov/genbank/). The protein sequences of

YABBY genes from C. ensifolium, C. goeringii, and C. sinense

can be downloaded from their whole-genome sequencing data

(Ai et al., 2021; Sun et al., 2021; Yang et al., 2021). Multiple

alignments were carried out using the program MAFFT

(Rozewicki et al., 2019). Maximum likelihood (ML) tree

inference was carried out using RAxML (RAxML-HPC2 on

XSEDE; Miller et al., 2011), and was under a GTRGAMMA

substitution model with 1,000 bootstraps. The EVOLVIEW

website (https://evolgenius.info/) was used for layouting the

phylogenetic tree (He et al., 2016).
Motifs of YABBY proteins and sequence
alignment in three Cymbidium species

Conserved domains of YABBY genes were analyzed using

the CDD website (https://www.ncbi.nlm.nih.gov/Structure/

bwrpsb/bwrpsb.cgi), and motifs were analyzed using the

default parameters of the MEME website (http://meme-suite.

org/) (Artimo et al., 2012). Fifteen motifs were identified in this

study. To investigate the YABBY domains and C2C2 zinc-finger

domain, the WEBLOGO tool (built in Tbtools) was employed.

Multiple sequence alignments were carried out using MAFFT

(Rozewicki et al., 2019).
Chromosome distribution and collinear
correlation in three Cymbidium species

To analyze the chromosomal location of YABBY genes in

three Cymbidium species, the Tbtools software was used to

create gene distribution maps by uploading the YABBY

sequence (Chen et al . , 2018). To analyze syntenic

relationships, one step MCScanx (built in Tbtools) was used to

analyze YABBY genes of C. ensifolium, C. goeringii, and C.

sinense (Chen et al., 2018).
Promoter element analysis of YABBY
genes in C. ensifolium, C. goeringii,
and C. sinense

The 2000 bp regions upstream of the YABBY genes in C.

ensifolium, C. goeringii, and C. sinense were extracted by
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TBTOOLS (Chen et al., 2018). Then, the cis-acting elements

were identified by the PlantCare website (http://bioinformatics.

psb.ugent.be/webtools/plantcare/html/; Zhang et al., 2018).
RNA extraction and RT–qPCR analysis

Flower organs (petal, lip, and gynostemium) and leaves of C.

ensifolium were collected, frozen in liquid nitrogen, and stored at

80°C until use. Total RNA was extracted using the Biospin Plant

Total RNA Extraction Kit (Bioer Technology, Hangzhou,

China). TransScript® All-in-One First-Strand cDNA Synthesis

SuperMix for qPCR (TransGen Biotech, Beijing, China) was

used to create first-strand DNA and remove genomic DNA. The

reaction conditions were 30 s at 94 °C and 45 cycles of 5 s at 94°C

and 30 s at 60°C. Primers for the RT–qPCR analysis were

designed by Primer Premier 5 software. GAPDH (JL008987)

was used for normalization. Three biological replicates were

performed in this study, and the expression data were quantified

via the 2-△△CT method (Livak and Schmittgen, 2001).
Results

YABBY gene identification and sequence
analysis in three Cymbidium species

Seven YABBY genes were found in C. ensifolium, nine in C.

goeringii, and eight in C. sinense. The deduced protein length of

YABBY genes ranged from 63 to 243 amino acids. The

theoretical isoelectric point (pI) ranged from 6.11 to 10.75,

and instability index (II) ranged from 32.78 to 57.09. The

deducted grand average of hydrophilic values (GRAVY) of

YABBY genes ranged from -1.155 to -0.232, and we found all

the YABBY proteins were hydrophilic. The molecular weight

(Mw) ranged from 7744.05 to 27185.43, and the aliphatic index

(AI) ranged from 52.92 to 83.98 (Table 1). Subcellular

localization results showed that all the YABBY genes were

located in the nucleus, indicating that the nucleus may be

where the YABBY genes function (Supplementary Table S1;

Kaundal et al., 2010). The results of secondary structure

prediction revealed that the average of a-helices, extended
strands, b-turns, and random coils comprised 27.61, 14.13,

5.65, and 52.6% of the structure, respectively (Supplementary

Table S2; Geourjon and Deléage, 1995).
Phylogenetic relationship analysis of
YABBY genes

To analyze the evolution patterns of YABBY genes in

Cymbidium species, a phylogenetic tree was created by using
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the ML (maximum likelihood) method. Protein sequences from

C. ensifolium, C. goeringii, C. sinense, A. thaliana O. sativa, P.

equestris, V. vinifera, and Z. mays were used. The IDs of these

species are listed in Supplementary Table S3. The results

indicated that all Cymbidium species except C. goeringii have

one member in the INO cluster. The number of YAB2

genes ranged from 3-6 (C. ensifolium: 3; C. goeringii: 6; C.

sinense: 3). C. goeringii and C. sinense have two genes in the

CRC subfamily, but C. ensifolium has only one. With the

exception of C. goeringii, all Cymbidium species have two

YAB3 genes (Figure 1).
Domains and motifs of YABBY genes

To analyze the conserved domains of YABBY genes, the

sequence logo of YABBY domains and c2c2 zinc-finger domains

from three Cymbidium species and A. thaliana was generated.

The multiple sequence alignment was also generated. The results

showed that Cymbidum species and A. thaliana have highly

conserved c2c2 zinc-finger domains and YABBY domains.

However, the YABBY domain is more conserved than the c2c2

domain in Cymbidium species (Figure 2). Additionally, the
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motifs, domains, and phylogenetic tree of three Cymbidium

species were analyzed (Figure 2). Fifteen motifs were analyzed

by MEME software (Supplementary Table S4; Bailey et al., 2009).

The results indicated that all the Cymbidium species have

YABBY domains, and most YABBY genes of Cymbidium have

motif 2 and motif 4. The findings also revealed that the

conserved motifs of YABBY genes in the same clusters

are similar.
Chromosome distribution and collinear
correlation analysis

To analyze the chromosome distribution of YABBY genes in

three Cymbidium species, we create gene distribution maps. The

results suggest that YABBY genes were distributed in seven

chromosomes in C. ensifolium, C. goeringii, and C. sinense

(Figure 3). In addition, YABBY genes were located in different

chromosomes in C. ensifolium and C. sinense. Nevertheless, in C.

goeringii, CgYAB2.3, CgYAB2.4, and CgYAB2.5 were located on

same chromosome (chr17). We also analyzed the syntenic

relationships of YABBY genes in three Cymbidium species.

There are seven, nine, and eight YABBY genes in C. ensifolium,
TABLE 1 A list of YABBY genes in three Cymbidium species.

Gene ID1 Name AA2(aa) pI3 Mw4(kDa) AI5 II6 GRAVY7 Clade8 Localizetion9

JL015423 CeCRC 194 9.38 21643.69 59.38 45.46 -0.565 CRC Nucleus

JL011339 CeYAB2.1 181 8.5 19855.55 83.98 43.57 -0.299 YAB2 Nucleus

JL000262 CeYAB2.2 181 7.74 19949.4 73.81 51.69 -0.401 YAB2 Nucleus

JL008521 CeYAB3.1 221 6.79 24350.89 79.5 57.09 -0.235 YAB2 Nucleus

JL005041 CeYAB3.2 221 7.7 24671.23 75.48 44.98 -0.329 YAB3 Nucleus

JL005324 CeYAB2.3 185 8.45 20710.15 66.43 47.37 -0.612 YAB2 Nucleus

JL012731 CeINO 157 9.32 17921.56 67.77 41.43 -0.543 INO Nucleus

GL09549 CgCRC.1 188 9.11 21386.4 59.89 32.78 -0.625 CRC Nucleus

GL08212 CgCRC.2 193 9.38 21643.69 59.38 45.46 -0.565 CRC Nucleus

GL09374 CgYAB3 220 7.7 24698.26 75.48 44.98 -0.342 YAB3 Nucleus

GL12804 CgYAB2.1 242 9.73 27003.06 78.23 36.7 -0.408 YAB2 Nucleus

GL19435 CgYAB2.2 184 8.55 20658.15 64.32 46.16 -0.621 YAB2 Nucleus

GL30075 CgYAB2.3 78 9.8 8941.14 53.29 36.67 -0.995 YAB2 Nucleus

GL30077 CgYAB2.4 143 8.84 16732.82 52.92 47.9 -0.873 YAB2 Nucleus

GL30076 CgYAB2.5 63 10.75 7744.05 58.62 47.3 -1.155 YAB2 Nucleus

GL10103 CgYAB2.6 70 8.69 8099.94 64.79 33.43 -0.793 YAB2 Nucleus

Mol018025 CsCRC.1 243 9.1 27185.43 76.71 49.97 -0.27 CRC Nucleus

Mol010228 CsCRC.2 194 9.38 21643.69 59.38 45.46 -0.565 CRC Nucleus

Mol006632 CsYAB2.1 181 8.19 19887.51 81.82 41.79 -0.346 YAB2 Nucleus

Mol000581 CsYAB2.2 181 8.58 19968.49 73.81 52.75 -0.406 YAB2 Nucleus

Mol007225 CsYAB3.1 220 7.15 24195.67 79.86 54.95 -0.232 YAB2 Nucleus

Mol011195 CsYAB2.3 185 8.45 20710.15 66.43 47.37 -0.612 YAB2 Nucleus

Mol003404 CsYAB3.2 161 7.96 18198.82 73.42 43.89 -0.569 YAB3 Nucleus

Mol004846 CsINO 184 6.11 20622.28 69.46 41.53 -0.561 INO Nucleus
1Gene ID is annotated in the genome; 2AA, amino acid; 3pI, theoretical isoelectric point; 4Mw, molecular weight; 5AI, aliphatic index; 6II, instability index; 7GRAVY, the grand average of
hydrophobicity; 8Clade is dependent on phylogenetic analysis, 9Localization, predicted by AtSubP (Kaundal et al., 2010). Raw data are listed in Supplementary Tables S1 and S2.
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C. goeringii, and C. sinense (Figure 4). The results indicated that

almost all the YABBY genes displayed corresponding one-to-one

relationships in these three Cymbidium species.
Cis-element analysis of C. ensifolium,
C. goeringii, and C. sinense

To predict the regulatory function of YABBY genes, we

retrieved a 2000-bp region upstream of 24 YABBY genes and

analyze them in C. ensifolium, C. goeringii, and C. sinense. We

identified 12 types of cis-elements: abscisic acid responsiveness

element, anaerobic induction element, auxin responsiveness

element, circadian control element, defense and stress

responsiveness element, endosperm expression element, light

responsive element, low-temperature responsiveness element,

MeJA-responsiveness element, meristem expression element,

salicylic acid responsiveness element, and zein metabolism

regulation element. In total, we found 412 cis-elements in

three Cymbidium species, and C. sinense has most of the cis-

elements (192/412), followed by C. goeringii (120/412), and C.

ensifolium (100/412). The results also indicated that most of the

elements were clustered in light-responsive elements (199/412),

followed by MeJA-responsive elements (64/412), anaerobic

induction element (27/412), and abscisic acid responsiveness

element (24/412). All YABBY genes have light-responsive

elements, and CsYAB3.1 contains the most (35/199). In
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addition, only CeYAB2.1, CeYAB3.2, and CgYAB2.1 have

circadian control elements (Figure S1).
Expression analysis of C. ensifolium and
C. goeringii

To analyze the expression patterns of YABBY genes, we

sampled vegetative and floral organs from C. ensifolium and C.

goeringii. The results suggested that in C. ensifolium, CeCRC

showed high expression in pseudobulbs and pedicel, CeYAB2.1

and CeYAB 2.2 showed high expression in leaf and gynostemium,

and CeYAB3.2 showed high expression in bud. CeYAB2.1,

CeYAB2.2, CeYAB3.1, and CeYAB3.2 had expression in both

vegetative and floral organs (Figure 5). In C. goeringii, CgCRC.1

showed high expression in gynostemium, and CgCRC.2 showed

high expression in pseudobulbs and gynostemium. CgYAB3

showed high expression in pseudobulbs, leaves, and petals.

CgCRC.2, CgYAB2.1, CgYAB2.2, CgYAB2.6, and CgYAB3 had

expression in both vegetative and floral organs.
Expression patterns in leaves and three
floral organs in C. ensifolium

To analyze the expression patterns of YABBY genes, we

collected three floral organs (petal, lip, and gynostemium) and
FIGURE 1

Phylogenetic tree of YABBY genes in eight plant species. The phylogenetic tree was created with the maximum-likelihood (ML) method using
RAxML on the CIPRES Science Gateway web server (RAxML-HPC2 on XSEDE; Miller et al., 2011). Bootstrap values based on 1000 replicates are
shown along the branches. Ce, C. ensifolium; Cg, C. goeringii; Cs, C. sinensis; At, A. thaliana; Os, O. sativa; Pe, P. equestris; Vv, V. vinifera; Zm,
Z. mays; The duplicated genes are shown in bold.
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leaves from C. ensifolium. Four YABBY genes, CeCRC, CeINO,

CeYAB2.2, and CeYAB3.1 were chosen for RT–qPCR analysis.

The results showed that CeYAB3 showed high expression in the

lip, petal, and gynostemium. CeCRC and CeYAB2.2 showed high

expression in gynostemium. CeCRC, CeYAB2.2, and CeYAB3.1

had higher expression levels in floral organs than in leaves.

However, the expression levels in leaves were higher than those

in floral organs from CeINO (Figure 6).
Discussion

YABBY genes, which include a zinc finger domain near the

N-terminus and a helix-loop-helix domain (YABBY domain)

near the C-terminus, play important roles in lamina

development in cotyledons, floral organs, and outer ovule
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integuments (Finet et al., 2016). In monocots, eight genes have

been identified in O. sativa; in core eudicots, six YABBY genes

have been found in A. thaliana (Bowman and Smyth, 1999; Sawa

et al., 1999; Villanueva et al., 1999). Orchidaceae, belonging to

monocots, is one of the largest angiosperm families and show

unique flower morphologies and reproductive biology (Hsiao

et al., 2011; Christenhusz and Byng, 2016). Recent studies have

indicated that six YABBY genes were identified in A.

shenzhenica, eight in D. catenatum, five in G. elata, and eight

in P. equestris (Chen et al., 2020). However, studies of YABBY

genes in Cymbidium are still limited. In this study, YABBY genes

were identified in three Cymbidium species and the number of

YABBY genes ranged from 7-9 (C. ensifolium: 7; C. goeringii: 9;

C. sinense: 8). These results indicated that the number of YABBY

genes in Cymbidum orchids were comparable to those in

monocot and dicot species. However, the absence of YABBY
B

C

A

FIGURE 2

Conserved domains from three Cymbidium species and A. thaliana. (A) Sequence logo of the zinc-finger domain in the N-terminus.
(B) Sequence logo of the YABBY domain in the C-terminus. (C) Motifs and conserved domains in the YABBY protein amino acid sequences in
Cymbidium species.
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genes in YAB 5 subfamily in orchids and other monocots is

an exception.

The phylogenetic analysis indicated that YABBY genes in

Cymbidium species are clustered into four subfamilies: YAB2,

CRC, YAB3, and INO. There were no YABBY genes that

clustered in the YAB5 subfamily. The results were consistent

with some monocot species, such as A. shenzhenica, D.

catenatum, G. elata, pineapple, and rice (Toriba et al., 2007; Li

et al., 2019; Chen et al., 2020). However, seven species of
Frontiers in Plant Science 07
magnoliids and A. thaliana have YABBY genes clustered in

the YAB 5 clade (Siegfried et al., 1999; Liu et al., 2021). Early in

the evolution of angiosperms, the lineages of basal flowering

plants diverged, and then the magnoliids, eudicots, and

monocots underwent rapid diversification (Tang et al., 2014;

Chen et al., 2019). Magnoliids have two cotyledons and pollen

with a single pore, and they are not monocots or eudicots (Tang

et al., 2014). Recent reports also studied the comparative

development of the androecial form in the Zingiberales and
B

C

A

FIGURE 3

Chromosome distribution in three Cymbidium species. (A) Chromosome distribution in C. ensifolium. (B) Chromosome distribution in C. goeringii.
(C) Chromosome distribution in C. sinense.
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found one YAB2 gene, which was less homologous to YAB5 (De

Almeida et al., 2014). Based on this, they suggested that after the

divergence of monocots and eudicots, duplication led to separate

YAB2 and YAB5 gene lineages (De Almeida et al., 2014). The

YAB5 clade was exclusively composed of basal angiosperms and

eudicot in recent studies (Chen et al., 2017; Liu et al., 2021).

These results suggested that YAB5 gene clade might have been

lost in monocot plants.

INO are restricted to the development of the outer ovule

integument (Villanueva et al., 1999). Interestingly, we found C.

ensifolium and C. sinense only has one number in the INO clade.

These results were consistent with A. shenzhenica, A. thaliana,

D. catenatum, G. elata, P. equestris, and V. vinifera, and

indicated INO clade genes might be conserved in angiosperm

plants and play essential roles in the outer integument (Siegfried

et al., 1999; Zhang et al., 2019; Chen et al., 2020).
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YABBY genes include a zinc finger domain near the N-

terminus and a helix-loop-helix domain (YABBY domain) near

the C-terminus. The results showed that the YABBY domain is

more conserved than the c2c2 domain in three Cymbidium

species. Fifteen motifs were analyzed in three Cymbidum species,

and most YABBY genes of Cymbidium have motif 4 and motif 2.

These findings revealed that the gene structure of YABBY genes

are conserved during evolution. In the evolution of gene families,

two main methods are tandem duplication and fragment

duplication (Cannon et al., 2004). Chromosomal location

analysis results suggested that YABBY genes were located in

different chromosomes in C. ensifolium and C. sinense. But in C.

goeringii, CgYAB2.3, CgYAB2.4, and CgYAB2.5 were located on

same chromosome (chr17). The results indicated those genes

might be tandem repeat genes. The syntenic relationships

analysis indicated that almost every YABBY gene displayed
FIGURE 4

Collinear correlation analysis in three Cymbidium species.
BA

FIGURE 5

Expression patterns of YABBY genes in different organs from three Cymbidium species. (A, B) show the expression patterns of YABBY genes in
different organs in C. ensifolium and C. goeringii. The heatmap was produced in Tbtools (Chen et al., 2018). The fragments per kilobase of
transcript per million fragments (FPKM) values can be found in Supplementary Table S5. The duplicated genes are shown in bold.
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corresponding one-to-one relationships in these three

Cymbidium species.

Cis-elements were found in promoter areas in YABBY genes.

The results indicated that most of the elements were clustered in

light-responsive elements (199/412), followed by MeJA-

responsive elements (64/412), anaerobic induction elements

(27/412), and abscisic acid responsiveness element (24/412).

The MeJA (methyl jasmonate) is a phytohormone involved in

defense signaling of plants (Howe, 2004). The results indicated

YABBY genes might play essential roles in plant growth

and stress.

The growth of lateral organs in A. thaliana is thought to be

redundantly controlled by the genes YAB2 and FIL, which are

expressed in the leaves, cotyledons, and floral organs (Siegfried

et al., 1999; Rudall and Bateman, 2002). FIL gene orthologues

have similarly acted in flower development in Oryza (Tanaka

et al., 2017). Our study indicated that three Cymbidium species

contained one or two FIL genes and had high expression in the

floral organs of C. ensifolium and C. goeringii. The results

suggested that FIL may play important roles in the

development of floral organ in Cymbidium species. CRC

showed high expression in pseudobulbs in C. ensifolium and

C. goeringii, and CRC showed high expression in pedicels in C.

ensifolium. CRC also showed high expression in gynostemium in

C. goeringii. The results suggested that CRC in different

Cymbidum had different expression patterns. INO expressed in

the gynostemium and pedicel in C. ensifolium. It may play

important roles in the development of gynostemium and

pedicel. YAB2 genes (CeYAB2.1, CeYAB2.2, CgYAB2.1,

CgYAB2.2, and CgYAB2.6) showed high expression in all

organs in Cymbidium species, indicating that the YAB2 clade

may have functions in both reproductive and vegetative organs.

The results indicated that YABBY genes in Cymbidium

species showed higher expression in reproductive tissues than

in vegetative tissues. The results were consistent with the

expression patterns reported in A. shenzhenica, D. catanum,

and P. equestris (Chen et al., 2020). RT–qPCR analysis showed
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that CeCRC, CeYAB2.2, and CeYAB3.1 have higher expression

levels in floral organs than in leaves. However, the expression

levels in leaves were slightly higher than those in floral organs in

CeINO. These findings indicated that YABBY genes play

important roles in floral organ development in orchids.

Orchids display unique flower morphologies, and their flowers

possess several reliable floral morphological synapomorphies,

including a gynostemium (a fused structure of the pistils and

stamens) (Chase et al., 2003; Tsai et al., 2004). The results of this

study indicated that CeCRC might play essential roles in floral

organs, especially in gynostemium.
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