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Strawberry (Fragaria x ananassa Duch) are sensitive to salt stress, and
breeding salt-tolerant strawberry cultivars is the primary method to develop
resistance to increased soil salinization. However, the underlying molecular
mechanisms mediating the response of strawberry to salinity stress remain
largely unknown. This study evaluated the salinity tolerance of 24 strawberry
varieties, and transcriptomic and metabolomic analysis were performed
of 'Sweet Charlie’ (salt-tolerant) and ‘Benihoppe’ (salt-sensitive) to explore
salt tolerance mechanisms in strawberry. Compared with the control, we
identified 3412 differentially expressed genes (DEGs) and 209 differentially
accumulated metabolites (DAMs) in '‘Benihoppe,” and 5102 DEGs and 230
DAMs in ‘Sweet Charlie.” DEGs Gene Ontology (GO) enrichment analyses
indicated that the DEGs in ‘Benihoppe’ were enriched for ion homeostasis
related terms, while in ‘Sweet Charlie,” terms related to cell wall remodeling
were over-represented. DEGs related to ion homeostasis and cell wall
remodeling exhibited differential expression patterns in '‘Benihoppe’ and
‘Sweet Charlie." In ‘Benihoppe,” 21 ion homeostasis-related DEGs and 32 cell
wall remodeling-related DEGs were upregulated, while 23 ion homeostasis-
related DEGs and 138 cell wall remodeling-related DEGs were downregulated.
In ‘Sweet Charlie,” 72 ion homeostasis-related DEGs and 275 cell wall
remodeling-related DEGs were upregulated, while 11 ion homeostasis-related
DEGs and 20 cell wall remodeling-related DEGs were downregulated. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed
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only four KEGG enriched pathways were shared between ‘Benihoppe’ and
‘Sweet Charlie,” including flavonoid biosynthesis, phenylalanine metabolism,
phenylpropanoid biosynthesis and ubiquinone, and other terpenoid-quinone
biosynthesis. Integrating the results of transcriptomic and metabolomics
analyses showed that adenosine triphosphate-binding cassette (ABC)
transporters and flavonoid pathway genes might play important roles in
the salt stress response in strawberry, and DAMs and DEGs related to
ABC transporter and flavonoid pathways were differentially expressed or
accumulated. The results of this study reveal that cell wall remodeling and
ABC transporters contribute to the response to salt stress in strawberry,
and that related genes showed differential expression patterns in varieties
with different salt tolerances. These findings provide new insights into the
underlying molecular mechanism of strawberry response to salt stress and
suggest potential targets for the breeding of salt-tolerant strawberry varieties.

ABC transporter, cell wall remodeling, salt stress, salinity tolerance, strawberry

Introduction

Soil salinization is a significant environmental factor
threatening food production and food security. Currently, soil
salinization affects 800 million hectares of farmland worldwide,
and every year about 1-2% of available acreage for farming
is compromised due to soil salinity (Etesami and Beattie,
2018; Bomle et al,, 2021). Furthermore, with temperature and
precipitation changes related to climate change, irrigation,
increasing sea level, and the use of wastewater all increase
agricultural soil salinization worldwide (Koohbor et al., 2019;
Shah et al, 2022). Saline soils lead to osmotic, ionic, and
oxidative stress in plants, affecting overall plant growth and yield
(Arora et al, 2020; Bomle et al, 2021). Strawberry is highly
sensitive to salt stress, and previous studies have shown that
under increased salt stress, there is a decrease in plant biomass
and chlorophyll content, and negative impacts on organic acids,
soluble solids, and the physical appearance of fruits (Kaya
et al,, 2019). Generally, the yield loss and commodity fruit rate
reduction caused by salt stress significantly reduce economic
benefits (Keutgen and Pawelzik, 2007; Suarez and Grieve, 2013;
Ferreira et al,, 2019). However, mild salt stress has a positive
impact on certain desirable metabolites such as anthocyanins
and phenolic compounds, compounds that are involved in
plant stress responses (Vanessa et al., 2016). The additional
cost of a water purification system will significantly raise the
cost of production, so the effective breeding of salt tolerant
varieties is an important way to counteract soil salinization
for the strawberry industry. The use of salt tolerant varieties
such as ‘Albion, ‘San Andreas, and ‘Camarosa’ in a breeding
program can improve the performance of offspring under saline
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conditions (Sun et al, 2015). In our breeding program, F1
offspring, Jingtaoxiang’ (‘Darselect’ x ‘Akihime’) (Wang et al,,
2018b) showed significantly higher salt tolerance compared
to ‘Akihime, the salt sensitive parent. Thus, further study
on the molecular mechanisms involved in the response of
different strawberry varieties to salt stress is needed to provide
a theoretical basis for breeding.

Flavonoids are major non-enzymatic scavengers of reactive
oxygen species (ROS), with antioxidant capacities. These
compounds play a major role when plants suffer from salt stress.
The flavonoid biosynthetic genes CHS, CHI, and F3H function
as positive regulators to modulate plant salt stress tolerance
by increasing the accumulation of flavonoids (Mahajan and
fadav, 2014; Chen et al., 2015; Wang et al., 2018a; Jayaraman
et al, 2021). AtROS1-mediated demethylation improves the
expression levels of flavonoid biosynthesis and antioxidant-
related genes to increase salt stress tolerance (Bharti et al,
2015). In rice, SQD2.1 acts in the glycosylation of flavonoids
and improves the scavenging of ROS to improve salt stress
tolerance (Zhan et al., 2019). CrUGT87A1 from Carex rigescens
is a positive regulator of plant salt tolerance, and can enhance
plant antioxidation capability through increased flavonoid
accumulation to improve salt tolerance in plants (Zhang
et al, 2021b). The R2R3-MYB transcription factors are core
regulators of flavonoid biosynthesis and can modulate plant
salt stress tolerance by controlling flavonoid biosynthesis and
accumulation (Li et al., 2019a; Wang et al,, 2020, 2021).

At the cellular level, the cell wall is the first barrier for
plants to respond to salt stresses. Decreased turgor pressure
induced by salt stress restricts cell expansion and division and
the cell wall responds to salt stress by resisting cell turgor
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changes (Zhao et al,, 2021b). Components of the cell wall such
as cellulose, lignin, and xyloglucan have been implicated in
the salt tolerance response. OsCSLD4, a major regulator of cell
wall polysaccharide synthesis, is involved in the response to salt
stress in rice by affecting abscisic acid biosynthesis to regulate
osmotic stress tolerance (Zhao et al, 2021a). Companion of
Cellulose Synthase 1 (CC1) promotes plant growth under salt
stress via control microtubule bundling and dynamics (Kesten
et al, 2019). Xyloglucan endotransglucosylase-hydrolase 30
(XTH30) can alter cellulose synthesis and negatively affect salt
tolerance (Yan et al,, 2019). MASNDI and AgNACI participate
in the response to salt stress by regulating lignin biosynthesis
or accumulation (Chen et al,, 2020; Duan et al,, 2020). Lignin
biosynthesis and accumulation make a critical contribution
to the adaptation of plants to high-salt stress (Chun et al,
2019), and the MdMYB46 transcription factor enhanced salt
stress tolerance by activating lignin biosynthesis-related genes
(Chen et al., 2019).

Significant progress has been made, but further studies
to identify regulatory factors are needed to understand the
underlying mechanisms of the strawberry salt stress response
and to facilitate salt tolerant breeding efforts. In this study, the
salt tolerances of 24 strawberry varieties were investigated with
varying NaCl concentrations. Based on the salt damage indices,
tested varieties were clustered as salt tolerant, salt sensitive,
or salt hypersensitive. To explore the molecular mechanism of
strawberry response to salt stress, two strawberry varieties with
different salt sensitivity were used to perform transcriptomic
and metabolomic analysis. We hypothesized the presence of
common and distinct pathways in the response to salt stress
in different varieties. To ensure we evaluated varieties with an
intact salt response network, we selected a salt-sensitive variety
instead of a salt-hypersensitive variety to unravel the mechanism
of the strawberry response to salt stress. ‘Sweet Charlie
(salt-tolerant) and ‘Benihoppe’ (salt-sensitive), the top two
varieties with the largest planting area and the highest genetic
contribution value in strawberry breeding in China (Chang
et al.,, 2018), were selected in this study. The results further our
understanding of the mechanism of the response of strawberry
to salt stress and provide a theoretical basis for further study into
regulation of salt stress tolerance in strawberry.

Materials and methods

Plant growth and salt stress treatment

In this study, 24 strawberry varieties from the National
Strawberry Germplasm Repository (Beijing, China) were used
to investigate salt tolerance under different concentrations
of NaCl solution, which included four day-neutral varieties:
‘Albion, ‘San Andreas; ‘Portola, and ‘Monterey, and twenty
short-day varieties: ‘Benihoppe; ‘Akihime; ‘Ssanta, ‘Tokun,
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‘Kinuama, ‘Tochiotome; ‘Sweet Charlie; ‘Tianxiang; ‘Yanxiang,
. g N U S o
Shuxiang, ‘Hongxiutianxiang, Jingyixiang, Tingchengxiang,

>

Jingquanxiang; ‘Jingzhangxiang, Jingliuxiang, TJingtaoxiang,
‘Pink Princess, ‘Snow White, and Yanli, Strawberry seedlings
were cultivated in 2.5-L containers with peat moss and perlite
(2:1 v/vratio) in a greenhouse with a 16-h photoperiod provided
by supplemental lighting, 25/16°C (day/night) temperature
cycle, 60% relative humidity, and 200 wmol m~2 s=! light
intensity. Salt stress treatments were conducted when the plants
were at the 6-7 leaf stages. Plants were irrigated with four
different concentrations of salt solutions: 50, 100, 150, or
200 mM NacCl for 50 days. To do this, 100 ml of the salt solution
was applied once per week, and the same volume of fresh
water was applied in the control treatment. Plants salt damage
index (SDI) was measured as described by Zhong et al. (2021),
and the SDI grades were scaled into six levels from 0 to 5,
according to different damage symptoms observed in the leaves
after salt treatment. The classification standard of plant salt
damage was as follows: Grade 0: no symptoms of salt damage;
Gradel: about 1/3 of the leaves showed wilting phenotype at
leaf tips and leaf margins; Grade 2: about 1/2 of the leaves
showed wilting and burn phenotype at leaf tips and leaf margins;
Grade 3: about 2/3 of the leaves showed burn phenotype and
the burn area was about 1/3; Grade 4: all leaves showed burn
phenotype and the burn area was more than 1/2; Grade 5: all
leaves were scorched. The SDI was counted as = X (salt damage
series X number of plants with the corresponding salt damage
level)/total number of plants tested. Biomass accumulation was
measured as the dry weight of the whole plant. The experimental
design included three randomized replicate blocks, with ten
plants in each replicate block. The experiments were carried out
in January, 2017 and January, 2018. To explore the molecular
mechanism of strawberry response to salt stress, ‘Sweet Charlie’
and ‘Benihoppe’ were selected as strawberry varieties with
different salt sensitivities and were subjected to transcriptomic
and metabolomic analysis. ‘Sweet Charli€ and ‘Benihoppe’
plants with 6-7 leaves were treated with 0 mM (control) or
100 mM NacCl solution, respectively. After 12 h of treatment,
the young leaves were collected for ribonucleic acid (RNA) and
metabolite extraction. After 10 days of treatment, the young
leaves were collected for physiological indices determination.

Measurement of physiological indices

To evaluate the effects of salt stress on physiological
performance of ‘Sweet Charli€ and ‘Benihoppe, biochemical
(MDA),
(H20; and Oy 7) content, and superoxide dismutase (SOD),

indices of malondialdehyde superoxide anion
peroxidase (POD), and catalase (CAT) activities were measured.
Each experiment was performed with three biological replicates.

To evaluate the degree of membrane lipid peroxidation,

the content of MDA was measured as described by
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Fengetal. (2022). Briefly, 0.5-gram samples of leaves were
ground in buffer solution, and then supernatants were mixed
with equivalent volumes of thiobarbituric acid (TBA) and
incubated at 100°C for 10 min. Finally, the supernatant
absorbance was read at 450, 532, and 600 nm.

The content of H,O, was detected using a hydrogen
peroxide assay kit (Solarbio, China) (Wang et al., 2019). Briefly,
0.1-gram leaves were homogenized in 1 ml cold acetone, and
then supernatants were mixed with 5% titanium sulfate. The
resulting precipitates were dissolved in 2 M sulfuric acid and
then the absorbance was read at 415 nm.

The concentration of O, ~ (superoxide anion) was
determined using a superoxide anion assay kit (Solarbio,
China) (Fang et al., 2021). Briefly, 0.1-gram leaves were ground
in phosphate buffer solution, and then the supernatant was
mixed with potassium phosphate buffer and hydroxylamine
hydrochloride before reaction at 25°C for 20 min. Next
p-aminobenzene sulfonic acid and 1-naphthylamine were
added, the mixture was well-mixed and incubated at 30°C for
30 min, and then the absorbance was read at 530 nm.

To determine the activities of SOD, POD, and CAT,
approximately 0.2-grams of leaves were ground and
homogenized in sodium phosphate buffer and the resulting
supernatants were assayed (Yu et al., 2021). SOD activity was
determined according to the ability to inhibit the reduction of
nitro blue tetrazolium (NBT) under light. POD activity was
detected by measuring the oxidation of guaiacol, and CAT
activity was measured by monitoring the consumption of

hydrogen peroxide at 240 nm.

Transcriptome sequencing and data
analysis

Total RNA was extracted from leaves using TRIzol®
Reagent (Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s instructions. The quality and concentration of
RNA were determined by an Agilent 2100 Bioanalyzer (Agilent,
Palo Alto, CA, United States) and a DS-11 Spectrophotometer
(DeNovix, Wilmington, DE, United States), respectively. RNA-
seq transcriptome library was constructed using TruSeqTM
RNA sample preparation Kit (Illumina, San Diego, CA,
United States) following the instructions of the manufacturer.
An RNA-seq sequencing library was sequenced on the Illumina
HiSeq X Ten sequencing platform by using paired-end
technology using three biological replicates for each treatment.

After removing and filtering low-quality sequences, the
clean reads were separately aligned to the reference genome
(Fragaria x ananassa Camarosa Genome v1.0) using TopHat
software.! The determination of fragments per kilobase of

1 http://tophat.cbcb.umd.edu
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exon per million mapped reads (FRKM) was employed to
calculate the expression level of each transcript. RSEM? was
used to quantify gene abundances. R statistical package software
Empirical analysis of Digital Gene Expression in R (EdgeR)?
was utilized for differential expression analysis. P-value < 0.05
and |logzFC| > 1 were set as the threshold for significantly
differential expression.

Functional-enrichment GO and KEGG analyses were
performed to identify DEGs significantly enriched in GO terms
and metabolic pathways at a Bonferroni-corrected P-value of
<0.05 compared with the whole-transcriptome background.
GO functional enrichment and KEGG pathway analyses were
carried out using Goatools* and KOBAS.>

Metabolite profiling analysis

For the extraction of metabolites, fifty milligrams of
strawberry leaves were mixed with 0.4 ml of an 80%
aqueous methanol solution containing 0.02 mg/mL L-2-
chlorophenylalanin as an internal standard. Chromatographic
separation of the metabolites was performed on an UHPLC
system (Thermo Fisher, Carlsbad, CA, United States) equipped
with an ACQUITY UPLC HSS T3 (Waters, Milford,
United States). The mass spectrometric data was collected
using a Thermo UHPLC-Q Exactive HF-X Mass Spectrometer
equipped with an ESI (electrospray ionization) source operating
in either positive or negative ion mode. The metabolite profiling
experiments were performed with six biological replicates
for each treatment.

After UPLC-MS analyses, the raw data were imported
into the Progenesis QI 2.3 (Non-linear Dynamics, Waters,
United States) for peak detection and alignment. The
preprocessing results generated a data matrix that was
utilized for subsequent analyses. Human metabolome database®
(HMDB) and Metlin database’ were used for metabolite
(PCA)
orthogonal partial least squares discriminate analysis (OPLS-

identification. Principal component analysis and
DA) were performed on Majorbio Cloud Platform.® Variable
importance in the projection (VIP) were calculated in OPLS-
DA model, and p values were estimated with paired Student’s
t-test in single dimensional statistical analysis. Differentially
accumulated metabolites (DAMs) between groups were
selected with VIP > 1, FC (fold change) > 1 or FC < 1 and

p value < 0.05. Differential metabolites between two groups

http://deweylab.biostat.wisc.edu/rsem
http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html
https://github.com/tanghaibao/Goatools
http://kobas.cbi.pku.edu.cn/index.php

http://www.hmdb.ca/

https://metlin.scripps.edu/

o N O 0 A NN

https://cloud.majorbio.com
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were summarized and mapped into their biochemical pathways
through metabolic enrichment and pathway analysis based on
database search (KEGG?®).

Validation of quantitative real-time
polymerase chain reaction
differentially expressed genes

Quantitative real-time polymerase chain reaction (qPCR)
was performed to validate the accuracy of the RNA-seq results.
To do this, qPCR was performed on a 7500 Real-time PCR
System (Applied Biosystems, Carlsbad, CA, United States), with
the following cycling profile: 95°C for 20 s followed by 40 cycles
at 95°C for 5 s, 60°C for 10 s, and 72°C for 20 s; followed
by a melting curve. The relative gene expression levels were
quantified by the 27 A2CT method. FaRPSI (Merlaen et al,
2020) was selected as the internal control gene. The primer pairs
are listed in Supplementary Table 1.

Statistical analysis

Statistical analysis was conducted using SPSS 20.0 software,
and statistical comparisons were performed using ¢-test in SPSS.
Data are presented as the mean =+ standard deviation (SD)
values with at least three biological replicates.

Results

Evaluation of strawberry salt tolerance

With increasing salt concentration, all 24 strawberry
varieties showed a salt injury phenotype with the salt
injury index positively correlated with salt concentration.
Based on the salt damage indices, tested varieties could
be clustered into three groups: salt tolerant, salt sensitive,
and salt hypersensitive (Figure 1). The five varieties with
the highest salt tolerance were ‘Portola; ‘Tokun, ‘Sweet
Charlie; Tingliuxiang, and ‘Pink Princess.” Three varieties
were extremely salt tolerant, ‘Portola; ‘Tokun, and ‘Sweet
Charlie,; with the plants neither dying nor withering at the
highest test concentration of 200 mM NaCl. The varieties
‘Akihime; Tingzhangxiang, ‘Monterey, Tingchengxiang, and
Jingquanxiang were salt hypersensitive, with these varieties
showing moderate to a severe salt damage phenotype under
the 100 mM NaCl treatment. The other 16 varieties were
salt sensitive varieties, with biomass accumulation and growth
and development obviously inhibited under salt stress. In this
study, the total biomass of 24 strawberry varieties decreased

9 http://www.genome.jp/kegg/
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with the increase of NaCl concentration, but there were
differences among different varieties that fell into three classes
(Figure 2). Compared with the control treatment, the biomass
was slightly increased and then decreased with increasing
NaCl concentration for “Tokun, ‘Sweet Charlie, ‘Pink Princess,
Jingliuxiang, ‘Tingyixiang, ‘Hongxiutianxiang, ‘Tochiotome,
Jingtaoxiang, ‘Jingzangxiang, and ‘Akihime’; the biomass of
“Yanli, ‘Benihoppe; ‘Ssanta, ‘Kinuama, ‘San Andreas,; ‘Shuxiang,
‘Tianxiang, ‘Snow White, ‘Albion,; ‘Yanxiang, ‘Jingchengxiang;
and ‘Monterey’ steadily decreased with increasing NaCl
concentration, and there was little difference in the biomass of
’Portola’ under different concentrations of NaCl.

‘Benihoppe’ is more sensitive to salt
stress than ‘Sweet Charlie’

To investigate the physiological changes in the two
representative varieties of ‘Sweet Charlie’ and ‘Benihoppe’ under
salt stress, strawberry plants at the 6-7 leaf stage, were treated
with 100 mM NaCl for 10 days. Next, several physiological
parameters were measured. Under normal conditions, the
content of MDA in leaves did not differ between ‘Sweet Charlie’
and ‘Benihoppe.” However, after salt stress, the content of
MDA in ‘Benihoppe’ was higher than that of ‘Sweet Charlie
(Figure 3A). Excessive accumulation of ROS is a consequence
of salt stress and leads to membrane lipid peroxidation. MDA
is a marker of membrane lipid peroxidation. In addition, the
accumulation of hydrogen peroxide and superoxide anion were
increased in both ‘Benihoppe’ and ‘Sweet Charlie’ under salt
stress condition, with higher values in ‘Benihoppe’ compared
to the levels in ‘Sweet Charlie’ (Figures 3B,C). The opposite
trend was observed for SOD, POD, and CAT activities, with all
three parameters significantly higher in ‘Sweet Charlie’ than in
‘Benihoppe’ under salt stress condition (Figures 3D-F). Thus,
the results indicate greater salt sensitivity of ‘Benihoppe’ than
‘Sweet Charlie.’

Transcriptomic profiles in ‘Benihoppe’
and ‘Sweet Charlie’ under salt stress

The genetic and biochemical responses of ‘Benihoppe’ and
‘Sweet Charlie” to salt stress were further explored using RNA-
seq analysis. A summary of the sequencing data is presented in
Supplementary Table 2. Principal component analysis (PCA)
showed clear separations between each group (Supplementary
Figure 1). In ‘Benihoppe, compared with normal condition,
3412 genes were differentially expressed under 100 mM NaCl
treatment, with 1869 were upregulated and 1543 downregulated
(Supplementary Figure 2 and Supplementary Table 3).
In ‘Sweet Charlie; compared with normal condition, 5102
genes were differentially expressed under 100 mM NaCl
treatment, with 4396 upregulated and 706 downregulated
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clustered into three groups: salt tolerant, salt sensitive, and salt hypersensitive.

5.00

0OmM @S0mM D100mM O1S0mM M200mM

Relative total biomass (%)

FIGURE 2

Relative total biomass of 24 strawberry varieties under different concentrations of NaCl. Strawberry plants with 6-7 leaves were irrigated with
five different concentrations of salt solutions: O, 50, 100, 150, or 200 mM NaCl for 50 days. Relative biomass accumulation was counted as the
dry weight of the whole plant treated with different concentrations of salt solutions (50, 100, 150, or 200 mM) divided by the dry weight of the
whole plant treated with fresh water. Data are means (+SD) of three independent experiments, *p < 0.05 or **p < 0.01.

(Supplementary Figure 2 and Supplementary Table 4). GO
and GO enrichment analysis were performed to explore the
functional significance of DEGs. In ‘Benihoppe, 522 GO terms
were annotated and 297 significant GO terms were obtained,
with several ion homeostasis related terms ranked in the top
20 enriched terms (Figure 4A and Supplementary Table 5).
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In ‘Sweet Charlie, 572 GO terms were annotated and 339
significant GO terms were obtained, with a suite of cell wall-
related terms ranked in the top 20 enriched terms (Figure 4B
and Supplementary Table 5). KEGG pathway classification
was performed to reveal the active biological pathways in
strawberry in response to salt stress. In ‘Benihoppe; the
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(control) or 100 mM NaCl solution, respectively. After 10 days of treatment, the young leaves were collected for physiological indices
determination. The content of MDA (A), H,O> (B), and O, ~ (C) under control and salt stress treatment in strawberry leaves. The activities of CAT
(D), SOD (E), and POD (F) under control and salt stress treatment in strawberry leaves. Data are means (+SD) of three independent experiments.

Different letters indicate significant differences (P < 0.05).

DEGs mapped to 116 KEGG pathways, with 21 pathways
were significantly enriched (Figure 4C and Supplementary
Table 6). In ‘Sweet Charlie; the DEGs were mapped to 120
KEGG pathways, and 24 pathways were significantly enriched
(Figure 4D and Supplementary Table 6). Only four KEGG
enriched pathways were shared between ‘Benihoppe’ and ‘Sweet
Charlie; including flavonoid biosynthesis, phenylpropanoid
biosynthesis,
biosynthesis, and other terpenoid-quinone biosynthesis. This

phenylalanine metabolism and ubiquinone

lack of substantial overlap indicates that ‘Sweet Charlie’ and
‘Benihoppe’ respond to salt stress using different pathways.

Validation of ribonucleic acid-seq
results by quantitative real-time
polymerase chain reaction

Twelve genes were randomly selected to validate the RNA-

seq results via qRT-PCR, testing levels of six downregulated
genes and six upregulated genes. The qRT-PCR analysis results

Frontiers in Plant Science

showed similar gene expression trends as the observed changes
in the RNA-seq data (Figure 5). These results confirmed the
reliability of RNA-seq in this study.

Metabolomic profiles in ‘Benihoppe’
and ‘Sweet Charlie’ under salt stress

Non-targeted metabolomic analysis was performed to
expose the metabolomic changes of ‘Benihoppe’ and ‘Sweet
Charlie’ in response to salt stress. In ‘Benihoppe, 3105
metabolites and 209 DAMs were identified (80 upregulated
and 129 downregulated, Figure 6A and Supplementary
Table 7). The DAMs were mapped to 25 KEGG pathways, and
seven pathways were significantly enriched (Figure 6C and
Supplementary Table 8). In ‘Sweet Charlie; 3381 metabolites
and 230 DAMs were identified (85 upregulated and 145
downregulated, Figure 6B and Supplementary Table 7),
and the DAMs were mapped to 42 KEGG pathways with 11
pathways significantly enriched under salt stress (Figure 6D
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Gene Ontology enrichment analysis and KEGG pathway analysis of differentially expressed genes in strawberry leaves under salt stress. ‘Sweet
Charlie’ and ‘Benihoppe’ plants with 6-7 leaves were treated with 0 mM (control) or 100 mM NaCl solution, respectively. After 12 h of treatment,
the young leaves were collected for RNA-seq analysis. GO enrichment analysis and KEGG pathway analysis were performed to explore the
functional significance of DEGs. Top 20 GO enrichment terms of differentially expressed genes in ‘Benihoppe’ (A) and ‘Sweet Charlie’ (B) under
salt stress. Top 20 KEGG pathways of differentially expressed genes in ‘Benihoppe’ (C) and ‘Sweet Charlie’ (D) under salt stress.

and Supplementary Table 8). Among the enriched KEGG
pathways, five pathways were shared between ‘Benihoppe’ and
‘Sweet Charlie; including flavonoid biosynthesis, aminoacyl-
tRNA biosynthesis, cyanoamino acid metabolism, adenosine
cassette (ABC) and

triphosphate-binding transporters,

tyrosine metabolism.

lon homeostasis regulation under salt
stress

Ton channels and ion transporters play vital roles in
maintaining ion homeostasis under salt stress. In this study, ion
channels and ion transporters related genes showed differential
response patterns to salt stress in ‘Benihoppe’ and ‘Sweet
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Charlie.” In ‘Benihoppe, 19 cyclic nucleotide-gated ion channel
(CGNCs), two S-type anion channel (SLAH2), one potassium
channel encode gene, two mechanosensitive ion channel protein
encoding genes, five potassium transporter encoding genes,
three vacuolar cation/proton exchanger (CHXs), and one
cation/H* antiporter (CHA) gene were upregulated, while
one CNGC gene, one mechanosensitive ion channel protein
encoding gene, one aluminum-activated malate transporter
(ALMT) gene, and one CHA gene were downregulated
In ‘Sweet Charlie; 10 CGNCs, three
mechanosensitive ion channel protein encoding genes, three

under salt stress.

potassium transporter encoding genes, one ALMT gene, six
CHXs, and one CHA were upregulated, while six CNGCs, two
potassium transporter encoding genes, three ALMTs, and one
CHX gene were downregulated under salt stress (Figure 7
and Supplementary Table 9). Aquaporins play important roles
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randomly selected to validate the RNA-seq results via qRT-PCR. Data are means (£SD) of three independent experiments.

in responsive to salt tolerance. In ‘Benihoppe; one plasma
membrane intrinsic protein (PIP) gene was upregulated and
one PIP and eight tonoplast intrinsic protein (TIP) genes
were downregulated under salt stress. In ‘Sweet Charlie] seven
TIPs, two PIPs, two nodulin-like intrinsic protein (NIPs),
and one small and basic intrinsic proteins (SIP) gene were
upregulated, while one NIP gene was downregulated (Figure 7
and Supplementary Table 9). NPF (NRT1/PTR FAMILY)
belong to the large PTR (peptide transporter) family, and
plant NPFs can identify a wide variety of substrates, including
NO3;~, NO,, Cl7, abscisic acid (ABA), auxin (IAA), and
gibberellins (GAs) (Corratge-Faillie and Lacombe, 2017). Under
salt stress, nine NPFs were upregulated, and eight NPFs were
downregulated in ‘Benihoppe; with nine NPFs upregulated
and three NPFs downregulated in ‘Sweet Charlie’ (Figure 7
and Supplementary Table 9). ABC transporters utilize the
energy released from ATP hydrolysis to transport substrates and
participate in the response to salt stress. Under salt stress, seven
ABCs were upregulated and four ABCs were downregulated
in ‘Benihoppe, while 38 ABCs were upregulated and one
ABC was downregulated in ‘Sweet Charlie. In ‘Benihoppe,
the differentially expressed ABCs belong to B, C, G, and F
subfamilies, while in ‘Sweet Charlie; the differentially expressed
ABCs belong to A, B, C, and G subfamilies. In ‘Benihoppe;
three DAMs related to the ABC transporter pathway were
identified, including L-Arginine, Cytidine, and L-Phenylalanine
with L-Phenylalanine downregulated, and L-Arginine and
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Cytidine upregulated under salt stress. In ‘Sweet Charlie, four
DAMs related to ABC transporter pathway were identified,
including L-Arginine, Uridine, Xanthosine, and L-Aspartic
Acid, with L-Arginine upregulated and Uridine, Xanthosine,
and L-Aspartic Acid downregulated under salt stress (Figure 7
and Supplementary Table 9).

Cell wall remodeling genes under salt
stress

In this study we identified multiple cell wall-related genes
that exhibited differential expression in strawberry in response
to salt stress. Xyloglucan endotransglucosylase/hydrolase
(XHT) (Sharples et al.,, 2017), expansin (EXP) (Hepler et al,
2020), alpha-galactosidase (a-Gal A) (Chrost et al., 2007), and
L-ascorbate oxidase (AO) (Green and Fry, 2005) participate in
cell wall loosening. In‘Benihoppe, two XHTs, four EXPs, and
one AO encoding genes were upregulated, while 29 XHTs, 10
EXPs, and six AO encoding genes were downregulated under
salt stress. In ‘Sweet Charlie, 13 XHTs, 16 EXPs, and seven
AO encoding genes were upregulated, while two EXPs and
two a-Gal A encoding genes were downregulated under salt
stress. Cellulase (Cel), endoglucanase, endo-beta-1,4-glucanase,
endo-1,4-beta-glucanase, beta xylosidase (BXL), and beta-D-
xylosidase (XYL) are well-known cell wall-degrading enzymes.
In ‘Benihoppe, one endoglucanase encoding gene and three
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FIGURE 6

The statistics of differentially accumulated metabolites and KEGG enrichment under salt stress in strawberry. ‘Sweet Charlie’ and ‘Benihoppe’
plants with 6—7 leaves were treated with 0 mM (control) or 100 mM NaCl solution, respectively. After 12 h of treatment, the young leaves were
collected for metabolite extraction. Non-targeted metabolomic analysis was performed to expose the metabolomic changes of ‘Benihoppe’
and ‘Sweet Charlie’ in response to salt stress. The volcano map of differentially accumulated metabolites in ‘Benihoppe’ (A) and ‘Sweet Charlie’
(B) leaves under salt stress. KEGG pathways of differentially accumulated metabolites in ‘Benihoppe’ (C) and ‘Sweet Charlie’ (D) under salt stress.

XYLs were downregulated under salt stress. In ‘Sweet Charlie;
two Cels, 12 endoglucanase encoding genes, four endo-beta-
1,4-glucanase encoding genes, three endo-1,4-beta-glucanase
encoding genes, three BXLs, and three XYLs were upregulated
under salt stress (Figure 8 and Supplementary Table 10).
Pectate lyase (PL), Pectinesterase (PE), and Polygalacturonase
(PG) are pectin-degrading enzymes (Chen et al,, 2018c, 2021;
Zhang et al, 2021a), and galacturonosyltransferase (GAUTS)
are involved in pectin synthesis (Mohnen et al, 2012). In
‘Benihoppe; four PEs and two GAUT's were upregulated, while
11 PLs and five PEs were downregulated under salt stress. In
‘Sweet Charlie; 17 PLs, 20 PEs, 19 PGs, and four GAUT's were
upregulated, and four PEs were downregulated under salt stress
(Figure 8 and Supplementary Table 10). Cellulose synthase A
(CesA), cellulose synthase-like (Csl), and COBRA-like (COBL)
are involved in cellulose synthase (Li et al., 2019b; Daras et al,,
2021). In ‘Benihoppe,; two Csls were downregulated under salt
stress. In ‘Sweet Charlie; eight CesAs, five Csls, and five COBLs
were upregulated (Figure 8 and Supplementary Table 10).
Laccase (LAC) and peroxidase (PER) are well-characterized
lignin-related enzymes and omega-hydroxypalmitate O-feruloyl
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transferase (HHT1) participate in lignin monomer synthesis.
In ‘Benihoppe; three LACs, 10 peroxidase encoding genes, and
one omega-hydroxypalmitate O-feruloyl transferase encoding
gene were upregulated, while 16 LACs, 14 peroxidase encoding
genes, and one HHTI encoding gene were downregulated
under salt stress. In ‘Sweet Charlie; 35 LACs, nine peroxidase
encoding genes, and three HHTI were upregulated, while
one LAC, seven peroxidase encoding genes, and three HHT1
encoding genes were downregulated under stress (Figure 8
and Supplementary Table 10). Glycosyltransferases, xylan
alpha-glucuronosyltransferase (GUX), and DUF579 domain
containing proteins IRX15-L are linked with xylan biosynthesis,
and IRX7/9/10 are members of the glycosyltransferase
family (Oikawa et al, 2010; Jensen et al, 2011, 2014).
Glucuronoxylan ~ 4-O-methyltransferase  (GXM) involves
xylan methylation, ALTERED XYLOGLUCAN 4 (AXY4)
involves xylan acetylation, and GDSL esterase/lipase (GSDL)
affects xylan deacetylation. In ‘Benihoppe; one GDSL was
upregulated and one AXY4 and 23 GDSLs were downregulated
under salt stress. In ‘Sweet Charlie; four GUXs encoding genes,
three IRX15-L, two IRX7, three IRX9, two IRX10, three GXM
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encoding genes, three AXY4s, and 52 GDSLs were upregulated
under salt stress (Figure 8 and Supplementary Table 10).
Inositol oxygenase is linked to the biosynthesis of nucleotide
sugar precursors for cell-wall matrix polysaccharides (Kanter
et al, 2005). In ‘Sweet Charlie, seven inositol oxygenase
encoding genes were up regulated under salt stress (Figure 8
and Supplementary Table 10). The members of the PHI-
1/EXO/EXL protein family participate in regulating secondary
cell wall thickening and composition, and lignification (Sousa
et al,, 2020). Under salt stress, 11 EXL3s were downregulated in
‘Benihoppe, and five EXL3s were upregulated in ‘Sweet Charlie’
(Figure 8 and Supplementary Table 10). The galactoside
2-alpha-L-fucosyltransferase FUT1 adds a fucose residue to
the 2-O position of terminal galactosyl residues on XyG side
chains (Rocha et al,, 2016). Under salt stress, one galactoside
2-alpha-L-fucosyltransferase encode gene was upregulated in
‘Benihoppe, and three galactoside 2-alpha-L-fucosyltransferase
encoding genes were upregulated in ‘Sweet Charlie’ (Figure 8
and Supplementary Table 10).

Flavonoid pathway under salt stress

Integrative analysis of transcriptomic and metabolomic data
showed that the flavonoid pathway is involved in the salt stress
response in strawberry. In ‘Benihoppe, the expression level of
FLSs was reduced by salt stress, the expression of F3’'H, DFR,
ANS, LAR, and PGT1 was induced by salt stress, and the content
of epigallocatechin, taxifolin, and phloridzin decreased under
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salt stress. In ‘Sweet Charlie; salt stress induced expression of
CHS, CHI, F3H, FLS, F3’H, DFR, ANS, ANR, LAR, and PGTI;
while the levels of dihydrokaempferol, epicatechin, phloridzin,
and pinocembrin were reduced by salt stress; and an increase in
the content of pelargonidin was induced by salt stress (Figure 9
and Supplementary Table 11).

Discussion

Salt stress disturbs cellular ionic homeostasis through the
excessive accumulation of Nat and Cl~. Plants have evolved
efficient ion transport networks that enable them to maintain
ion homeostasis, and maintaining a high K*/Na¥ ratio in the
cytosol is a key determinant of salinity tolerance (Almeida et al,,
2017). CGNC, CHX, CHA, potassium channel, and potassium
transporters play core roles in this process. The Arabidopsis
genes AfCNGC19 and AtCNGC20 positively regulate plant salt
tolerance, and AtCNGCI0 participates in KT and Na™ uptake
and long-distance transport (Guo et al.,, 2008). The CHX protein
plays a critical role in maintaining K™ and Na™ homeostasis.
In soybean, GmCHX1 and GmCHX20a presented different
expression patterns and opposite effects to salt tolerance (Jia
et al,, 2021). Chloride ions are a major factor contributing to
ion toxicity and decreased production in strawberry (Suarez and
Grieve, 2013; Devinder et al.,, 2019; Ferreira et al., 2019). To
date, the most commonly reported gene families responsible
for Cl™ transport are Cl~ channels (CLC), cation chloride
channels (CCC), SLAH, ALMT, and NPF (Wu and Li, 2019).
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In this study, changes in the expression of different ion
channel encoding genes and ion transporters were detected
in ‘Benihoppe’ and ‘Sweet Charlie, with significant differences
in CI™ transport related genes. These results suggest different
regulatory mechanisms of ion homeostasis between ‘Benihoppe’
and ‘Sweet Charlie’ (Figure 7 and Supplementary Table 9).

Aquaporins are a large family of transmembrane channel
proteins that participate in the transport of water and nutrients.
The aquaporins include five subfamilies of PIP, TIP, SIP, NIP,
and X intrinsic proteins (XIP). Aquaporins help plants maintain
water and ionic homeostasis and respond to salt stress. In wheat,
TaTIP4;1 serves as a positive regulator of salt tolerance by
modulating water relations and the accumulation of Na* (Wang
et al,, 2022). ZxPIP1;3 conferred transgenic plants with salt
tolerance by regulating water status and reducing ion toxicity
(Li et al., 2021). MaPIP1;1 enhanced banana salt tolerance via
affecting the contents of Na™ and K (Xu et al., 2021). In this
study, we found that PIP and TIPs participate in response to salt
stress in ‘Benihoppe; while TIP, PIPs, NIPs, and SIP participate
in response to salt stress in ‘Sweet Charlie.” This suggests that
different aquaporins are required for response to salt stress in
different varieties, but TIP and PIP are the main aquaporins
involved in response to salt stress in strawberry (Figure 7 and
Supplementary Table 9).

The ABC transporters are one of the largest families of
transporter proteins and are classified into eight subfamilies
of ABCA-ABCI (ABCH transporters have not been identified
in plants). ABC transporters are responsible for the transport
of hormones, xenobiotics, amino acids, sugar, and ions, and
are involved in plant growth and development regulation,
nutrient uptake, response to biotic and abiotic stresses, and
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plant interactions with the environment. Recent findings
have revealed roles of ABC transporters in response to
salt stress. TSABCG11 improved salt tolerance in transgenic
Arabidopsis seedlings (Chen et al, 2018b). In Arabidopsis,
AtMRP5, a member of the ABC transporter family, can
regulate Arabidopsis salt tolerance by altering K™ homeostasis
(Lee et al, 2004), and AtABCG36/AtPDR8 improved salt
resistance by reducing sodium content (Kim et al, 2010).
In rice, OsABCG5 acts in the accumulation of essential and
non-essential minerals and modulated rice salinity tolerance
by affecting Na™/K™ homeostasis (Leng et al., 2014). ABCG
and ABCB subfamilies tightly correlate with abiotic stress
in plants (Linjun et al, 2019; Zhang et al, 2020). The
ABCG subfamily is the largest group of the ABC transporter
family and possesses the most complex function in response
to abiotic stresses. In this study, ABCGs were more active
in responses to salt stress, with one ABCA, 14 ABCB,
nine ABCC, and 15 ABCG participating in salt stress
responses in ‘Sweet Charlie; and two ABCB, three ABCC, four
ABCG, and two ABCF participating in salt stress responses
in ‘Benihoppe.” Integrative analysis of transcriptomic and
metabolomic data revealed that ABC transport plays an
important role in response to salt stress in strawberry (Figure 7
and Supplementary Table 9).

Cell wall remodeling is a key aspect of plant acclimation to
salt stress. Plant cell wall components are dynamically regulated
in response to various environmental stresses. Salt stress can
modify the deposition of cellulose, matrix, polysaccharides, and
lignin. Under salt stress, the levels of cellulose and matrix
polysaccharide were reduced but the content of lignin was
increased in maize (Oliveira et al, 2020). In soybean, a
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salt-tolerant cultivar possessed a higher level of pectin than
the sensitive line. Under salt stress, sodium ions affected
pectin cross-links and disrupted microtubule stability to change
cellulose deposition (An et al., 2014). Pectin usually presents
in a highly methylesterified form. In Populus tremula, high
methylated pectin within the cell wall was increased by salt
stress (Muszynska et al., 2014). Changes caused by salt stress
results in cell wall remodeling to maintain cell wall integrity. Cell
wall-loosening proteins such as EXPs and XTH play essential
roles in response to salt stress. Overexpression of EXPs confers
enhanced tolerance to salt stress in plants (Chen et al., 2017,
2018a; Jadamba et al, 2020). XTH positively regulated plant
salt stress tolerance by regulating plant architecture (Ishida
and Yokoyama, 2022). COBL9 and COBL7, two COBRA-like
family genes, are required for salinity tolerance and COBL9
positively regulated root hair elongation and salinity tolerance
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in Arabidopsis; the rice counterparts of these genes, OsBCILI
and OsBCILS, function redundantly in response to salinity
stress (Li et al, 2022). Pectin plays an important role in
adaptation to salt stress by regulating cell adhesion and tissue
cohesion. In Arabidopsis, Pectin methylesterase 31 (PME31I)
positively modulated salt stress tolerance (Yan et al, 2018).
Enhanced cell wall lignification is one of the main salinity
tolerance strategies in the roots of halophytes. LAC4 plays an
important role in response to early stages of salt stress via
affecting specialized protoxylem lignification in undifferentiated
root tips (Barzegargolchini et al,, 2017). In this study, more
cell wall related genes were identified in ‘Sweet Charlie’ than
in ‘Benihoppe, and those genes presented opposite expression
patterns under salt stress. These results suggested that cell wall
remodeling is a key driver of plant salt tolerance (Figure 8 and
Supplementary Table 10).
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In this study, we evaluated the salinity tolerance of 24
strawberry varieties and then clustered the varieties into three
groups according to the salt damage indices. Physiological index
analysis showed that ‘Benihoppe’ was more sensitive to salt
stress than ‘Sweet Charlie, and this was consistent with the
analysis of salt damage indices. Combined transcriptomic and
metabolomic analysis showed that different pathways respond
to salt stress in different varieties, and ABC transporters
and cell wall remodeling play crucial roles in response to
salt stress. Our results provide a foundation for the better
understanding of the regulation mechanisms of the response of
strawberry to salt stress.
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