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Precipitation predictability
affects intra- and trans-
generational plasticity and
causes differential selection on
root traits of Papaver rhoeas

Martı́ March-Salas 1,2,3*, J. F. Scheepens 1,
Mark van Kleunen 4,5 and Patrick S. Fitze 2,3

1Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am
Main, Germany, 2Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias
Naturales (MNCN-CSIC), Madrid, Spain, 3Department of Biodiversity and Ecologic Restoration, Instituto
Pirenaico de Ecologı́a (IPE-CSIC), Jaca, Spain, 4Ecology, Department of Biology, University of Konstanz,
Konstanz, Germany, 5Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation,
Taizhou University, Taizhou, China
Climate forecasts show that in many regions the temporal distribution of

precipitation events will become less predictable. Root traits may play key

roles in dealing with changes in precipitation predictability, but their functional

plastic responses, including transgenerational processes, are scarcely known.

We investigated root trait plasticity of Papaver rhoeas with respect to higher

versus lower intra-seasonal and inter-seasonal precipitation predictability (i.e.,

the degree of temporal autocorrelation among precipitation events) during a

four-year outdoor multi-generation experiment. We first tested how the

simulated predictability regimes affected intra-generational plasticity of root

traits and allocation strategies of the ancestors, and investigated the selective

forces acting on them. Second, we exposed three descendant generations to

the same predictability regime experienced by their mothers or to a different

one. We then investigated whether high inter-generational predictability

causes root trait differentiation, whether transgenerational root plasticity

existed and whether it was affected by the different predictability treatments.

We found that the number of secondary roots, root biomass and root

allocation strategies of ancestors were affected by changes in precipitation

predictability, in line with intra-generational plasticity. Lower predictability

induced a root response, possibly reflecting a fast-acquisitive strategy that

increases water absorbance from shallow soil layers. Ancestors’ root traits were

generally under selection, and the predictability treatments did neither affect

the strength nor the direction of selection. Transgenerational effects were

detected in root biomass and root weight ratio (RWR). In presence of lower

predictability, descendants significantly reduced RWR compared to ancestors,

leading to an increase in performance. This points to a change in root allocation

in order to maintain or increase the descendants’ fitness. Moreover,

transgenerational plasticity existed in maximum rooting depth and root

biomass, and the less predictable treatment promoted the lowest coefficient
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of variation among descendants’ treatments in five out of six root traits. This

shows that the level of maternal predictability determines the variation in the

descendants’ responses, and suggests that lower phenotypic plasticity evolves

in less predictable environments. Overall, our findings show that roots are

functional plastic traits that rapidly respond to differences in precipitation

predictability, and that the plasticity and adaptation of root traits may

crucially determine how climate change will affect plants.
KEYWORDS

acquisition strategy, adaptive transgenerational plasticity, annual plants, inter-
seasonal predictability, multi-generation experiment, root allocation strategy, root
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Introduction

Current climate change entails rising global temperatures,

longer and more frequent dry periods, and changes in weather

predictability (Xu et al., 2020; IPCC, 2021). Although global

mean precipitation is expected to remain rather constant in the

near future, precipitation patterns will change, leading to a

reduction in precipitation predictability at different temporal

scales, i.e., among days, weeks, seasons or years (Tonkin et al.,

2017; Xu et al., 2020). The degree of intrinsic precipitation

predictability (i.e., the degree of temporal autocorrelation

among precipitation events; Pennekamp et al., 2019) will

determine the amount and timing of water availability for

plants. This may cause plants to change their nutrient and

water acquisition strategy, plastically modulate their traits, and

eventually may result in adaptation to the new conditions (Yin

et al., 2022).

According to evolutionary theory, the evolution of increased

plasticity would be favoured under temporally variable but

predictable environments (Caro et al., 2016; McNamara et al.,

2016). In contrast, reduced plasticity would evolve in temporally

variable but less predictable environments, since plastic changes

may be misaligned with differential selective pressures over

generations (Lande, 2009; Botero et al., 2015; Tufto, 2015;

Leung et al., 2020). A recent experiment suggested that higher

predictability in natural environments may contribute to the

evolution of transgenerational plasticity in reproductive traits

(i.e., to the offspring’s plastic response to the ancestor’s

environment) (Yin et al., 2022). Other experiments showed

that transgenerational responses in phenological and fitness-

related traits to different degrees of predictability are possible

(Franch-Gras et al., 2017; March-Salas and Fitze, 2019; March-

Salas et al., 2019; Colicchio and Herman, 2020; March-Salas

et al., 2021a).

Evolutionary ecology has primarily focused on phenological

(e.g. flowering start) and performance (e.g. aboveground
02
biomass, number of flowers, number of seeds) traits to

determine how plants adapt to environmental changes.

However, root traits may also play an important role for

overall plant development and tolerance of or resistance to

changing environmental conditions. Root traits could be under

strong natural selective pressure, and vary over generations

reflecting adaptation to dynamic water availability (Zhou et al.,

2019; Yamauchi et al., 2021). Roots can also rapidly sense

fluctuations in water availability and may help species to deal

with temporal shifts in the means and predictability of

precipitation (Zhou et al., 2019; March-Salas et al., 2021b).

However, how the maternal environment determines the

transgenerational expression of the root traits of progeny and

adaptive responses in future environments remains largely

unknown (Donelson et al., 2018).

Plastic responses of roots can however be costly (DeWitt

et al., 1998), for instance through re-allocation of resources from

other plant structures to roots (Manenti et al., 2015). A reduction

of resource investment into root biomass may be a response to

stressful conditions, potentially helping plants to maintain or

even increase their short-term performance by re-allocation into

above-ground structures (Lundgren and Des Marais, 2020).

Additionally, in response to specific environmental cues,

plants may promote within-root allocation-shifts. For instance,

a constant water availability may favor deeper and bigger roots

and increased branching density but fewer fine roots (Wu et al.,

2016; March-Salas et al., 2021b). Promoting lateral root

branching while reducing primary root depth may also help

plants to withstand stressful conditions such as water limitation

or high salinity levels (Ambastha et al., 2020; Gallego-Tévar

et al., 2022). This should be especially true in fast-cycling plants

with acquisitive strategies, since their roots should acquire

temporally available resources in shallow soil layers to

guarantee a rapid increase in performance (Hermans et al.,

2006; Weemstra et al., 2016; Gallego-Tévar et al., 2022).

Despite their relatively small root systems, many annual plants
frontiersin.org
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use acquisitive strategies to favour rapid growth and fast

reproduction under stressful conditions (Gallego-Tévar et al.,

2022). So, evolutionary experiments that focus on root traits are

needed to increase our understanding of how plants deal with

changing environments.

In a multi-generation experiment with the annual herb

Papaver rhoeas L. (Papaveraceae) grown under semi-natural

outdoor conditions, we manipulated intra-seasonal (among

days) and inter-seasonal (among spring and summer)

precipitation predictability. We grew four consecutive

generations, each year in the same as well as in contrasting

predictability regime to which the maternal plants were exposed.

In addition, the ancestral generation (the original generation that

had not experienced any of the experimental treatments) was

sown in each of the four years under all predictability regimes.

With this experimental design, first, we investigated whether and

how roots of ancestors respond plastically (i.e., intra-generational

plasticity; e.g. Sobral et al., 2021) to more versus less intra- and

inter-seasonal precipitation predictability within four consecutive

experimental years. Second, we tested whether root traits are

subject to selection. Third, we tested for transgenerational effects

to the different predictability regimes (i.e., genetically as well as

non-genetically inherited effects when plants grow in the same

treatment over generations; March-Salas et al., 2019). In other

words, by comparing ancestors and descendants in the same year
Frontiers in Plant Science 03
and treatment, we investigated whether precipitation

predictability promoted trait differentiation in descendants, and

whether there was a change in the root trait response between

ancestors and descendants that is mediated by the precipitation

predictability treatment. This would point to a transgenerational

response to a specific environment. Here, we also tested whether

the observed differences in root traits between ancestors and

descendants led to higher performance of the descendants, what

would point to an adaptive change. Fourth, by comparing

descendants that grew in the same or contrasting treatment as

their mother, we tested whether the descendants’ response to the

treatments depended on the maternal treatment, which will point

to differences in transgenerational plasticity due to the

predictability regime (Figure 1).

We hypothesized (H1) that roots of ancestors plastically

respond to different degrees of precipitation predictability, with

greater root response and investment in root biomass in

environments that fluctuate less predictably in order to make

instantaneous use of temporally rare events of water availability;

(H2) that the considered root traits (maximum rooting depth,

number of secondary roots, root biomass, and the relative

investment to each of them) affect plant fitness and are under

strong selection; (H3) that differences between ancestors and

descendants in root traits occur when inter-generational

predictability is high and when current environmental conditions
FIGURE 1

Design of the evolution experiment. Ancestors (G0) and the three descendant generations (G1-3) were subjected to four different precipitation
predictability treatment combinations (LL, LM, ML, MM; see methods) in their year of growth (i.e., Treatment). Ancestors (in grey) were grown
from 2012 to 2015 and descendants (highlighted in the maternal treatment colour but lighter than the treatment in the growing year) from 2013
to 2015. Below, the brackets refer to the experimental lines (i.e., generation and treatment) involved in the assessment of each of the four main
hypothesis (H) we addressed in this work (see Introduction).
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are more predictable; and (H4) that transgenerational plasticity is

favoured in more predictable conditions.
Material and methods

Experimental setup

This study was conducted during four consecutive years

(2012-2015) under natural conditions at the experimental field

station ‘El Boalar’ (42°33′N, 0°37′W, 705 m a.s.l.; Jaca, Huesca,

Spain). The experimental setup consisted of 16 enclosures of 100

m2 each, which were covered and separated with a mesh and a

1 m tall metal wall. The setup included an automated watering

system consisting of one sprinkler in each of the four corners of

each enclosure, providing homogenous precipitation in the

whole enclosure and allowing us to control the quantity and

timing of the watering events (March-Salas et al., 2019). Within

each of these enclosures, we established a plot of 7.2 m2 that was

surrounded by a vertical mosquito net (30 cm aboveground and

10cm belowground) to protect plants from herbivory (e.g. snails,

slugs). In each experimental year, the top 30 cm of the soil of

each plot was manually ploughed, loosened, homogenised and

flattened before sowing.
Study species

We used the annual herb Papaver rhoeas L. (common poppy

Papaveraceae), a wide-spread and fast-growing species with

acquisitive and exploitative strategies (McNaughton and

Harper, 1964; Pérez-Ramos et al., 2019), which naturally

occurs in the surroundings of the study site. The species’

height is between 10 and 50 cm, its flowers are bright red and

its fruits are a capsule that usually contain hundreds of >1 mm

long seeds (Franklin-Tong and Franklin, 1992). It has a slender

primary root with multiple lateral secondary roots (Figure S1).

The original seed lot of P. rhoeas was obtained in 2011 from 50

maternal plants of a nearby population (~60 km away) that

experiences higher humidity and otherwise a similar climate as

the study site (March-Salas et al., 2019). The seeds from the

original seed lot were mixed and are hereafter referred to as

ancestors or the ancestral generation. Ancestral seeds were sown

in each of the treatments in the four experimental years to be

able to disentangle treatment-differences among years from

overall treatment effects as well as year control (see below). To

preclude potential maternal bias in genetic differentiation among

ancestors, we accounted for differences in average seed weight

and in the coefficient of variation (CV) in seed weight among the

groups of seeds that we sowed in the different treatments and

years, i.e., we grouped the seeds so that there were no differences

in seed weight mean and CV between the 16 groups – 4

treatment combinations × 4 years.
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Precipitation predictability treatment

The field site’s natural precipitation predictability was

manipulated by means of the automated watering system, to

simulate higher versus lower intrinsic precipitation predictability

at two different temporal scales: intra-seasonal (among days)

and inter-seasonal (between spring and summer) predictability.

More (M) and less (L) predictable intra-seasonal

predictability was simulated by applying 14 supplemental

watering events each week at regular or random time-intervals,

respectively (March-Salas et al., 2019). Both treatments

consisted of the same total amount of precipitation (natural +

supplemental) but exhibited a different degree of temporal

autocorrelation among precipitation events, i.e., they

contrasted in their intrinsic precipitation predictability.

Differences in intrinsic predictability of precipitation was

calculated by means of permutation entropy, which is

inversely related to intrinsic predictability (Pennekamp et al.,

2019). The combination of natural and experimental

precipitation resulted in a permutation entropy of 0.86 in L

and 0.77 in M. Permutation entropy in M was equal to the one of

natural precipitation (March-Salas et al., 2019). L thus had

11.69% lower intrinsic precipitation predictability than M (and

than natural precipitation). The simulated subtle but significant

differences in predictability are in line with theoretical

conditions that should lead to adaptive transgenerational

plasticity: existence of natural environmental heterogeneity

and predictability of an intermediate frequency and without

extreme events (Burgess and Marshall, 2014; Uller et al., 2015;

Yin et al., 2022).

In spring of each year, from April to late June (hereafter

referred to as ‘early treatment’), eight plots were subjected to M

and another eight plots to L predictable predictability. In

summer, from July to late September (hereafter referred to as

‘late treatment’), half of the plots of each early treatment were

exposed to the same (MM, LL) or to the other (ML, LM)

treatment, simulating higher (MM, LL) and lower (LM, ML)

inter-seasonal predictability. This thus resulted in a two-factorial

design with four precipitation predictability treatment

combinations: (1) more predictable precipitation during the

whole experimental period (MM), (2) less predictable during

the whole experimental period (LL), (3) more predictable during

spring and less predictable during summer (ML), and (4) less

predictable during spring and more predictable during summer

(LM). Each treatment combination was applied to four

independent plots.

In each experimental year, the total precipitation (natural +

supplemental) falling in the experimental set up was within the

natural range recorded: (a) at the field site in the previous ten

years, (b) in the area of origin of the ancestor seeds, and (c) in the

species distribution range (McNaughton and Harper, 1964;

March-Salas et al., 2019; March-Salas et al., 2021a). The study

site had high potential evapotranspiration and plants were
frontiersin.org
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exposed to water stress from April to September (Figure S2). In

the experimental plots, plants were as well exposed to water

stress, although less pronounced (for further information on

climatic and soil conditions of the study site, see supplementary

text and Figure S2).
Sowing procedure and
evolution experiment

In each of the four experimental years, seeds of P. rhoeas

were individually sown in April in each of the 16 plots. In each

plot, three seeds were planted in each of 84 planting positions

aligned in a quadratic grid and separated by 20 cm. Each

position was differentiated with a metal stick, which was

labelled with the seed origin. When more than one seed

emerged per position, seedlings were thinned to one.

In 2012, randomly selected ancestor seeds were planted in

the 84 positions, and from 2013 to 2015, ancestor and

descendant seeds (i.e., the descendant seed generation 1 in

2013, generation 2 in 2014 and generation 3 in 2015) were

both sown in the same plot (March-Salas et al., 2019). More

specifically, from 2013 to 2015, randomly selected ancestor seeds

were sown in 21 positions per plot and descendant seeds in 63

positions per plot. In the case of descendants, from each

maternal line (i.e., descendants originating from the same

mother) seeds were sown in the same treatment combination

as their mother and also in the other three treatment

combinations. In the first descendant generation, we included

seeds from 12 maternal plants per treatment line, except for

seeds from the ML treatment, for which only seeds from 3

maternal plants could be included given that all other maternal

plants did not produce enough seeds. For the subsequent

generations, we included seeds from 6 maternal plants per

treatment line. To avoid bias among used and not used

mothers and among used and not used seeds of the same

mother, we tested that there were no phenotypic differences

between selected and not selected mothers, no differences in seed

weight between selected and not selected seed lots, and no

significant interaction between the factor ‘selected/not selected’

and the treatments combinations (all p ≥ 0.2). Moreover, to

make sure that treatment-induced transgenerational effects are

not confounded with transgenerational responses to plot-

specific conditions, seeds were never planted in the plot in

which their mother had been growing previously.
Plant measurements

At the end of a plant’s life cycle (i.e., when all fruits of a given

plant were ripe), we individually harvested above-ground

biomass and root biomass. Roots were carefully dug out and

washed to remove the substrate (Figure S1). For each plant, the
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length of the longest root was measured as an estimate of

maximum rooting depth (precision: 1 mm) and the number of

secondary roots (all lateral root branches >0.5 cm long) was

counted. The dry mass of the above-ground and root biomass (in

g) was determined after drying at 50 °C for three days. To test

whether the treatments affected root allocation strategies, the

following root traits were calculated: (1) root weight ratio (RWR;

root biomass/total biomass); (2) relative rooting depth

(maximum rooting depth/root biomass); and (3) relative root

branching (number of secondary roots/root biomass).
Statistical analysis

Four main types of analysis were conducted using R version

4.0.3 (R Development Core Team, 2020) and Linear Mixed-

effects Models (LMMs) implemented in the lme4 package and

the lmer function (Bates et al., 2015).

First (H1), we tested for treatment effects on root traits of the

ancestral generation across the four years (i.e., intra-generation

plasticity across four years). The six measured traits (root

biomass, maximum rooting depth, number of secondary roots,

RWR, relative rooting depth and relative root branching) were

included as response variables in six separate models. As fixed

factors, we included early treatment (less predictable versusmore

predictable), late treatment (less predictable versus more

predictable), year (2012, 2013, 2014, 2015) and their two- and

three-way interactions, and as random factor we included

‘plot_year’ (a factor referring to the plot × year combination),

as described in Bates et al. (2015). A significant treatment effect

would indicate intra-generational plasticity; a significant year

effect would indicate differences among years irrespective of the

treatment, and a significant treatment(s) × year interaction

would indicate that the treatment effect depends on the year.

Second (H2), the selective regime (the type and the strength

of natural selection) to which the root traits were exposed was

analysed using selection gradients (Lande and Arnold, 1983).

Analysing the selective regime allows to test if the measured root

traits affect plant performance, and therefore, whether they can

be considered as functional traits (Violle et al., 2007). As a

performance proxy, we used total biomass, because it is generally

positively related to seed number (Shipley et al., 2016;

Younginger et al., 2017). We could not have precise data on

seed number for all plants due to potential loss of seeds from

capsules that had opened before collection. However, for the

collected data, seed number was strongly correlated with total

plant biomass (F1,455 = 249.48, P < 0.001, r = 0.6). Prior to the

analyses, total biomass and all root variables were ln-

transformed and standardized to a mean of zero and a

standard deviation of one to obtain standardized selection

gradients (Lande and Arnold, 1983). First, only ancestral

plants were analysed. Early treatment, late treatment and year

(2012, 2013, 2014, 2015) were modelled as fixed factors, and the
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root trait of interest was included as a covariate. To account for

non-independence of plants measured in the same year and in

the same plot, ‘plot_year’ was included as random factor. To test

for directional, stabilizing or disruptive selection, linear and

quadratic terms of the root variable of interest were included.

The full model also contained all two- and three-way

interactions between treatments and the covariates. To test

whether selective regimes differed among ancestors and

descendants, an additional set of analyses was conducted in

which ancestors and descendants both sown in 2013, 2014 and

2015 were analysed together. In these analyses, the generation

(ancestor versus descendant) and its interactions with the other

variables were added to the above-mentioned model as well as

the ID of the maternal line as random effect.

Third (H3), we tested whether root traits of the descendant

generations differed from those of the ancestral generation

grown in the same year, and whether differences depended on

the predictability treatment. We included early treatment, late

treatment, generation (ancestral versus descendants), year (2013,

2014, 2015) and their two-, three-and four-way interactions as

fixed factors. The ID of the maternal line and ‘plot_year’ were

modelled as random factors. A significant generation factor

would indicate differences between ancestors and descendants

independent of treatment, and a significant generation ×

treatment interaction would indicate that predictability

treatment effect depends on the studied generation.
Frontiers in Plant Science 06
Fourth (H4), we tested whether treatment effects in

descendants depended on their mothers’ treatment by only

analysing descendants. The maternal treatment combination,

the descendants’ treatment combination, the two-way

interaction, and year were included as fixed factors, whereas

the ID of the maternal line and ‘plot_year’ were included as

random factors. A significant maternal treatment effect would

indicate that the maternal treatment manifested in the

descendants independent of the descendant treatments; a

significant descendant treatment effect would indicate

t reatment di fferences independent from materna l

environment; a significant maternal × descendant treatment

interaction would indicate that the outcome of the

descendants’ treatment depends on the treatment to which

their mothers were exposed, pointing to transgenerational

plasticity. Moreover, we calculated the coefficient of variation

(the ratio of the standard deviation to the mean, based on means,

CVm) among treatments in descendants for each maternal

treatment as a quantitative estimator of plasticity (Schlichting,

1986; Valladares et al., 2000), as well as the overall CV of

ancestors and of descendants (Table S1).

In all models, we tested the assumptions of normality and

homogeneity of variance of the residuals using the Shapiro-Wilk

test and the Bartlett test, respectively. If the residuals were not

normally distributed, we transformed the response variable (see

Tables 1, 2). In the case of heteroscedasticity, we applied a
TABLE 1 Precipitation predictability treatment effects on root traits of ancestors.

N of secondary roots Maximum rooting depth a Root biomass b

Parameter df Chi2 P Chi2 P Chi2 P

Early [M] 1 0.693 0.405 0.931 0.335 1.311 0.252

Late [M] 1 1.669 0.196 0.000 0.995 1.736 0.188

Year 3 140.493 <0.001 *** 109.640 <0.001 *** 76.550 <0.001 ***

Early × Late 1 4.825 0.028 * 1.821 0.177 2.805 0.094 .

Early × Year 3 2.697 0.441 2.063 0.559 4.659 0.199

Late × Year 3 9.121 0.028 * 6.172 0.104 13.488 0.004 **

Early × Late × Year 3 1.115 0.773 2.980 0.395 16.777 <0.001 ***

Root weight ratio c Relative root branching d Relative rooting depth d

Parameter df Chi2 P Chi2 P Chi2 P

Early [M] 1 0.484 0.487 8.647 0.003 ** 1.140 0.286

Late [M] 1 0.437 0.509 1.717 0.190 10.517 0.001 **

Year 3 27.642 <0.001 *** 13.595 0.004 ** 29.809 <0.001 ***

Early × Late 1 1.610 0.205 0.233 0.630 1.563 0.211

Early × Year 3 4.091 0.252 3.008 0.390 4.478 0.214

Late × Year 3 2.972 0.396 3.081 0.299 7.102 0.069 .

Early × Late × Year 3 55.815 <0.001 *** 3.319 0.174 6.285 0.094 .
frontier
transformations: a^0.4; b^0.1; c^0.6; dlog.
Linear Mixed-effects Models (LMMs) included Early treatment, Late treatment, Year and their two- and three-way interactions. Transformations applied to the response variable are
indicated. Significance is shown as * 0.05 > P ≥ 0.01; ** 0.01 > P ≥ 0.001; *** P < 0.001, and . reflects marginal effects (0.1 > P ≥ 0.05). Sample size was 458.
Response variables are number (N) of secondary roots, maximum rooting depth, root biomass, root weight ratio (RWR), relative root branching, and relative rooting depth.
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weighted least square regression (Strutz, 2016) by including

weights (1/variance) into the model, using the extract model

weights command. Whenever there were significant main effects

containing more than two factor levels or significant

interactions, we applied Tukey’s post-hoc contrasts using the

lsmeans package to understand which levels differed (Lenth,

2016). Moreover, in all statistical analyses, the most

parsimonious model was determined using stepwise backward

elimination. Sample size per treatment, year and generation of

ancestors, pure descendant lines, and descendants from all

treatment combinations are shown in Table S2.
Results

Effects of predictability treatments on
root traits of ancestors

In the ancestral generation, which was sown in each year

(2012-2015), the predictability treatment affected the response of

all measured root traits except the maximum rooting depth. The

number of secondary roots was significantly lower in ML than in

the other treatment combinations (Figure 2A), as indicated by a

significant early × late treatment interaction (Table 1).

Moreover, although in 2013 plants in the more predictable late

treatment (M) tended to have more secondary roots than in the

less predictable late treatment (L; P = 0.06), late treatments did

not differ in the other years (P ≥ 0.79), as indicated by a

significant late treatment × year (Table 1). Root biomass was

significantly higher in LL and LM than in ML in 2012 and 2013,

and higher in LL than in ML and LM in 2015 (all P < 0.05;

Figure 2B), as indicated by a significant three-way interaction
Frontiers in Plant Science 07
between early treatment, late treatment and year (Table 1).

However, no significant differences among treatments existed

in 2014, and all other contrasts in 2012, 2013 and 2015 were not

significant (P ≥ 0.17). For maximum rooting depth, there were

no significant treatment effects (Table 1). Root weight ratio

(RWR) was significantly higher in LL than in ML and LM in

2015 (Figure 2C), as indicated by a significant three-way

interaction between early treatment, late treatment and year

(Table 1). However, other treatments did not significantly differ

in 2015, and all post-hoc contrasts in the other years were not

significant (P ≥ 0.15). Relative root branching was significantly

higher in the M than in the L early treatment (Early [M] = 0.449

± 0.153 [Estimate ± SE]), and it was not affected by the late

treatment (Table 1). Relative rooting depth was significantly

higher in the L late treatment (Late [M] = -0.535 ± 0.171), and it

was not affected by the early treatment (Table 1). So, overall,

plants invested less biomass in roots and less in rooting depth

but had increased root branching in the M treatment than in the

L treatment, particularly if the treatment was imposed in spring.
Selection acting on root traits

Selection gradients for the ancestral generation revealed

significant non-linear relationships of total biomass (hereafter

referred as ‘performance’) with maximum rooting depth

(quadratic: Estimate ± SE = 0.158 ± 0.019, P < 0.001; linear:

-0.817 ± 0.180, P < 0.001), RWR (quadratic: -0.087 ± 0.022, P <

0.001; linear: 0.670 ± 0.199, P < 0.001) and relative rooting depth

(quadratic: 0.099 ± 0.016, P < 0.001, P < 0.001; linear: -1.784 ±

0.179, P < 0.001). Significant linear (but no quadratic)

relationships also existed for the number of secondary roots
TABLE 2 Root transgenerational plasticity to precipitation predictability treatments.

N of secondary roots a Maximum rooting depth b Root biomass c

Parameter df Chi2 P Chi2 P-value Chi2 P

Year 2 162.112 <0.001 *** 2488.959 <0.001 *** 85.861 <0.001 ***

Maternal treatment 3 3.925 0.270 5.762 0.124 2.612 0.455

Descendants treatment 3 6.636 0.084 . 6.460 0.091 . 5.853 0.119

Maternal × Descendants 9 10.625 0.302 17.715 0.039 * 20.247 0.016 *

Root weight ratio b Relative root branching a Relative rooting depth a

Parameter df Chi2 P Chi2 P Chi2 P

Year 2 5.217 0.074 . 16.736 <0.001 *** 1092.349 <0.001 ***

Maternal treatment 3 3.933 0.269 3.054 0.383 6.191 0.103

Descendants treatment 3 1.174 0.759 8.743 0.033 * 3.630 0.304

Maternal × Descendants 9 14.435 0.097 . 10.604 0.304 14.136 0.118
frontiers
transformations: alog; b^0.5; c^0.2.
Linear Mixed-effects Models (LMMs) included Year, Maternal treatment, Descendants treatment, Generation and the two-way interaction between Maternal and Descendants treatment.
Transformations applied to the response variable are indicated. Significance is shown as * 0.05 > P ≥ 0.01; ** 0.01 > P ≥ 0.001; *** P < 0.001, and . reflects marginal effects (0.1 > P ≥ 0.05).
Sample size was 640.
Response variables are number (N) of secondary roots, maximum rooting depth, root biomass, root weight ratio (RWR), relative root branching, and relative rooting depth.
in.org

https://doi.org/10.3389/fpls.2022.998169
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


March-Salas et al. 10.3389/fpls.2022.998169
(0.613 ± 0.039, P < 0.001) and relative root branching (-0.016 ±

0.001, P < 0.001). No significant differences in selection gradients

existed among treatments (i.e. no significant interactions with

treatment: c12 ≤ 3.21, P ≥ 0.08) in any of the root traits. Selection

gradients for the number of secondary roots showed that

performance, in terms of total biomass, increased with

increasing number of secondary roots (Figure S3A).

Performance decreased to 2.6 g (in the transformed data) and

then increased again with increasing maximum rooting depth.

The relationship between performance and RWR was convex

and showed that performance was highest at a RWR of 3.9 (in

the transformed data; Figure S4A). The relationship between

performance and relative root branching was linear, and

performance declined with increasing relative root branching

(Figure S4B). The relationship between performance and relative

rooting depth was concave and the higher the investment into

rooting depth the smaller was the decline in performance (Figure

S4C). Additionally, selection gradients for the different root
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traits did not significantly differ among ancestors and

descendants (all: c12 ≤ 3.81, P ≥ 0.05). So, overall, root traits

were generally under selection, and the predictability treatments

did neither affect the strength nor the direction of selection.
Transgenerational effect mediated by
precipitation predictability

When testing for trait differences between ancestors and

descendants subjected to high inter-seasonal predictability (only

possible from 2013 to 2015), we found a significant two-way

interaction between early treatment and generation (i.e.,

ancestor vs. descendant) for root biomass (c12 = 5.10, P =

0.024) and for RWR (c12 = 4.86, P = 0.027). Root biomass of

ancestors was significantly larger in the less compared to the

more predictable early treatment (post-hoc contrast: P = 0.012),

but no significant differences existed between early treatment
B

C

A

FIGURE 2

Effects of inter-seasonal predictability on the number of secondary roots, root biomass and root weight ratio (RWR) of ancestors. Interaction
between: (A) Early treatment × Late treatment on the number (N) of secondary roots; (B) Early treatment, Late treatment, and Year on root
biomass; and (C) Early treatment, Late treatment, and Year on RWR. Means ± SE are shown in the bar plots. Significant post-hoc contrasts
among treatment combinations (and among treatments within the same year in B and C) are indicated with letters.
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B

A

FIGURE 3

Differences between ancestors and descendants in root biomass and RWR. Shown are means ± SE of the two significant two-way interactions:
Early treatment × Generation (ancestors versus descendants) on root biomass (A) and RWR (B). Black letters represent post-hoc contrasts
between both treatments within ancestors or within descendants. Red and blue letters represent post-hoc contrasts between ancestors and
descendants in the less and in the more predictable treatment, respectively.
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levels in descendants in all three years (contrast: P = 0.4;

Figure 3A). There were no significant differences between

ancestors and descendants in number of secondary roots and

maximum rooting depth (main effect and all interactions

including generation and treatment: P ≥ 0.05). RWR of

descendants was significantly lower than RWR of ancestors in

the less predictable treatment (P = 0.022), whereas no differences

existed between ancestors and descendants in the more

predictable treatment (P = 0.22; Figure 3B). The significant

difference in the less predictable early treatment led to a

13.42% increase in performance of descendants compared to

ancestors (Figure 4). There were neither significant differences

between ancestors and descendants in relative root branching

and relative rooting depth nor for the interaction of generation

with the late treatment in root biomass and RWR (main effect

and all interactions including generation and treatment: P ≥ 0.1).

So, overall, early predictability treatment induced changes

between ancestors and descendants in root biomass and RWR

but not in other root traits, which maintained or increased

performance in descendants compared to in ancestors.

When testing for transgenerational plasticity to the different

precipitation predictability treatments, we observed that the

interaction between maternal treatment and descendants

treatment was significant for maximum rooting depth and

root biomass but not for the other root variables (Table 2 and

Figure 5). In both traits, there were no significant contrasts

among descendant treatments within the same maternal
Frontiers in Plant Science 10
treatment, but the results show that the effect of the

descendants’ treatment depended on the maternal treatment.

Descendants’ treatments significantly affected relative root

branching (i.e., independent of maternal treatment) and

marginally affected the number of secondary roots and

maximum rooting depth, but descendants’ treatments did not

affect the other traits (Table 2). Post-hoc contrasts revealed that

relative root branching was higher in ML than in the other

descendant treatment combinations (P = 0.044; Figure 5E).

Moreover, the lowest coefficients of variation (CVm) among

treatments of descendants occurred in the maternal LL

treatment in all measured root traits except for relative rooting

depth, where the lowest CVm occurred in the maternal MM

treatment (Table S1). The greatest CVm occurred in the maternal

MM treatment for number of secondary roots and relative root

branching, in the maternal ML treatment for root biomass and

RWR, and in the maternal LM treatment for maximum rooting

length and relative rooting depth (Table S1). So, overall,

transgenerational plasticity existed in maximum rooting depth

and root biomass, and the root response of descendants was not

greater under the same (compared to different) maternal

predictability treatment. Also, the coefficients of variation

showed that generally the lowest plasticity is found in the

maternal LL treatment. In addition, CVs of the descendants

were greater than the CVs of the ancestors in all root traits

except for number of secondary roots, suggesting greater

plasticity in descendants than in ancestors.
FIGURE 4

Non-linear selection gradients on root weight ratio (RWR) for ancestors and descendants in the less predictable early treatment. Solid and dashed
red lines represent ancestors and descendants selection gradients, respectively. White and black dots represent data of ancestors and descendants,
respectively. Average RWR of ancestors and descendants exposed to the less predictable early treatment (see Figure 3B) are indicated with vertical
black lines and differences in plant performance between ancestors and descendants are indicated with horizontal black lines.
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Discussion

Our multi-generation experiment demonstrates that

precipitation predictability elicits intra- and trans-generational

plasticity in root traits, and we observed differential root trait

responses between ancestors and descendants of Papaver rhoeas.

In ancestors, the magnitude of intra-generation plasticity most

often depended on the year, and roots responded to lower

predictability to increase water absorbance from shallow soil

layers (i.e., with greater number of secondary roots). Under high

inter-generational predictability, ancestors and descendants

exhibited differential root allocation strategies. In the less

predictable early treatment, the relative investment into roots

(Root weight ratio: RWR) was smaller in descendants compared
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to ancestors, reflecting a strategy that descendants used to

increase their performance. These results are in line with

studies suggesting that P. rhoeas can increase its average

fitness and competitive ability during drought (e.g. Pérez-

Ramos et al., 2019) and with a meta-analysis showing that

transgenerational effects should be favoured in fast-growing

short-lived organisms such as annual plants (Yin et al., 2019).

The results also point to transgenerational plasticity, given that

maternal predictability influenced the descendants’ plasticity in

root traits. Moreover, transgenerational plasticity in root traits

was lower when the maternal environment was less predictable,

in line with theory and experiments with other systems

(McNamara et al., 2016; Yin et al., 2019; Leung et al., 2020;

Rescan et al., 2020). Our study thus provides experimental
B

C D

E F

A

FIGURE 5

Transgenerational plasticity of roots in response to precipitation predictability treatments. Maternal treatment × Descendants treatment
interaction in number (N) of secondary roots (A), maximum (max.) rooting depth (B), root biomass (C), root weight ratio (RWR) (D), relative root
branching (E), and relative rooting depth (F). Means ± SE are shown in the bar plots. Significance of the Maternal treatment × Descendants
treatment interaction is shown above each graph. Significant post-hoc contrasts among treatment combinations from the same maternal
treatment are indicated with letters.
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evidence for plastic adaptation in root traits in response to

changes in precipitation predictability.
Effects of predictability treatments on
intra-generation root plasticity

The number of secondary roots, root biomass and root

allocation strategies of ancestors were mediated by changes in

precipitation predictability, revealing intra-generational

plasticity. Treatment differences were absent in the maximum

rooting depth and manifested only in a single year in the RWR.

The number of secondary roots was lower in ML compared to

the other treatment combinations, and LL exhibited, on average,

the highest number (Figure 2A). These results may indicate a

fast-acquisitive strategy to avoid drought by increasing water

absorbance from shallow soil layers (Hickman, 1975; Koevoets

et al., 2016; Weemstra et al., 2016). It also suggests that plants

may adopt a less acquisitive strategy under more predictable

water availability (Prieto et al., 2015; Weemstra et al., 2016). In

line with our first hypothesis (H1), despite variation among

years, root biomass was generally higher in LL conditions than in

other treatment combinations (but not significantly higher in all

years and between all treatments; see Figure 2B). Moreover,

RWR was significantly higher in LL in 2015 (but no treatment

differences existed in other years; Figure 2C), and relative

rooting depth was significantly higher in the less predictable

late treatment. These responses support the functional

equilibrium hypothesis (Brouwer, 1983), which states that

plants should allocate more to absorptive organs when

resources are temporally scarce. Contrary, relative root

branching was greater in the more predictable early treatment,

which is in line with studies suggesting that more constant water

availability favors increased root branching, i.e., increased root

density (e.g. Wu et al., 2016).

The observed plastic changes in roots with respect to

predictability treatments are in agreement with the high

plasticity found in root traits under environmental change

(Hodge, 2004; Bardgett et al., 2014), but other experiments

manipulating the amount of precipitation found little plasticity

in root traits of herbaceous plants (e.g. Zhou et al., 2019). These

differences in root plasticity between studies may be due to

species-specific responses or due to differences in the applied

treatment. For instance, previous studies have tested the effect of

drought events on the root system, whereas we assessed root

plasticity with regard to precipitation predictability while keeping

the amount of obtained water constant among treatments.
Selection acting on root traits

In line with the second hypothesis (H2), significant selection

was acting on all measured root traits, showing that the
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measured root traits are functionally relevant (since they affect

fitness; Violle et al., 2007). The number of secondary roots and

relative root branching were under directional selection, whereas

maximum rooting depth and relative rooting depth were under

disruptive and RWR under stabilizing selection. Predictability

treatments did not differently affect the strength or direction of

selection acting on the measured traits. This implies that P.

rhoeas may adopt the same strategies to increase performance

under different degrees of intra- and inter-seasonal

precipitation predictability.

Selection analyses also allow to understand which strategy

optimizes performance, and they can reveal whether treatment-

induced differences in trait averages led to an increase or

decrease (i.e., a constraint) in plant performance (Chevin,

2013). In ancestors, relative rooting depth was significantly

higher in the less predictable late treatment while maximum

rooting depth did not differ among treatments. The selection

gradients showed that plant performance decreased with

increasing relative rooting depth (Figure S4C) and that higher

relative rooting depth under lower predictability only marginally

decreased performance. Papaver rhoeas exposed to less

predictable late treatment thus invested relatively more into

rooting depth, but according to the selection gradients, this

change in investment did not induce substantial performance

benefits or losses. Moreover, ancestors of P. rhoeas reduced their

relative root branching in the less predictable early treatment

and the number of secondary roots was significantly bigger in LL

and LM compared to ML (Figure 2A). According to the selection

gradients, lower relative root branching and higher number of

secondary roots resulted in higher performance. These findings

indicate that, when conditions are less predictable, plants adjust

their allocation to roots to maintain or increase their

performance, revealing the functional role of roots to cope

with different degrees of environmental predictability.
Transgenerational effects mediated by
precipitation predictability

Precipitation predictability elicited transgenerational effects in

root biomass and RWR. In ancestors, root biomass was

significantly higher in the less predictable early treatment

compared to the more predictable early treatment, and in

descendants no significant treatment differences existed

(Figure 3A), pointing to transgenerational treatment-induced

changes that minimized differences detected in ancestors. On

average, root biomass was greater in descendants compared to

ancestors under both less and more predictable early treatments.

However, in line with our third hypothesis (H3), under more

predictable precipitation, the average increase in root biomass from

ancestors to descendants was greater than under less predictable

conditions, suggesting that more predictable conditions allow for a

stronger transgenerational response (McNamara et al., 2016; Dong
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et al., 2018). This suggests that transgenerational effects with

respect to environmental predictability may balance effects on

fitness over the course of generations (Donelson et al., 2018; Yin

et al., 2019). Moreover, this indicates that high inter-generational

predictability promotes gradual changes and may facilitate the

evolution of transgenerational responses (Burgess and Marshall,

2014; McNamara et al., 2016; Yin et al., 2022). Under less

predictable early treatment, descendants exhibited lower RWR

than ancestors, whereas in more predictable early treatment no

differences existed between ancestors and descendants (Figure 3B).

The reduced RWR in descendants under less predictable

conditions led to a 13.42% increase in performance (Figure 4),

which points to an adaptive transgenerational effect (Herman and

Sultan, 2011). This confirms that, in presence of natural

environmental heterogeneity, intermediate environmental

predictability, and in absence of extreme events, adaptive

transgenerational effects may likely to occur (Burgess and

Marshall, 2014; Uller et al., 2015; Yin et al., 2022).

The absence of treatment effects during the late growth phase

and the absence of inter-seasonal predictability effects on the

transgenerational response suggests that transgenerational effects

principally occurred with respect to early growth conditions (when

plants are most sensitive to environmental changes; Burton and

Metcalfe, 2014). This is in line with results on phenological and

fitness traits from previous experiments (March-Salas et al., 2019)

and with a meta-analysis showing strongest transgenerational effects

when environmental cues affect the juvenile phase (Yin et al., 2019).

Moreover, there was no evidence for transgenerational changes in

the investment in root branching and in root length, which suggests

that plasticity in root traits might be conserved to successfully cope

with differences in the predictability of precipitation.

Our experiment shows that precipitation predictability can

drive transgenerational plasticity in root traits. All maternal

predictability treatments promoted different root phenotypes

among the descendants’ predictability treatments (Figure 5), and

descendants generally showed a greater plasticity than ancestors

(Table S1). In all measured root traits except for relative rooting

depth (Table S1) the maternal LL treatment promoted a lower

coefficient of variation in descendants compared to the other

maternal treatments involving more predictable precipitation

(i.e., MM, ML, LM). This suggests that lower phenotypic

plasticity evolves in less predictable environments, supporting

previous findings in other systems (Leung et al., 2020; Rescan

et al., 2020). This is also in line with simulations (McNamara

et al., 2016), with experiments measuring reproductive traits of

Arabidopsis thaliana (Yin et al., 2022) and with our own

hypothesis (H4), suggesting that higher predictability generally

favours transgenerational plasticity. In addition, descendants

generally reduced their root response when less predictable

conditions persisted over generations. This shows that plants

can change their strategy if they grow under LL over consecutive

generations. This is in line with the lower RWR in descendants

compared to ancestors when conditions are less predictable. Our
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results also indicate that changes in plant strategies over

generations may be favoured by the ancestors’ environment, in

order to increase overall plant performance in the following

generations (McIntyre and Strauss, 2014), and that adaptive

transgenerational responses also occur under less predictable

conditions (Donelson et al., 2018; Yin et al., 2019). However, a

common-garden experiment will unravel whether root

responses may be adaptive or merely plastic. Moreover, the

direction and strength of transgenerational effect may vary

across taxa, traits and developmental stages (Yin et al., 2019),

or in presence of extreme events (Beier et al., 2012; Uller et al.,

2015). Therefore, using model species and comparing subtle

versus extreme changes in precipitation predictability may show

more general and robust responses.
Conclusion

Empirical evidence for evolutionary changes in response to

differences in predictability is rare, especially in root traits. Our

multi-generation experiment demonstrates that roots respond

highly plastically to different degrees of precipitation

predictability, that they are under strong selection pressure, and

that transgenerational effects can enhance performance of

descendants depending on the root trait and the predictability of

environmental conditions. Lower predictability can enhance root

responses and does not implicitly hinder a plant’s performance,

since P. rhoeas altered its strategies involving root traits to maintain

or even increase performance when reduced predictability persisted

over generations. This points to adaptive transgenerational

plasticity. However, a common-garden experiment growing

offspring from all treatments under common conditions should

be performed to confirm these findings. Overall, our findings show

that even subtle changes in predictability elicit intra- and trans-

generational plastic responses in root traits, highlighting the

importance of environmental predictability as an evolutionary

driver of transgenerational responses in plant populations.
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SUPPLEMENTARY FIGURE 1

Root diversity in example individuals of Papaver rhoeas from the
experiment. From left to right: roots with decreasing numbers of

secondary roots. The scale bar represents 50 mm.

SUPPLEMENTARY FIGURE 2

Temperature, potential evapotranspiration and precipitation at the study
site. (A) Average daily temperature per month for each of the four

experimental years. Colors and dot symbols correspond to the different

experimental years and dotted lines to second order polynomial
regressions. (B) Average potential evapotranspiration (PET) per month at

the field site (Atlas Climático Digital de Aragón). The dotted line
corresponds to a second order polynomial regression. (C) Difference

between monthly precipitation (P) and potential evapotranspiration
(PET) at the field site (red dots and red dotted line) and including the

irrigated amount of water (yellow dots and yellow dotted line). Dotted

lines correspond to second order polynomial regressions.

SUPPLEMENTARY FIGURE 3

Selection acting on root traits of ancestors. Model predictions of selection
gradients are shown for number of secondary roots (A) and maximum

rooting depth (B). Since no significant interactions with treatments existed

(see ‘Results’), only significant linear (A) and quadratic (B) predictions
are shown.

SUPPLEMENTARY FIGURE 4

Selection acting on root traits indicating root allocation strategies of

ancestors. Selection gradients are shown for root weight ratio (RWR)

(A), relative root branching (B), and relative rooting depth (C). Since no
significant interactions with treatment existed (see ‘Results’), model

predictions of significant quadratic (A, C) and linear (B) relationships
are shown.

SUPPLEMENTARY TABLE 1

Means and coefficients of variation of measured root traits depending on
maternal predictability treatments. The means of all root traits are shown

for each of the descendant treatments depending maternal treatment,

and also for each descendant treatment independent of the maternal
treatment. The coefficient of variation (the ratio of the standard deviation

to themean, based onmeans, CVm) among treatments in descendants for
each maternal treatment is also shown as well as the overall CV of

ancestors (CVa) and the overall CV of descendants (CVd).

SUPPLEMENTARY TABLE 2

Sample size per treatment, year and generation. The sample size per
treatment and year is presented for the ancestral plants, and the sample

size per treatment and generation is presented for the descendants
that were subjected to the same treatment for four generations

(referred to as ‘descendants – pure lines’) and for the descendants from
all treatment combinations over generations used for the analysis on

transgenerational plasticity. The hypothesis (H) tested for each group of
data is shown.
References
Ambastha, V., Friedmann, Y., and Leshem, Y. (2020). Laterals take it better–
emerging and young lateral roots survive lethal salinity longer than the primary
root in arabidopsis. Sci. Rep. 10 (1), 1–11. doi: 10.1038/s41598-020-60163-7

Bardgett, R. D., Mommer, L., and De Vries, F. T. (2014). Going underground:
Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699. doi:
10.1016/j.tree.2014.10.006

Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C. (2015). Fitting linear
mixed-effects models using lme4. J. Stat. Software 67, 1–48. doi: 10.18637/
jss.v067.i01
Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B., Körner,
C., et al. (2012). Precipitation manipulation experiments–challenges and
recommendations for the future. Ecol. Let. 15 (8), 899–911. doi: 10.1111/j.1461-
0248.2012.01793.x

Botero, C. A., Weissing, F. J., Wright, J., and Rubenstein, D. R. (2015).
Evolutionary tipping points in the capacity to adapt to environmental change.
Proc. Natl. Acad. Sci. 112, 184–189. doi: 10.1073/pnas.1408589111

Brouwer, R. (1983). Functional equilibrium: Sense or nonsense? Neth. J. Agric.
Sci. 31 (4), 335–348. doi: 10.18174/njas.v31i4.16938
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2022.998169/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.998169/full#supplementary-material
https://doi.org/10.1038/s41598-020-60163-7
https://doi.org/10.1016/j.tree.2014.10.006
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/j.1461-0248.2012.01793.x
https://doi.org/10.1111/j.1461-0248.2012.01793.x
https://doi.org/10.1073/pnas.1408589111
https://doi.org/10.18174/njas.v31i4.16938
https://doi.org/10.3389/fpls.2022.998169
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


March-Salas et al. 10.3389/fpls.2022.998169
Burgess, S. C., and Marshall, D. J. (2014). Adaptive parental effects: the
importance of estimating environmental predictability and offspring fitness
appropriately. Oikos 123 (7), 769–776. doi: 10.1111/oik.01235

Burton, T., and Metcalfe, N. B. (2014). Can environmental conditions
experienced in early life influence future generations? Proc. R. Soc B. 281 (1785),
20140311. doi: 10.1098/rspb.2014.0311

Caro, S. M., Griffin, A. S., Hinde, C. A., and West, S. A. (2016). Unpredictable
environments lead to the evolution of parental neglect in birds. Nat. Commun. 7
(1), 1–10. doi: 10.1038/ncomms10985

Chevin, L. M. (2013). Genetic constraints on adaptation to a changing
environment. Evol. 67, 708–721. doi: 10.1111/j.1558-5646.2012.01809.x

Colicchio, J. M., and Herman, J. (2020). Empirical patterns of environmental
variation favor adaptive transgenerational plasticity. Ecol. Evol. 10 (3), 1648–1665.
doi: 10.1002/ece3.6022

DeWitt, T. J., Sih, A., and Wilson, D. S. (1998). Costs and limits of phenotypic
plasticity. Trends Ecol. Evol. 13 (2), 77–81. doi: 10.1016/S0169-5347(97)01274-3

Donelson, J. M., Salinas, S., Munday, P. L., and Shama, L. N. (2018).
Transgenerational plasticity and climate change experiments: where do we go
from here? Glob. Change Biol. 24 (1), 13–34. doi: 10.1111/gcb.13903

Dong, B. C., Van Kleunen, M., and Yu, F. H. (2018). Context-dependent parental
effects on clonal offspring performance. Front. Plant Sci. 9, 1824. doi: 10.3389/
fpls.2018.01824

Franch-Gras, L., Garcia-Roger, E. M., Serra, M., and Carmona, M. J. (2017).
Adaptation in response to environmental unpredictability. Proc. R. Soc B. 284
(1868), 20170427. doi: 10.1098/rspb.2017.0427

Franklin-Tong, V. E., and Franklin, F. C. H. (1992). Gametophytic self-incompatibility
in papaver rhoeas l. Sex Plant Reprod. 5 (1), 1–7. doi: 10.1007/BF00714552
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Reich, P. B. (2016). Reinforcing loose foundation stones in trait-based plant
ecology. Oecologia 180 (4), 923–931. doi: 10.1007/s00442-016-3549-x

Sobral, M., Sampedro, L., Neylan, I., Siemens, D., and Dirzo, R. (2021).
Phenotypic plasticity in plant defense across life stages: inducibility,
transgenerational induction, and transgenerational priming in wild radish. Proc.
Natl. Acad. Sci. 118 (33), e2005865118. doi: 10.1073/pnas.2005865118

Strutz, T. (2016). Data fitting and uncertainty: A practical introduction to
weighted least squares and beyond. 2nd edition (Wiesbaden: Springer Vieweg).

Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B., and Lytle, D. A. (2017).
Seasonality and predictability shape temporal species diversity. Ecology 98 (5),
1201–1216. doi: 10.1002/ecy.1761

Tufto, J. (2015). Genetic evolution, plasticity, and bet-hedging as adaptive
responses to temporally autocorrelated fluctuating selection: A quantitative
genetic model. Evol. 69 (8), 2034–2049. doi: 10.1111/evo.12716

Uller, T., English, S., and Pen, I. (2015). When is incomplete epigenetic resetting
in germ cells favoured by natural selection? Proc. R. Soc B. 282 (1811), 20150682.
doi: 10.1098/rspb.2015.0682

Valladares, F., Martinez-Ferri, E., Balaguer, L., Perez-Corona, E., and Manrique,
E. (2000). Low leaf-level response to light and nutrients in Mediterranean
evergreen oaks: a conservative resource-use strategy? New Phyt. 148 (1), 79–91.
doi: 10.1046/j.1469-8137.2000.00737.x

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al.
(2007). Let the concept of trait be functional! Oikos 116 (5), 882–892. doi: 10.1111/
j.0030-1299.2007.15559.x

Weemstra, M., Mommer, L., Visser, E. J. W., Van Ruijven, J., Kuyper, T. W.,
Mohren, G. M. J., et al. (2016). Towards a multidimensional root trait
framework : A tree root review. New Phytol. 211, 1159–1169. doi: 10.1111/
nph.14003

Wu, Q., Pagès, L., and Wu, J. (2016). Relationships between root diameter, root
length and root branching along lateral roots in adult, field-grown maize. Ann. Bot.
117 (3), 379–390. doi: 10.1093/aob/mcv185

Xu, L., Zhang, C., Chen, N., Moradkhani, H., Chu, P.-S., and Zhang, X. (2020).
Potential precipitation predictability decreases under future warming. Geophys.
Res. Lett. 47, e2020GL090798. doi: 10.1029/2020GL090798

Yamauchi, T., Pedersen, O., Nakazono, M., and Tsutsumi, N. (2021). Key root
traits of poaceae for adaptation to soil water gradients. New Phytol. 229 (6), 3133–
3140. doi: 10.1111/nph.17093
frontiersin.org

https://doi.org/10.1111/oik.01235
https://doi.org/10.1098/rspb.2014.0311
https://doi.org/10.1038/ncomms10985
https://doi.org/10.1111/j.1558-5646.2012.01809.x
https://doi.org/10.1002/ece3.6022
https://doi.org/10.1016/S0169-5347(97)01274-3
https://doi.org/10.1111/gcb.13903
https://doi.org/10.3389/fpls.2018.01824
https://doi.org/10.3389/fpls.2018.01824
https://doi.org/10.1098/rspb.2017.0427
https://doi.org/10.1007/BF00714552
https://doi.org/10.1016/j.envexpbot.2022.104817
https://doi.org/10.1016/j.tplants.2006.10.007
https://doi.org/10.3389/fpls.2011.00102
https://doi.org/10.2307/2258745
https://doi.org/10.1111/j.1469-8137.2004.01015.x
https://www.ipcc.ch/report/ar6/wg1/
https://doi.org/10.3389/fpls.2016.01335
https://doi.org/10.3389/fpls.2016.01335
https://doi.org/10.1111/j.1420-9101.2009.01754.x
https://doi.org/10.1111/j.1558-5646.1983.tb00236.x
https://doi.org/10.18637/jss.v069.i01
https://doi.org/10.1111/ele.13598
https://doi.org/10.1016/j.cub.2020.01.003
https://doi.org/10.1111/jeb.12735
https://doi.org/10.1093/aob/mcaa096
https://doi.org/10.7717/peerj.6443
https://doi.org/10.1098/rspb.2019.1486
https://doi.org/10.1111/oik.07970
https://doi.org/10.1007/s10682-013-9670-y
https://doi.org/10.1111/ele.12663
https://doi.org/10.1111/ele.12663
https://doi.org/10.2307/2257860
https://doi.org/10.1002/ecm.1359
https://doi.org/10.1038/s41467-019-10453-0
https://doi.org/10.1038/s41467-019-10453-0
https://doi.org/10.1111/1365-2745.12351
https://doi.org/10.1111/1365-2745.12351
https://www.R-project.org/
https://doi.org/10.1038/s41559-019-1089-6
https://doi.org/10.1146/annurev.es.17.110186.003315
https://doi.org/10.1146/annurev.es.17.110186.003315
https://doi.org/10.1007/s00442-016-3549-x
https://doi.org/10.1073/pnas.2005865118
https://doi.org/10.1002/ecy.1761
https://doi.org/10.1111/evo.12716
https://doi.org/10.1098/rspb.2015.0682
https://doi.org/10.1046/j.1469-8137.2000.00737.x
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://doi.org/10.1111/j.0030-1299.2007.15559.x
https://doi.org/10.1111/nph.14003
https://doi.org/10.1111/nph.14003
https://doi.org/10.1093/aob/mcv185
https://doi.org/10.1029/2020GL090798
https://doi.org/10.1111/nph.17093
https://doi.org/10.3389/fpls.2022.998169
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


March-Salas et al. 10.3389/fpls.2022.998169
Yin, J., Lin, X., Yao, J., Li, Q. Q., and Zhang, Y. Y. (2022). Genotypic variation of
transgenerational plasticity can be explained by environmental predictability at
origins. Oikos 2022 (5), e09006. doi: 10.1111/oik.09006

Yin, J., Zhou, M., Lin, Z., Li, Q. Q., and Zhang, Y. Y. (2019). Transgenerational
effects benefit offspring across diverse environments: A meta-analysis in plants and
animals. Ecol. Let. 22 (11), 1976–1986. doi: 10.1111/ele.13373
Frontiers in Plant Science 16
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