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The MYB members play important roles in development, metabolism, and

stress tolerance in plants. In the current study, a total of 246 tobacco R2R3-

MYB transcription factors were identified and systemically analyzed from the

latest genome annotation. The newly identified tobacco members were

divided into 33 subgroups together with the Arabidopsis members.

Furthermore, 44 NtMYB gene pairs were identified to arise from duplication

events, which might lead to the expansion of tobacco MYB genes. The

expression patterns were revealed by transcriptomic analysis. Notably, the

results from phylogenetic analysis, synthetic analysis, and expression analysis

were integrated to predict the potential functions of these members.

Particularly, NtMYB102 was found to act as the homolog of AtMYB70 and

significantly induced by drought and salt treatments. The further assays

revealed that NtMYB102 had transcriptional activities, and the overexpression

of the encoding gene enhanced the drought and salt stress tolerance in

transgenic tobacco. The results of this study may be relevant for future

functional analyses of the MYB genes in tobacco.

KEYWORDS
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Introduction

Transcription factor is the important regulator that controls the expression of target

genes, and they play important roles in plant development, metabolism, and stress

response (Dubos et al., 2010; Katiyar et al., 2012; Coleto et al., 2021). The MYB

transcription factor family is the one of largest transcription factor families in plants
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(Martin and Paz-Ares, 1997; Stracke et al., 2001). Generally, each

MYB member contains a highly conserved DNA binding

domain, composed of 50–52 amino acids, which binds the

DNA in the form of a helix-turn-helix structure (Moyano

et al., 1996). According to the repeat number of MYB

domains, the MYB family members could be divided into four

groups, including 4R-MYB, R1R2R3-MYB, 1R-MYB, and R2R3-

MYB, and the R2R3-MYB members are the most common

subgroup in plants (Stracke et al., 2001; Dubos et al., 2010).

Interestingly, a conjecture is that R2R3-MYB proteins have likely

evolved from R1R2R3-MYB precursors by the loss of the R1

repeat. On the contrary, the R1R2R3-MYB might evolve from

R2R3-MYB by acquiring an R1 repeat. (Stracke et al., 2001; Jiang

et al., 2004; Dubos et al., 2010). Since the first plant MYB gene

was cloned from maize (Paz-Ares et al., 1987), a variety of MYB

transcription factors in plants have been identified and analyzed

(De Vos et al., 2006; Zou et al., 2013; Stracke et al., 2014; Qiu

et al., 2019; Chen et al., 2021; Naik et al., 2021; Qin et al., 2021).

In plants, the R2R3-MYB subfamily members have been

found to participate in various biological processes including

plant development, secondary metabolism, and biotic/abiotic

stress responses (Stracke et al., 2001; Castillejo et al., 2020; Cao

et al., 2021, Ding et al., 2021). In Arabidopsis, 126 R2R3-MYB

transcription factors have been divided into 25 subgroups, and a

number of them had been reported to play an important role in

primary and secondary metabolism (Allan et al., 2008; Dubos

et al., 2010; Roy, 2016). In subgroup 7, as the typical MYB

transcription factors, AtMYB11/PFG2, AtMYB12/PFG1, and

AtMYB111/PFG3 were reported to be involved in the

accumulation of specific flavonol derivatives in leaves, stems,

inflorescences, siliques, and roots (Moyano et al., 1996; Stracke

et al., 2007). In subgroup 6, the AtMYB75/PAP1 and AtMYB90/

PAP2 transcription factors regulate the biosynthesis of

anthocyanins in vegetative tissues (Quattrocchio et al., 1999;

Appelhagen et al., 2011). Overexpression of AtMYB113 or

AtMYB114 leads to a significant increase in anthocyanins

production (Gonzalez et al., 2008). In addition, multiple R2R3-

MYB genes have been reported to be involved in the synthesis of

Arabidopsis secondary cell walls (Zhao and Dixon, 2011). In

subgroup 3, AtMYB58 and AtMYB63 affect the SND1-mediated

(secondary wall-associated NAC domain protein 1)

transcription network regulating secondary wall formation

(Zhou et al., 2009). In subgroup 16, AtMYB83 and AtMYB46

are both direct targets of the SND1 transcription factor and play

the redundant role in the transcriptional regulatory cascade,

which allows plants to form secondary walls by regulating fibers

and blood vessels (Mccarthy et al., 2009).

Some R2R3-MYB genes have also been reported to

participate in the growth and development of plants (Stracke

et al., 2001; Li et al., 2020; Pucker et al., 2020). AtMYB77 of

subgroup 22 was reported to control lateral root growth and

development (Shin et al., 2007). In subgroup 14, AtMYB68

specifically regulates root growth, influencing the whole plant
Frontiers in Plant Science 02
development under harsh conditions (Feng et al., 2004).

AtMYB59 was reported to regulate the development of roots

by regulating the cell cycle of the root tip (Mu et al., 2009). In

flower development, AtMYB33 and AtMYB65, which belong to

subgroup 18, facilitate both anther and pollen development, and

the pollen fails to maintain vitality in myb33/myb65 (Millar and

Gubler, 2005). AtMYB120 is studied to be a pollen-specific

factor, which controls the pollination of plants and the

differentiation and development of pollen (Liang et al., 2013).

In subgroup 21, AtMYB105/LOF2 and AtMYB117/LOF1

control the separation of the lateral stem of the plant, and

AtMYB91/AS1 participates in the regulation of leaf patterning

(Byrne et al., 2000; Lee et al., 2009). In subgroup 20, AtMYB2 is

reported to regulate leaf senescence, and in subgroup 22,

AtMYB44/MYBR1 was involved in the regulatory network of

leaf senescence and ABA signaling (Guo and Gan, 2011; Jaradat

et al., 2013).

Unlike animals, plants grow in a complex environment and

face multiple biotic/abiotic stresses from the environment; some

R2R3-MYB transcription factors have been confirmed to

respond to the stresses in plants (Stracke et al., 2001; Dubos

et al., 2010). For instance, AtMYB60 and AtMYB96 of subgroup

1 are reported to improve the plant drought resistance by

regulating the closure of plant stomata (Seo et al., 2009; Oh

et al., 2011). Similarly, in subgroup 22, AtMYB70, AtMYB73,

and AtMYB74 also regulate stomatal closure to improve plants’

anti-stress ability (Jung et al., 2008). In addition, several R2R3-

MYB members are also involved in cold, salinity, and wounding

stresses. In subgroup 2, AtMYB2 is reported to increase plant salt

resistance through ABA signaling, while AtMYB15 is involved in

the regulation of cold tolerance; myb15 increased plants’

tolerance to cold stress whereas its overexpression reduced

plants’ cold tolerance (Abe et al., 2003; Agarwal et al., 2006).

In defense response, AtMYB102 keeps plants from being

damaged by herbivore Pieris rapae. AtMYB41 is reported to be

involved in the negative regulation of short-term transcriptional

response to osmotic pressure, and AtMYB72 is essential for

Arabidopsis to fight against various fungal and bacterial diseases

(De Vos et al., 2006; Cominelli et al., 2008; Van Der Ent et al.,

2008; Segarra et al., 2009). Besides, in subgroup 22,

overexpression of AtMYB44 could promote Botrytis infection,

and AtMYB44 positively regulates the disease resistance of

Pseudomonas syringae in Arabidopsis through the salicylic acid

signaling pathway (Jung et al., 2008).

Tobacco is not only a considerable economically valuable

crop but also a well-studied model organism. However, extreme

environment and diseases have always been the potential threat

to tobacco yield and quality. Therefore, the study for systematic

analysis of the MYB transcription factor family in tobacco is of

great significance for the research of tobacco secondary

metabolism, growth development, and resistance to biotic/

abiotic stresses. With the publication of multiple plant genome

sequences, a new insight combining bioinformatics and
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molecular biology began to identify and analyze the R2R3-MYB

transcription factor family and their functions. So far, the

function of the R2R3-MYB protein has been discovered and

verified in a large number of plants, such as Arabidopsis (Dubos

et al., 2010), tomato (Solanum lycopersicum) (Li et al., 2016),

potato (Solanum tuberosum) (Li et al., 2019), Chinese pear

(Pyrus bretschneideri Rehd) (Cao et al., 2016), maize (Zea

mays) (Du et al., 2012), wheat (Triticum aestivum) (Wei et al.,

2020), and rice (Oryza sativa) (Katiyar et al., 2012). However,

very limited research is available on tobacco R2R3-MYB

members. Here, we identified 246 R2R3-MYB members from

the tobacco genome sequences using comparative genomic and

molecular biology methods, then inferred the function of R2R3-

MYB protein from phylogenetic trees, collinearity, and

expression patterns. This study will provide a solid foundation

for further functional studies on the function of R2R3-MYB

members in tobacco growth, metabolism, and biotic/

abiotic stresses.
Materials and methods

Identification and classification analysis
of tobacco R2R3-MYB members

Version 4.5 of the genome sequence annotations of tobacco

(Nicotiana tabacum L.) were downloaded from the SGN

database (https://solgenomics.net/). The previously reported

AtMYB full-length protein sequences (Stracke et al., 2001;

Dubos et al., 2010) were obtained from The Arabidopsis

Information Resource (TAIR, https://www.arabidopsis.org/)

and used as queries to perform the BLASTP search against the

annotated tobacco protein databases with an E-value cutoff of

0.01. Furthermore, with the HMM profile (PF00249), the HMM

search was performed against the annotated tobacco protein

databases under the E-value cutoff of 0.001. The candidate

sequences from the two above-described approaches were

integrated, and redundant entries were removed manually.

The putative MYB protein sequences were analyzed using both

Pfam (https://pfam.xfam.org/) with an E-value cutoff of 1.0 and

SMART (http://smart.embl.de/) with an E-value cutoff of 1.0 to

detect the presence and number of the MYB domain (Letunic

et al., 2020; Mistry et al., 2021).

The full-length protein sequences of Arabidopsis R2R3-MYB

members and newly identified tobacco R2R3-MYB members

were subjected to the performance of multiple sequence

alignment using MAFFT v5.3 under the default settings

(Katoh and Standley, 2013). The alignment of R2R3-MYB

domain was visualized using TBtools (Chen et al., 2020).

Subsequently, the neighbor-joining phylogenetic analysis was

conducted using MAGE X based on the alignment of full-length
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protein sequences with a bootstrap method of 1000 replicates,

substitution with the Poisson model, and pairwise deletion

(Kumar et al., 2018). The phylogenetic tree was displayed

using FigTree v1.3.
Exon–intron structural analysis and
identification of conserved motifs

The genomic sequences and coding sequences of AtMYB

and NtMYB genes were submitted to the Gene Structure Display

Server (Hu et al., 2015) to visualize their exon–intron structure.

Further, the MEME Suite 5.1.1 tool (Bailey et al., 2015) was hired

to explore the conserved motifs of the AtMYB and NtMYB

proteins with following parameters: maximum number of

motifs: 10; the optimum width of each motif: between 6 and

100 residues.
Chromosomal localization and
duplication event analysis

According to the location information provided by the

Solanaceae database, the Perl program was adopted to display

the NtMYB genes’ chromosomal location. The tandem gene

events were displayed on the chromosomal map according to the

previous definition (Li et al., 2018). Afterward, the TBtools’

Circos program (Chen et al., 2020) was recruited to analyze the

synteny relationship of the orthologous genes from tobacco and

five other species (including Arabidopsis, tomato, potato, maize,

and rice).
Promoter analysis of tobacco
R2R3-MYB genes

The sequences 2000 bp upstream of the R2R3-MYB genes in

tobacco were extracted from the genome sequence database. The

obtained sequences were subjected to PlantCARE platform

analysis to further search for the putative cis-elements in their

promoter regions (Lescot et al., 2002).
Expression patterns analysis

The reported RNA-seq data of tobacco tissues (Edwards

et al., 2017) were downloaded from the GEO database (accession

number: GSE95717). The processed expression data of the

R2R3-MYB genes were extracted (Supplementary Table S1)

and transformed with log2 to normalize the raw data using

TBtools (Chen et al., 2020).
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The RNA-Seq data of the tobacco senescent leaf were

produced in our previous work (Li and Guo, 2018) and were

uploaded at the NCBI Short Read Archive (SRA) under the

accession number SRP102153. The plants were grown with

regular practices and topping was done 60 days after

transplanting. The middle leaves were collected at nine different

time points and used for transcriptomic analysis. The expression

data of the R2R3-MYB genes were retrieved (Supplementary Table

S2) and normalized by comparing with 5 DAT (days after

topping) and log2 fold change transformation. All the

normalized RNA-seq data were used to illustrate Heatmap

using the pHeatmap R package under the default parameters.
Tobacco plant preparation and
stress treatments

Cultivated tobacco K326 was used to analyze the expression

pattern of NtMYB in this study. The roots, stems, flowers, upper

leaves, middle leaves, and lower leaves were collected and frozen in

liquid nitrogen when cultivated tobacco K326 grew to the budding

stage; the samples were stored in a refrigerator at -80°C for later use.

For the drought stress treatment assays, T3 transgenic and

wild-type (K326) tobacco seeds were sown into the soil and

treated after about 6 weeks as with previous conditions (Li et al.,

2022). The leaves of the seedlings were detached and air-dried,

then the leaf weight was recorded at 180 min.

For the salt stress treatment assays, the tobacco seedlings

were germinated in a solid MS medium after disinfection, then

they were transferred to a liquid MS medium and adapted for 5

days. Hereafter, some of the seedlings were transferred to a 150

mmol/l NaCl liquid MSmedium or absorbent filter paper for salt

and drought treatment, respectively. Samples were taken at 1, 3,

and 6 h after treatment and frozen in liquid nitrogen for later

use. Three biological replicates were performed for each sample.
RNA Extraction and qTR-PCR

Total RNAs from each sample were extracted using the

Ultrapure RNA Kit (cwbiotech, Beijing, China), then the first-

strand complementary DNA (cDNA) was synthesized using the

Evo M-MLV Mix Kit with gDNA Clean for qPCR (Accurate

Biotechnology, Changsha, China). Quantitative real-time PCR

(qRT-PCR) reactions were performed in a Roche LightCycler

480 Real-Time PCR instrument with SYBR® Green Premix Pro

Taq HS qPCR Kit (Accurate Biotechnology, Changsha, China).

The tobacco ribosomal protein gene L25 (GenBank No. L18908)

was used as control (Li et al., 2021). All experimental data were

obtained through three technical repetitions and three biological

replicates; the relative expression level was calculated by the 2-
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△△CT method (Livak and Schmittgen, 2001). The details of the

primers are provided in Supplementary Table S3.
Subcellular localization

The CDS of the NtMYB102 gene was amplified from the

cDNA of tobacco root using Phanta®MaxMaster Mix (Vazyme,

Nanjing, China) and ligated to the pEasy-Blunt vector for later

use; then the sequence of the NtMYB102 encoding gene without

stop codon was inserted into the PYG57 vector, which was

started by the CaMV-35S promoter and contained the GFP

fragment (Sun et al., 2021). The construct was transformed into

an Agrobacterium competent cell GV3101, and transiently

expressed in the leaves of Nicotiana benthamiana .

Simultaneously, the empty vector injected leaves as a control.

Three days after the injection, the leaves were soaked in DAPI

staining solution to determine the location of the nucleus, as

previously reported (Li et al., 2019). Fluorescence signals were

captured using a Confocal Microscope (TCS-SP8 Leica,

Wetzlar, Germany).
Transcriptional activation assay

The CDS of NtMYB102 was amplified and inserted into the

EcoR I site of the pBridge vector, using an Infusion HD Cloning

Kit (Takara, Shiga, Japan) to be fused with a GAL4 DNA binding

domain. The construct and the control vector were introduced

into the yeast strain AH109 separately, followed by growing

yeasts on SD/-Trp, and SD/-Trp supplemented with 5-bromo-4-

chloro-3-indolyl-a-d-galactopyranoside (X-a-Gal) for 4 days at

30°C. The transcriptional activation activities were evaluated

based on the growth status of different transformants.
Tobacco transgenic plant and root
length analysis

The coding sequence of the NtMYB102 gene was amplified

from the cDNA and inserted into the pCHF3 vector, which was

driven by the CaMV-35S promoter, to complete the

construction of the overexpression vector. The pCHF3 plasmid

containing the NtMYB102 gene was transformed using the

Agrobacterium-mediated method (Buschmann, 2016). To

obtain T1 generation homozygous lines, the seeds of serval T0

independent lines were selected on 50 mg/l kanamycin MS

medium with no separation. The homozygous T1 lines and

wild-type (K326) seeds were sterilized and grown in a vertical

MS medium for 14 days, then transferred to an MS medium with

0 or 100 mM NaCl, respectively, to observe changes in root
frontiersin.org
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length. The significant difference analysis was calculated using

SPSS v18.0 with the t-test.
Results

Identification of R2R3-MYB members
in tobacco

To identify the R2R3-MYB members in tobacco, the

BLASTP and HMMER searches were performed using the

previous R2R3-MYB protein sequences from Arabidopsis as

the query. Eventually, a total of 246 MYB members were

obtained from tobacco genome sequences. Among them, 145

NtMYB genes distribute unevenly on the tobacco chromosomes,

while the others map on the scaffolds. To distinguish the newly

identified genes, theses R2R3-MYB genes were named according

to physical order on the chromosome and scaffolds. The detailed

information could be explored in Supplementary Table S4.
Multiple sequence alignment and
phylogenetic analysis

In plants, the DNA binding domain with two adjacent MYB

repeats is conserved in R2R3-MYB members (Jiang et al., 2004).

To explore the features of the R2R3-MYB members of tobacco,

the newly identified R2R3-MYB domain performed multiple

sequence alignments. As the result, the tobacco R2 and R3 MYB

repeats hold the conserved amino acid residues. Notably, the

tobacco R2R3-MYB domain features were found to be highly

similar with Arabidopsis members (Supplementary Figure 1A).

In the R2 MYB repeat, three Tryptophan (W) residues were

found to be conserved, while only two Tryptophan (W) residues

were found to be conserved in the tobacco R3 MYB repeat; the

first Tryptophan (W) was replaced by Phenylalanine (F) or

others (Supplementary Figure 1B).

As a result, all of the R2R3-MYBmembers were divided into 33

subgroups, among them, the S1 to S25 subgroups were consistent

with the previous reports (Dubos et al., 2010); the others were

named from S26 to S33, which contained some tobacco and

Arabidopsis R2R3-MYB members (Figure 1). Results showed that

most of the subgroups contained R2R3-MYB members from those

two species, indicating that the expansion of R2R3-MYB members

may appear before the divergence of tobacco and Arabidopsis.

Interestingly, several subgroups contained much more R2R3-

MYB members from tobacco than Arabidopsis, such as S1, S2,

and S14, implying that the duplication events might occur in those

subgroups. Notably, it was found that S17, S29, S31, and S32 only

harbored R2R3-MYB members from tobacco and S12 only

contained members from Arabidopsis.
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Gene structure and conserved,
motif analysis

The gene structure could provide the clues of a gene family

evolution history. As a result, the intron number of studied genes was

found to range from 0 to 11, and NtMYB genes shared the similar

gene structures with Arabidopsis MYB genes in the same group

(Supplementary Figure S2). Interestingly, most (82.1%) of the coding

sequences of NtMYB proteins were interrupted by one or two

introns, whereas 15 (6.1%) NtMYB genes did not hold any introns.

Furthermore, more than eight introns were found in NtMYB112,

AtMYB88, and AtMYB124, which were all clustered into S25.

In addition, the R2R3-MYB protein sequences of tobacco and

Arabidopsis were submitted to the MEME tool to analyze the

conserved motifs. As a result, a total of 10 motifs were identified,

namely, motif 1–10 (Supplementary Figures S2, S3). Among them,

motifs 2, 3, and 4 together constitute the R2R3-MYB domain,

which could be found in all studied MYB members. Consistent

with the results of gene structure analysis, the R2R3-MYB proteins

in the same group usually have similar types and orders of motifs.

In addition, several motifs were found to be unique to certain

subgroups. For instance, motif 8 was only found in S31, while

motif 9 was unique to S20, implying that these unique motifs

might undertake different functions. The similarities in

characteristic motifs in each group may reflect functional

similarities and should be conducive to determining specific

functions for each R2R3-MYB gene.
Syntenic analysis of the tobacco R2R3-
MYB gene

Syntenic analysis is important in genome sequence comparison,

which reveals the genomic evolution of different species, while the

syntenic pairs are predicted as orthologs and might share similar

functions (Wang et al., 2021). As a result, collinearity pairs of the

R2R3-MYB member were found in tobacco and five other species

(Figure 2A). The collinear pairings between 81 of the NtMYB genes

with MYBmembers in Arabidopsis were identified, followed by 151

NtMYB genes pairing with tomato, 125 NtMYB genes with potato,

and 23 and 10 NtMYB genes withMYB genes from rice and maize,

respectively. Notably, more R2R3-MYB collinearity pairs were

found between tobacco and dicotyledonous species than

monocotyledonous species. Furthermore, a total of six tobacco

MYB genes were identified to form collinear pairs with MYB

genes from all of the other species, indicating that these MYB

genes may have existed before the divergence of these species

(Figure 2B). Interestingly, 29 R2R3-MYB collinear pairs were

predicted between tobacco and three dicotyledonous plants, but

not found in the tested monocotyledonous plants, suggesting that

these 29 pairs might arise after the divergence of dicotyledonous
frontiersin.org

https://doi.org/10.3389/fpls.2022.998606
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.998606
and monocotyledonous plants. The details of the tobacco MYB

syntenic pairs can be found in Supplementary Table S5.
Chromosomal distribution and
duplication events

The chromosomal location information of 246NtMYB genes

was obtained from the SGN database and visualized using the R

(Figure 3A). As a result, Chromosome 04 harbored the most

R2R3-MYB genes, while Chromosomes 01, 07, 11, 16, and 18

were found to hold only three R2R3-MYB genes. According to

the previous definition of tandem gene events (Li et al., 2018), a

total of seven clusters (NtMYB022/023, NtMYB023/024,

NtMYB089/090, NtMYB118/119, NtMYB155/156, NtMYB171/

172, NtMYB188/189) were identified, the first four of which

were located on chromosomes and the others were found on

scaffolds. Furthermore, NtMYB022/023 and NtMYB171/172

were found to arise from the tandem duplicat ion

events (Figure 3A).

The gene segmental duplication event served as the

important access for plants to acquire new genes and gene

family expansion. As results, a total of 64 tobacco R2R3-

MYB genes were identified to form 42 segmental duplication

pairs (Figure 3B and Supplementary Table S6). Notably,

these results suggested that about 44% of the NtMYB genes

may be generated by duplication events, which played the

major role in the expansion of the MYB gene family

in tobacco.
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Promoter element analysis

In a previous study, the MYB genes had been reported to be

involved in various developmental and stress responses.

Considering these clues, the cis-element analysis was

investigated to explore the probability of these NtMYB genes

in developmental and stress responses. To study the expression

regulation of the NtMYB genes, the promoter region of 246

R2R3-MYB genes was analyzed using the PlantCARE Online

toolbox. Generally, it was found that a lot of cis-elements

involved in various developmental and stress responses were

present in these tobacco R2R3-MYB gene promoters.

Furthermore, 13 cis-elements were selected from the

PlantCARE database for visualization (Supplementary Figure

S4). As a results, a total of 203 (82.5%) NtMYB gene promoters

contained ABRE (abscisic acid responsive cis-element),

suggesting that those R2R3-MYB genes may function in the

abscisic acid signal pathway. Besides, 203 (82.5%) NtMYB gene

promoters harbored ERE (ethylene responsive cis-element),

while 129 (52.4%) gene promoters possessed a salicylic acid

responsive cis-element (TCA-element). In addition, both

CGTCA-motif and TGACG-motif are related to MeJA

responsive, and 184 and 185 gene promoters were detected to

possess these two kinds of cis-element, respectively. Further, a

total of 98 (39.8%) gene promoters were detected to hold the

CAT-box, which was related to the development of the plant

meristem. Notably, the MYB family members were reported to

be induced by stress treatments; the stress response-related cis-

elements of tobacco MYB gene promoters were also analyzed
FIGURE 1

Phylogenetic analysis of tobacco R2R3-MYB family members. The tobacco R2R3-MYB members together with their Arabidopsis homologs were
classified into 33 subgroups.
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A

B

FIGURE 2

The synteny analysis of R2R3-MYB genes between tobacco and five representative species. (A) The gray line in the background represents the
collinear blocks between tobacco and five representative species, while the collinear R2R3-MYB gene pairs are highlighted in red color. (B) The
R2R3-MYB genes form the syntenic pairs between tobacco and all the other selected species, which is visualized by the Venn plot.
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consequently. The stress-responsive cis-elements including MBS

(MYB-binding site), TC-rich repeats, HSE (heat stress-

responsive element), LTR (low-temperature-responsive

element), WUN-motif (wound-responsive element), and ARE

(anaerobic induction element) were found to be abundant in the

promoter regions of many NtMYB gene promoters.

Interestingly, a total of 151 NtMYB gene promoters were

predicted to hold W-box cis-elements, which act as the

binding sites of the WRKY transcription factor, implying these

NtMYB genes might be regulated by a certain WRKY

transcription factor. Overall, the promoters of NtMYB genes

possess abundant cis-elements, suggesting that the expression of

these NtMYB genes might be regulated by multiple factors.
Expression analysis of the NtMYB genes
from RNA-seq

To explore the expression pattern of the newly identified

NtMYB genes, their RNA-seq data (GSE95717) was analyzed

and visualized by R packages. As a result, the expression levels of

246 NtMYB genes in root, shoot, and shoot apex tissues were

investigated (Figure 4). The results showed that several genes

were expressed abundantly in the tested tissues, including

NtMYB181, NtMYB216, and NtMYB067; while NtMYB176,

NtMYB048, NtMYB026, NtMYB151, NtMYB227, NtMYB054,

and NtMYB098 were detected to be highly expressed in the

shoot and root. In addition, a total of 51 genes such as

NtMYB033, NtMYB088, and NtMYB187 were only detected in

the root, whereas 15 genes like NtMYB168, NtMYB154, and

NtMYB096 were found to be expressed in all tested tissues except
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the root. It was worth noting that 61 (24.8%) NtMYB genes were

not detected in these tested tissues, implying those genes might

function in other tissues.

In addition, another RNA-seq data (SRP102153) was also

used to analyze the expression pattern of NtMYB genes in

different developmental stages of tobacco leaves. As a result, a

total of eight leaf growth stages were sequenced, and the

expression of 57 genes increased as tobacco leaves grew

(Figure 5). In particular, NtMYB008 and NtMYB178 was only

expressed in the later stages of leaf growth, suggesting they might

have a certain relationship with leaf senescence. AtMYB2 was

reported to contribute to the regulation of whole plant

senescence (Guo and Gan, 2011), so its homologous genes

were also concerned during the senescence of tobacco leaves.

Combined with evolutionary analysis, it was found that genes

homologous to AtMYB2 were expressed at a high level during

leaf senescence, such as the NtMYB060, NtMYB079, NtMYB127,

NtMYB084, and NtMYB177. This finding proved the reliability

of evolutionary analysis on the one hand and implied the

potential function of these genes in regulating leaf senescence.
The validation of expression patterns by
qRT-PCR

To enrich the expression profile of the NtMYB genes of

RNA-seq data, qRT-PCR was hired to analyze the expression

changes of several representative genes. As a result, NtMYB096,

NtMYB109, and NtMYB124 were observed to highly be

expressed in the root, NtMYB053 showed abundant transcripts

in the stem, and NtMYB130 was found to be expressed globally
A B

FIGURE 3

The chromosomal distribution and duplication events. (A) The distribution of tobacco R2R3-MYB genes on chromosomes. A total of 145 R2R3-
MYB genes anchored on tobacco chromosomes. The red box suggests the gene cluster, while the tandem duplication gene pair is colored red.
(B) The tobacco R2R3-MYB genes segmental duplication events and inter-chromosomal relationships. The 42 segmental duplication pairs of
NtMYB genes are predicted by MCScanX and linked by the red lines, respectively. In addition, the gray lines stand for all putative sefmental
duplication pairs in the tobacco genome sequences.
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FIGURE 4

Expression profiles of the NtMYB genes in three different tissues (root, shoot, and shoot apex). The heatmap was constructed based on the
transcriptome data of NtMYB genes and visualized by R.
FIGURE 5

Expression profiles of the NtMYB genes of middle tobacco leaves in different periods. The example of middle leaf harvested from plants from 15
to 85 DAT (days after topping). The heatmap was constructed based on normalized RNA-seq data of NtMYB genes and visualized by R. Red
indicates high expression, and blue indicates no detected expression. H indicates Honghuadajingyuan; M, middle leaves. * indicates the genes
mentioned in the text.
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in all tested tissues (Figure 6A), which were consistent with the

RNA-seq data. In addition, NtMYB060 and NtMYB079 were

detected to be upregulated during leaf senescence; on the

contrary, NtMYB210 had down-regulated expression, implying

those genes might participate in leaf senescence of tobacco.

Notably, qRT-PCR added the floral tissue to enrich the

expression profile of tobacco R2R3-MYB genes; the results

showed that the selected genes were expressed in varying

degrees in flowers. Especially, NtMYB105, NtMYB108, and

NtMYB149 were highly expressed in flowers, suggesting they

might play the key role in the flower development of tobacco.

Furthermore, a number of R2R3-MYB transcription factors

were reported to respond to abiotic stresses in Arabidopsis;

representative NtMYB genes were selected to test whether they

could respond to abiotic stresses, including salt and drought

stress. As a result (Figures 6B, C), NtMYB078 was significantly

induced by salt and drought treatments, whereas NtMYB108 and

NtMYB177 were repressed by salt treatment. The expression of

several NtMYB genes continued to increase under drought

treatment, such as NtMYB123, NtMYB201, and NtMYB210.

Interestingly, the expression of NtMYB081 in response to salt

stress was time-specific, reached the peak at 1 h of salt treatment,

and then dropped sharply. Notably, NtMYB102 was found to

respond significantly to both drought and salt treatments,

whereas NtMYB010 was induced by drought treatment but

nearly kept the original expression under salt stress.
Subcellular localization analysis

To explore the potential function of the NtMYB genes, the

subcellular localization of the one of the salt-responsive genes,

NtMYB102, was analyzed (Supplementary Figure S5). The full-

length coding sequence of NtMYB102 without the stop codon

was fused to the GFP reporter gene sequence, which was driven

by the CaMV35S promoter. The Agrobacterium cultures with

the NtMYB102-GFP fusion construct and the 35S::GFP control

were transiently expressed in the leaves of N. benthamiana,

respectively. As shown by confocal microscopy, the signal of

GFP protein was found to distribute throughout the whole cell,

whereas the fluorescence signal of the NtMYB102-GFP fusion

protein was specifically confined within the nucleus, which was

confirmed by staining with DAPI.
The function of NtMYB102 in plant
drought and salt tolerance

As the transcriptional activation assay result, all the yeast

cells grew well on a SD/-Trp medium, while on the SD/-Trp

medium supplemented with X-a-Gal, the yeast cells harboring
the NtMYB102 grew well and displayed a blue color; the yeast

cells containing the pBridge empty vector were not in blue color
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(Figure 7A). These results showed that NtMYB102 has

transactivation activities. Furthermore, the function of

NtMYB102 gene was further examined through genetic

experiments. Considering that this gene could be induced by

drought and salt stresses, the overexpression lines and wild-type

seedlings were firstly treated by drought stress. After the drought

treatment, overexpression lines and wild-type seedlings

displayed leaf wilting phenotypes, whereas the wild-type

seedlings were much more extreme than those overexpression

lines (Figure 7B and Supplementary Figure S6) and the survival

rates of the OE-1 lines, OE-4 lines, and OE-5 lines were

significantly higher than those of the wild-type seedlings

(Figure 7C). Besides, the overexpression lines displayed higher

water content than wild-type during dehydration (Figure 7D).

Furthermore, the salt tolerance of wild-type and NtMYB102

overexpressing tobacco was examined via root elongation assay

(Figure 8). As a result, no significant difference in root length

between wild-type and theNtMYB102 overexpressing plants was

found under normal conditions. However, on 100 mM NaCl

plates, longer roots of the independent overexpression lines were

observed compared to the wild type. Hence, the overexpression

of NtMYB102 gene could improve the drought and salt tolerance

in transgenic tobacco.
Discussion

The MYB transcription factors play important roles in plant

development, metabolism, and responding to biotic and abiotic

stress (Stracke et al., 2007; Dubos et al., 2010). In this study, the

newly identified R2R3-MYB members were studied through a

series of analyses. In addition, the MYB genes homologous

between Arabidopsis and tobacco were studied to investigate

their potential functions.

A total of 246 R2R3-MYB members were identified from

tobacco, and divided into 33 subgroups together with

Arabidopsis R2R3-MYB members (Figure 1). The syntenic

analysis could visualize the location of the homologous or

orthologous genes and the presence of collinear R2R3-MYB

genes in different species may have conserved functions, which

gives an insight into the functions of the R2R3-MYB genes (Li

et al., 2019). In the current study, we identified the collinear pairs

of the R2R3-MYB genes in five studied species. A total of six

tobacco R2R3-MYB genes were identified to form collinear pairs

with genes from all the other species (Figure 2), whereas those

six collinear R2R3-MYB genes were distributed in different

subgroups (Figure 1), suggesting these R2R3-MYB genes may

have existed before the divergence of these species. Gene

duplication has played a very important role in the expansion

of gene families (Kent et al., 2003; Cannon et al., 2004). In the

current study, a total of 44 duplication events were identified in

the 68 NtMYB genes, most (42) of which involved segmental

duplication, and several (2) of which involved tandem
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A

B

C

FIGURE 6

The qRT-PCR analysis of representative NtMYB genes. (A) To verify the tissue specificity expression of the representative NtMYB genes, the
expression level of each NtMYB gene was calculated relative to the root. (B) The expression level of representative NtMYB genes under salt
stress treatments. (C) The expression level of representative NtMYB genes under drought stress treatments.
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The function of NtMYB102 in drought tolerance. (A) Transactivation analysis of NtMYB102 in yeast. (B) Phenotypes of overexpression
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duplication. This discovery implied that duplication events

might play an important role in the evolution of the tobacco

R2R3-MYB gene family.

The R2R3-MYB transcription factors have been reported to

be related to plant development (Stracke et al., 2001; Pucker

et al., 2020). In subgroup 14, AtMYB37, which functions in

axillary meristem development (Keller et al., 2006), clustered

together with NtMYB053, and their coding genes were

investigated to form the collinear pair (Figures 1, 2).

Interestingly, NtMYB053 was highly expressed in the stem

(Figure 4), suggesting that it might be involved in tobacco

stem development, while NtMYB124 clustered together with

AtMYB68 (Figure 1), which specifically regulates root growth

(Feng et al., 2004), and the expression profiling showed

NtMYB124 have high expression at the root (Figure 4),

suggesting that it might be involved in the root development.

In subgroup 18, AtMYB33 and AtMYB65 redundantly facilitate

anther development (Millar and Gubler, 2005); NtMYB105,

NtMYB222, NtMYB210, NtMYB149, NtMYB108, and

NtMYB130 were clustered together with AtMYB33 and

AtMYB65, and their coding genes were highly expressed in

flowers (Figures 1, 4), suggesting they may be involved in the

development of floral organs. These results suggested functional

conservation between homologous R2R3-MYB members from

Arabidopsis and tobacco.

Besides, several MYB members have been reported to

control the synthesis of the anthocyanins, proanthocyanidins,

flavonols, and flavonoids in plants (Mehrtens et al., 2005; Cao

et al., 2021). Notably, AtMYB11/PFG2, AtMYB12/PFG1, and

AtMYB111/PFG3 from subgroup 7 were characterized as

specific flavonol regulators in Arabidopsis; AtMYB12 controls

flavonol biosynthesis mainly in the root, while AtMYB111,

primarily in cotyledons (Stracke et al., 2007). Evolutionary

analysis showed that NtMYB096 and NtMYB109 were

clustered together with these PFG members (Figure 1).

Meanwhile, their coding genes were predicted to form five

collinear gene pairs with AtMYB11, AtMYB12, and AtMYB111

(Figure 2). Further, the transcriptome and qRT-PCR data

showed that NtMYB96 and NtMYB109 were highly expressed

in roots (Figures 4, 6), hinting that they might control the

flavonol biosynthesis in tobacco roots. Notably, the members

from subgroup 4 were identified to act as repressors of the

monolignol pathway (Liu et al., 2015). NtMYB028, NtMYB029,

and NtMYBB035 were found to fall into this subgroup,

indicating these members may confer lignin synthesis

in tobacco.

Furthermore, in subgroup 20, AtMYB2 and AtMYB108 were

up-regulated during leaf senescence and participated in the

network regulating leaf senescence (Guo and Gan, 2011; Chou
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et al., 2018). In this study, NtMYB060, NtMYB079, NtMYB084,

NtMYB127, and NtMYB177 were found to be clustered together

with AtMYB2 and AtMYB108 (Figure 1). The transcriptome

data showed that these tobacco homologous genes were detected

to be up-regulated during tobacco leaf senescence (Figure 5),

suggesting that they might also participate in the regulation of

leaf senescence of tobacco. Interestingly, although NtMYB070

and NtMYB084 were predicted to arise from segmental

duplication events (Figure 3B), NtMYB070 had lowly

expressed during the senescence of the leaves (Figure 5),

indicating these two duplicated genes might undergo

subfunctionalization.

Many R2R3-MYB family members were found to confer

tolerance to abiotic and biotic stresses in plants. In subgroup 1,

NtMYB103 was clustered with AtMYB30, and they were

detected to form a collinear gene pair (Figures 1, 2). AtMYB30

had been reported to be involved in abiotic stress responses

(Marino et al., 2013). Interestingly, its tobacco homologous gene,

NtMYB103, was detected to be induced by salt treatment

(Supplementary Figure S4), implying that NtMYB103 might be

involved in abiotic stress responses of tobacco. In subgroup 2,

overexpression of AtMYB15 improves drought and salt tolerance

in Arabidopsis (Agarwal et al., 2006). The collinearity analysis

showed that NtMYB078 , NtMYB082 , NtMYB117 , and

NtMYB123 in the same subgroup were investigated to be

forming the collinear gene pair with AtMYB15 respectively

(Figure 3B). Similarly, those NtMYB genes were induced by

multiple abiotic stress treatments (Figures 6B, C), implying that

the R2R3-MYB members in this subgroup might also confer

stress tolerance in tobacco.

In subgroup 22, NtMYB102 clustered together with

AtMYB44, AtMYB70, AtMYB73, and AtMYB77 (Figure 1);

those Arabidopsis members were reported to function in

regulating stomatal closure and abiotic stress responses (Jung

et al., 2008). Interestingly, NtMYB102 were found to form the

collinear gene pairs with those Arabidopsis members (Figure 2)

and the promoter analyses revealed that the NtMYB102

promoter region contains many ABRE cis-elements

(Supplementary Figure 4), suggesting that it might be involved

in ABA signalling and stress response. Notably, NtMYB102 had

high transactivation activities in yeast and the NtMYB102-GFP

fusion protein was in the nucleus (Figure 7A and Supplementary

Figure S5). Furthermore, NtMYB102 was significantly induced

by drought and salt stresses. In addition, the overexpression

analyses further demonstrated that NtMYB102 can confer

drought and salt tolerances in transgenic tobacco plant

(Figures 7, 8). Those clues indicated that NtMYB102 acts as a

transcriptional activator to regulate gene expression in response

to stresses.
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Conclusions

The systematic analysis of the tobacco genome sequences in

this study was carried out to identify and characterize the R2R3-

MYB genes; the phylogeny and expression profiling analysis

implied that the tobacco R2R3-MYB gene family might be

involved in various biological processes. The R2R3-MYB

members homologous between Arabidopsis and tobacco were

found to play conserved roles in regulating plant development

and stress responses. Notably, NtMYB102 was found to be a

nucleus-localized transcription factor with transactivation, and
Frontiers in Plant Science 14
the coding gene was induced by salt treatments. Furthermore, the

overexpression of NtMYB102 in tobacco significantly enhanced

the drought and salt stress tolerance of the transgenic plants.
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FIGURE 8

The function of NtMYB102 in plant salt tolerance. (A) Root growth of wild-type and NtMYB102 overexpression lines under 0 or 100 mM NaCl
treatment. (B) The quantification of primary root length on medium and the data were retrieved from more than 15 plants per genotype with
three biological replicates. WT, wild-type. Values represent means ± SD. *p < 0.05 (t-tests).
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SUPPLEMENTARY SEQUENCES 1, 2

The CDS and protein sequences of all NtMYB members.

SUPPLEMENTARY FIGURE 1

The R2 and R3 MYB repeats features of MYB members from Arabidopsis
(A) and tobacco (B). The asterisks indicate the conserved Tryptophan (W)

residues in the MYB repeats.

SUPPLEMENTARY FIGURE 2

Conserved motifs and exon-intron structure organizations of

NtMYB members;

SUPPLEMENTARY FIGURE 3

Detailed sequence information for each motif in NtMYB proteins;

SUPPLEMENTARY FIGURE 4

Regulatory elements in the promoter regions of tobacco R2R3-MYB

genes. The color represents the number of cis-elements contained in
the promoter sequence.

SUPPLEMENTARY FIGURE 5

Subcellular localization of NtMYB102. The location of the nucleus was

determined by 4,6-diamidino-2-phenylindole (DAPI) staining.

SUPPLEMENTARY FIGURE 6

The expression level of NtMYB102 gene in wild-type and two

overexpression lines, the expression level of each genotype was
calculated relative to the wild-type.

SUPPLEMENTARY FIGURE 7

The expression pattern of the housekeeping gene L25 with the reported

RNA-Seq data. (A) The expression pattern of the L25 gene in tested
tissues. (B) The expression pattern of the L25 gene in tobacco middle

leaves under different periods. The numbers represent the normalized
data of gene expression.
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