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functional traits to light
intensity across common urban
plant species in Lanzhou,
northwestern China
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and Hailong Chang3

1College of Forestry, Gansu Agricultural University, Lanzhou, China, 2College of Environmental Sciences,
Sichuan Agricultural University, Chendu, China, 3College of Land Resources and Environment, Jiangxi
Agricultural University, Nanchang, China
Leaves are the most important photosynthetic organs in plants. Understanding the

growth strategy of leaves in different habitats is crucial for elucidating the

mechanisms underlying plant response and adaptation to the environment

change. This study investigated the scaling relationships of the laminar area (LA),

leaf fresh mass (LFM), leaf dry mass (LDM), and explored leaf nitrogen (N) and

phosphorus (P) content in leaves, and the relative benefits of these pairwise traits in

three common urban plants (Yulania denudata, Parthenocissus quinquefolia, and

Wisteria sinensis) under different light conditions, including (full-sun and canopy-

shade). The results showed that: the scaling exponent of LDM vs LA (> 1, p < 0.05)

meant that the LDM increased faster than LA, and supported the hypothesis of

diminishing returns. The LFM and LDM had isometric relationships in all the three

species, suggesting that the leaf water content of the leaves was nearly unaltered

during laminar growth. Y. denudata andW. sinensis had higher relative benefit in full-

sun habitats, while the reverse was observed in P. quinquefolia. The N and P content

and the N:P ratio in full-sun leaves were generally higher than those of canopy-

shade leaves. The leaves of the three urban plants exhibited a shift in strategy during

transfer from the canopy shaded to the sunny habitat for adapting to the lower light

conditions. The response of plant leaves to the environment shapes the rich

variations at the leaf level, and quantification of the relative benefits of plants in

different habitats provides novel insights into the response and adaptation strategies

of plants.
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1 Introduction

Leaves represent the primary light harvesting organs in vascular

plants, and are the main components responsible for energy transfer

between plants and the external environment (Milla and Reich, 2007;

Sun et al., 2017). It is therefore important to understand how plants

adapt to environmental var iat ions by adjustment and

complementation for ensuring survival and seeking maximum

benefits. Despite differences, leaf sizes, laminar area (LA), and mass

of lamina are closely related to each other (Wright et al., 2004; Li et al.,

2008; Shi et al., 2020). Therefore, analyses of the relationship between

LA and mass of lamina can aid in effective evaluation of the

photosynthetic capacity, terrestrial biomass, and even ecosystem

functions (Zhang and Feng, 2004; Niklas et al., 2007).

In scaling relationships, any two traits can be expressed by the

scaling equation y = b x a, where x and y are pairwise traits, b is the

scaling (normalization) constant, and a is the scaling exponent

(Niklas et al., 2007; Sun et al., 2017). In practical applications, this

power function is often transformed to a logarithmic function, in

which case the scaling equation takes the form log y = log b + a log x

(Milla and Reich, 2007; Cheng et al., 2009). In this context, the

hypothesis of diminishing returns predicts that the relationship

between LA and laminar mass is greater than unity (that is, a > 1),

indicating that despite incremental gains in laminar mass, the LA

does not increase proportionally (Huang et al., 2019; Shi et al., 2020).

If this hypothesis is true, the specific leaf area (SLA), which is a crucial

index of photosynthetic efficiency and determined using the equation

SLA = LA/leaf dry mass (LDM), would decrease with increasing LA.

In previous studies, researchers have often considered LA and

LDM as benefits and costs, respectively, and they can calculate SLA

(Milla and Reich, 2007; Li et al., 2008; Dinesh et al., 2019). Numerous

empirical studies have demonstrated that specific areas of leaves are

positively correlated with the net photosynthetic rate (Niklas et al.,

2007), and the underlying message here is that LA and LDM are

closely related to photosynthesis (Huang et al., 2019; Shi et al., 2020).

As aforementioned, the formula can be used for theoretically

determining the fresh and dry mass of laminae, and the

relationship between the dry mass and fresh mass reflects the

dynamic characteristics of the water content of leaves. Therefore,

elucidating the complex relationship among laminar fresh mass, dry

mass, and area by analyzing their scaling relationship is important for

understanding the structural relationship of leaves.

When exposed to habitat stress, plants frequently employ

phenotypic plasticity for adapting to the environment (Lusk, 2004;

Kelsey and Jason, 2018; Esperón et al., 2020). When the levels of stress

are extremely high, plants may induce a shift in ecological strategy, as

described in the leaf economics spectrum (LES) (Wright et al., 2004).

Apart from leaf morphology, alterations are also observed in leaf

inclusions (water content or enzyme activity, for instance), including

the LA, nitrogen (N) and phosphorus (P) content, and other

parameters, in heterogeneous habitats (Liu et al., 2007; Dinesh

et al., 2019). Light is an abiotic factor that is necessary for the

survival of plants, and alterations in the intensity of light affect the

normal growth and photosynthetic rate of plants, especially for

understory species (Aleric and Kirkman, 2005; Selaya et al., 2008;

Valladares and Niinemets, 2008; Liu et al., 2016). A previous study

demonstrated that the presence of shade significantly decreases leaf
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size and laminar mass per unit area (reciprocal of SLA) in rainforest

plants (Meng et al., 2014). Some other studies have confirmed that

nitrogen concentration per unit leaf area was greater in current-year

foliage from high-light environments than in current-year foliage

from low-light environments (Zhang and Feng, 2004; Katahata et al.,

2007). Unfortunately, quantitative comparisons are not effective in

clarifying whether there has been a shift in plant adaptation strategies.

It is therefore necessary to determine whether plants gain more

relative benefits in shaded or unshaded habitats, and whether the

alterations in different functional traits result from phenotypic

plasticity or a shift in ecological strategy.

To this end, we selected three urban plants, namely, Yulania

denudata, Parthenocissus quinquefolia, and Wisteria sinensis, and

determined seven major functional traits of the leaves under

different light intensities (full sun and canopy shade). We

subsequently calculated the relative benefits in the different habitats,

and proposed the following hypotheses: (1) the scaling relationship

between the LA and laminar mass supports the hypothesis of

diminishing returns; and (2) the adaptation strategy of leaves

shifted under different conditions of light.
2 Materials and methods

2.1 Study site

The study was conducted in and around the campus of Gansu

Agricultural University, Lanzhou, China. Lanzhou city is located in

the north-west of the Loess plateau, and has a dominant subtropical

continental monsoon climate with four distinct seasons. Summer is

hot and rainy, with rainfall accounting for more than 60% of the year,

while winter is cold and dry. The lowest and highest temperatures are

-10°C (in February) and 36°C (in July), respectively. The annual mean

temperature is 10.3°C and the annual mean precipitation is 357 mm.

The soil types are primarily calcareous, chestnut, and cinnamon, and

are nutrient barren with scarce natural vegetation.
2.2 Plant material

Urban plants are the main vegetation cover in cities, which are

watered on a regular basis every month. In this study, we selected

three common plants, namely, Y. denudata, P. quinquefolia, and W.

sinensis. Y. denudata is a deciduous tree, P. quinquefolia and W.

sinensis are deciduous lianas. Some of them were growing under the

canopy of large trees or on the north side of tall buildings, while some

were completely exposed to the sun. Based on the differences in light

exposure, the habitats were classified as shaded and unshaded, or low

light and high light habitats (Table 1).

The sampling was conducted in the month of July in 2021. A total

of 20 individuals (10 individuals each under low and high light) were

selected for each of the three species, and at least 80~150 leaves were

collected from different habitats. The leaves were collected at the

height of 1.8 m and the light intensity at the corresponding position

was simultaneously measured with a handheld illuminometer (TES-

1334A, Taiwan, China). All the collected leaves were subsequently

placed in plastic self-sealing bags in a portable incubator with ice bags
frontiersin.org
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for preventing the leaf blades from deforming and losing water. The

leaf samples were then transferred to the laboratory for

subsequent measurements.
2.3 Leaf traits measurement

The collected leaf samples were individually scanned using a

scanner (EPSON V39, Indonesia), and the images were saved in

bitmap format at a resolution of 300 dpi. The ImageJ software

(version 1.48, National Institutes of Mental Health, Maryland,

America) was used to generate the leaf profiles as black and white

images. The length, width, and area (LA, cm2) of the leaf blades were

measured using the ImageJ software. The leaf fresh mass (LFM, g) was

determined, following which the leaves were dried in a ventilated oven

(Taisite, WHL45B, Tianjin, China) at 105°C for 20 min, and the

temperature was reduced to 75°C until a constant dry mass was

reached, which represented the leaf dry mass (LDM, g) (Pérez et al.,

2013; Huang et al., 2019). The LFM and LDM were measured using

an electronic balance (0.0001 g, Zhuojing Experimental Equipment

Co. Ltd., BMS, Shanghai, China). Specific leaf area (SLA, cm2/g) was

calculated by LA/LDM. The dried leaves were finally crushed and

passed through a fine 800 mesh sieve for analyzing the total N and P

content. The total N content was determined by the H2SO4-H2O2

method, and the total P was determined using the molybdenum

antimony scandium colorimetric method. Finally, the phenotypic

plasticity index (PPI) was calculated according to Valladares et al.

(2006) method, i.e. PPI = [(max - min)/max], and it was a

dimensionless parameter, the greater value indicated stronger

phenotypic plasticity.
2.4 Scaling relationship analysis

The relationships among LA, LFM, and LDM (namely, LDM vs.

LFM, LFM vs. LA, and LDM vs. LA) can be described by a

mathematical equation of the type y = b x a, which can be linearized

as log (y) = log (b) + a log (x), where x and y determine whether the

relationship is isometric (a = 1) or allometric (a > 1 or a < 1). The b
term represents the y-intercept of the relationship, and its value does

not determine the nature of the relationship. If two lines with the same

slope are compared, the difference between their respective b values
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indicates the difference between the indices. The 95% confidence

intervals (95% CI) of a and b were calculated by Standardized Major

Axis (SMA) regression (i.e. Model type II) using the Standardized

Major Axis Tests and Routines (SMATR) software, version 2.0 (Falster

et al., 2006). In order to make the data more closely to the normal

distribution, the leaf trait values were analyzed by scaling after lg10

conversion. Additionally, the significant difference between the slope

and unity was calculated for all the parameters for assessing the

relationship between the allometric growth index and unity by Wald

significance test (Warton et al., 2006). If the difference between the

slope and unity was not significant, the relationship between the two

indices was considered to be isometric; however, if the slope was greater

than or less than unity, the relationship between the two indices was

considered to be allometric.
2.5 Relative benefit analysis

The trade-offs between pairwise traits (A vs B) were calculated as

described hereafter. The benefit for a single object (A or B) is defined

as the relative deviation from the mean for a given observation. Given

the observations for an individual object A, the magnitude of benefit

for object A (BA, A/B) is calculated as: BA = (AOBS-Amin)/(Amax-Amin)

(Bradford and D’Amato, 2012), where AOBS represents the observed

value of A/B, while Amax and Amin are calculated from all the observed

values of A/B (Sun andWang, 2016). The trade-offs range from 0 to 1,

and can be conceptualized as the proportion of possible benefits in

object A (A/B). In cases where certain objects are considered to be

more valuable or important than others, individual objects (A/B) can

be weighted for incorporating these differences during the calculation

of overall benefits and trade-offs. A simple strategy for quantifying the

magnitude of the trade-offs between A and B involves calculating the

root mean square error (RMSE) of the individual benefits of A or B

(Lu et al., 2014; Sun and Wang, 2016). The RMSE approximates the

average deviation from the mean benefit, and is calculated in two

dimensions by determining the distance between the coordinates of

the paired traits and the “1:1 line” where the trade-off is zero

(Bradford and D’Amato, 2012). This method represents an effective

strategy for quantifying the relationship between A and B. A

preliminary definition of relative benefit has been provided by

Bradford and D’Amato (2012), and studies by Lu et al. (2014) and

Sun and Wang (2016) have provided detailed descriptions.
TABLE 1 Light intensity of urban plants in different habitats.

Plant species Light intensity Mean ± SD (Lux)

Y. denudata Low 4088.80 ± 968.40a

High 100319.07 ± 3585.41b

P. quinquefolia Low 3012.80 ± 215.20a

High 102865.60 ± 6670.33b

W. sinensis Low 2080.27 ± 1150.53a

High 106990.27 ± 4926.55b
The different lowercase letters indicate significant differences at the 0.05 level.
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2.6 Statistical analysis

The differences in the N and P contents and the N:P ratio across

the different habitats were determined by one-way analyses of

variance (ANOVA). Light habitats and species difference and their

interaction were conducted by two-ways ANOVA analysis. Principal

component analysis (PCA) was performed for investigating the shifts

in adaptation strategy across different conditions of light. Data

analyses were performed using SPSS 20.0 (Chicago, IBM Corp,

USA), and the graphs were prepared using Origin 2019 (https://

www.originlab.com). The measurements obtained for the different

parameters are presented as the mean ± standard deviation (SD).
3 Results

3.1 Variations in leaf traits and PPI under
different light habitats

The intensity of light significantly altered all the leaf traits with the

exception of the LFM of P. quinquefolia and the LA ofW. sinensis. The

LFM, LDM, and LA of Y. denudata were 1.48 ± 0.47 g, 0.33 ± 0.11 g,

and 76.67 ± 20.05 cm2, respectively, under conditions of low light

(Table 2); which significantly decreased to 0.91 ± 0.24 g, 0.26 ± 0.07 g,

and 41.45 ± 10.01 cm2, respectively, as the intensity of light increased.

The LDM and LA of P. quinquefolia were 0.19 ± 0.07 g and 59.75 ±

19.70 cm2, respectively, under conditions of low light; which changed to

0.23 ± 0.10 g and 47.58 ± 16.27 cm2, respectively, when the intensity of

light increased, while the LFM remained unaltered. The LFM and LDM

of W. sinensis increased significantly from 0.31 ± 0.18 g and 0.08 ±

0.05 g, respectively, to 0.45 ± 0.16 g and 0.17 ± 0.06 g, respectively, as

the intensity of light increased, while the LA remained unaltered. For

the three urban plants, the SLA in low light habitat was significantly

larger than that in high light habitat (p<0.05). Interestingly, we
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observed that the PPI of Y. denudata and P. quinquefolia for the leaf

traits were 0.52–0.77 and 0.54–0.84, respectively, under conditions of

low light; and were 0.41–0.77 and 0.70–0.91, respectively, under

conditions of high light. However, the PPI of W. sinensis was higher

under low light condition (0.49–0.93) and lower (0.54–0.80) under high

light condition. We found that the PPI of SLA was always the smallest

for all kinds of plants and light habitats.
3.2 Scaling relationship between leaf traits
and their relative benefits

For Y. denudata, the slopes between leaf traits were significantly

higher than 1 (p<0.05) (Figure 1; Table 3), except that the slope of

LDM vs LFM was not significant in the high light habitat (p=0.319).

Similarly, the slope of LDM vs LFM for P. quinquefolia did not show

markedly significant differences from unity under conditions of both

low and high light habitats, while the slopes of the other pairwise

traits, namely, LFM vs LA and LDM vs LA, were significantly different

from unity (p<0.001). ForW. sinensis, the slopes of only LDM vs LFM

under both conditions of light, and LFM vs LA under conditions of

low light were not statistically different from unity, while the slopes of

the other pairwise traits were significantly different from unity

(p<0.001). By summarizing the relative benefits for the three

species, we observed that Y. denudata had higher relative benefits

under low light habitat for all the pairwise traits (Figure 2), while the

reverse was observed for P. quinquefolia and W. sinensis.
3.3 N and P content of leaves under
different light habitats

The plants that grew under high light intensity had higher N, P

content and N:P ratios compared to low light intensity (Figure 3). The
TABLE 2 The difference and phenotypic plasticity index (PPI) of urban plant leaf traits in different light habitats.

Plant species Traits
Low light High light

Mean ± SD PPI Mean ± SD PPI

Y. denudata LFM (g) 1.48 ± 0.47 0.73 0.91 ± 0.24 * 0.77

LDM (g) 0.33 ± 0.11 0.77 0.26 ± 0.07 * 0.77

LA (cm2) 76.67 ± 20.05 0.64 41.45 ± 10.01 * 0.71

SLA (cm2/g) 236.47 ± 36.37 0.52 160.54 ± 16.37 * 0.41

P. quinquefolia LFM (g) 0.89 ± 0.34 0.83 0.89 ± 0.39 ns 0.90

LDM (g) 0.19 ± 0.07 0.84 0.23 ± 0.10 * 0.91

LA (cm2) 59.75 ± 19.70 0.77 47.58 ± 16.27 * 0.83

SLA (cm2/g) 325.58 ± 47.73 0.54 219.35 ± 34.49 * 0.70

W. sinensis LFM (g) 0.31 ± 0.18 0.92 0.45 ± 0.16 * 0.79

LDM (g) 0.08 ± 0.05 0.93 0.17 ± 0.06 * 0.80

LA (cm2) 30.88 ± 16.47 0.90 28.63 ± 9.23 ns 0.78

SLA (cm2/g) 399.81 ± 46.82 0.49 171.51 ± 21.39 * 0.54
frontiers
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B C

D E F

G H I

A

FIGURE 1

Scaling relationships between leaf traits in different urban plants. (A–C) represent the fitting relationship between LDM with LFM, LFM with LA, and LDM
with LA of Y. denudata leaves, respectively. (D–F) represent the fitting relationship between LDM with LFM, LFM with LA, and LDM with LA of P.
quinquefolia leaves, respectively. (G–I) represent the fitting relationship between LDM with LFM, LFM with LA, and LDM with LA of W. sinensis leaves,
respectively. Circles represent the observed values; the blue and red solid lines represent SMA fitting lines between leaf traits under low and high light
habitats, respectively; and dotted lines represent 1:1 line. Some 1:1 lines are not shown due to the proportional value of the axes.
TABLE 3 Scaling relationships of leaf traits in urban plants under different light habitats.

Plant species Traits Habitats R2 p
Slope Intercept Isometric

a b p

Y. denudata LDM vs LFM LL 0.96 < 0.01 1.07 -0.66 < 0.050

HL 0.83 < 0.01 0.95 -0.54 0.319

LFM vs LA LL 0.92 < 0.01 1.24 -2.16 < 0.001

HL 0.75 < 0.01 1.14 -1.89 < 0.050

LDM vs LA LL 0.86 < 0.01 1.32 -2.97 < 0.001

HL 0.86 < 0.01 1.09 -2.35 < 0.050

P. quinquefolia LDM vs LFM LL 0.93 < 0.01 1.00 -0.68 0.850

HL 0.97 < 0.01 1.01 -0.60 0.514

LFM vs LA LL 0.96 < 0.01 1.17 -2.13 < 0.001

HL 0.92 < 0.01 1.23 -2.11 < 0.001

LDM vs LA LL 0.87 < 0.01 1.17 -2.80 < 0.001

HL 0.89 < 0.01 1.24 -2.73 < 0.001

(Continued)
F
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TABLE 3 Continued

Plant species Traits Habitats R2 p
Slope Intercept Isometric

a b p

W. sinensis LDM vs LFM LL 0.96 < 0.01 1.01 -0.56 0.608

HL 0.49 < 0.01 1.02 -0.41 0.722

LFM vs LA LL 0.99 < 0.01 1.10 -2.17 < 0.001

HL 0.41 < 0.01 1.11 -1.97 0.111

LDM vs LA LL 0.95 < 0.01 1.11 -2.75 < 0.001

HL 0.88 < 0.01 1.13 -2.42 < 0.001
F
rontiers in Plant Science
 06
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LFM and LDM are represented in g; LA is represented in cm2. LL, low light; HL, high light. a is the slope or the scaling exponent; b is the intercept or scaling constant; the first p indicates linear
correlation; the isometric p indicates whether the slope is significantly different from 1, and p < 0.05 indicates that the slope is significantly different from 1.
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D E F
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FIGURE 2

Relative benefits between paired leaf traits of different urban plant. (A–C) represent the relative benefit between LDM with LFM, LFM with LA, and LDM
with LA of Y. denudata leaves, respectively. (D–F) represent the relative benefit between LDM with LFM, LFM with LA, and LDM with LA of P. quinquefolia
leaves, respectively. (G–I) represent the relative benefit between LDM with LFM, LFM with LA, and LDM with LA of W. sinensis leaves, respectively. The
blue and red points indicate low light and high light habitats, respectively. The relative benefit is represented by the RMSE of paired traits. The RMSE
represents the distance from the coordinate of the paired traits to the diagonal 1:1 line where the trade-off is zero. The farther the distance, the larger
the relative benefit.
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N and P contents of Y. denudata were 6.25 ± 0.15 mg·g-1 and 1.21 ±

0.04 mg·g-1, respectively, under low light conditions, and were

significantly lower than those under high light intensity, which

were 8.29 ± 0.39 mg·g-1 and 1.38 ± 0.06 mg·g-1, respectively. The N:

P ratio under low and high light intensities were 5.18 ± 0.20 and 6.04

± 0.56 (p=0.068), respectively. The N, P, and N:P ratio were 8.27 ±

1.07 mg·g-1, 1.23 ± 0.02 mg·g-1, and 6.74 ± 0.81, respectively, for P.

quinquefolia under low light condition, and 10.01 ± 0.64 mg·g-1, 1.31

± 0.07mg·g-1, and 7.68 ± 0.90, respectively, under high light intensity.

W. sinensis had different N content and N:P ratios under different

light intensities, which were 11.13 ± 2.11mg·g-1 and 8.60 ± 0.31,

respectively, under high light intensity, and 12.55 ± 0.20 mg·g-1 and

9.28 ± 1.41, respectively, under low light intensity. The P content in

the leaves ofW. sinensis was high, being 1.46 ± 0.04mg·g-1, which was

significantly higher than that under conditions of low light, which was

1.21 ± 0.03mg·g-1.
3.4 Combined effects of light and species on
leaf traits

Two-ways ANOVA analysis showed that light habitats had

significant effect on all traits except N:P (F=0.772, p > 0.05)
Frontiers in Plant Science 07
(Table 4). Species differences had significant effects on all traits

except LDM (F=2.799, p > 0.05). In addition, the interaction of the

light habitats and species difference had significant impact on LFM,

LDM, LA, SLA, and P content (p < 0.05). These results further

supplemented and explained the results of one-way ANOVA analysis

for element content.
3.5 Shift in the adaptation strategies of
leaves under different light habitats

PCA of the six leaf traits demonstrated that the explanatory

rates of the first and second principal components were 77.7% and

19.2%, respectively (Figure 4). The absolute value of LFM, LDM,

LA, N content, and N:P ratio were greater than 0.3 on the PC1 axis,

while the absolute value of the LDM and P content were greater

than 0.3 on PC2 axis, which indicated that these six traits can

effectively explain the variation in leaf traits under different light

habitats in different dimensions. Lastly, the results of PCA

revealed an obvious shift in the adaptation strategy from a larger

LA and lower N and P contents under low light habitat to a smaller

LA and higher N and P contents under high light habitat in the

three plants.
B C

D E F

G H I

A

FIGURE 3

The N and P contents and N:P ratios under conditions of different light habitats. (A–C) represent the N, P content and N:P of Y. denudata leaves under different
light habitats, respectively. (D–F) represent the N, P content and N:P of P. quinquefolia leaves under different light habitats, respectively. (G–I) represent the N,
P content and N:P of W. sinensis leaves under different light habitats, respectively. The blue and red circles represent low light and high light, respectively. The
numerical values in the figures represent the mean ± SD. p < 0.05 indicates a significant difference between the two light environments.
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4 Discussion

Plants show different traits in different light habitats. Consistent

with our hypothesis, light significantly changed leaf morphological

traits and element content. The relationship between LDM and LA of

all plants in different light habitats showed diminishing returns, that
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is, with the increase of leaf dry mass, the increase of leaf area gradually

decreased. Except for Y. denudata, most LDM and LFM showed

isomeric relationship, that is, leaf water content gradually increased

with leaf mass. From low light to high light, the leaves tended to have

higher P content. In conclusion, the plants growth strategies changed

under different light habitats.
B

C D

A

FIGURE 4

PCA analysis of leaf traits of urban plants in different light habitats. (A) Scree plot; (B) Loading plot; (C) Loadings of plant traits on the first and second
axes; (D) Score plot and strategy shifts of the different plants under different light habitats.
TABLE 4 Results of two-ways ANOVA for the effects of light conditions, species and their interactions on functional traits of urban plants.

Morphological trait Factor df
LFM LDM LA SLA

F F F F

Light 1
37.854
***

9.959
**

189.92
***

2394.029
***

Species 2
438.488
***

271.936
***

248.150
***

304.924
***

Light×Species 2
75.412
***

59.954
***

56.778
***

300.128
***

Chemical trait Factor df
N P N:P

F F F

Light 1
13.256
**

61.765
***

0.772
ns

Species 2
30.919
***

2.799
ns

20.714
**

Light×Species 2
0.141
ns

5.552
*

1.549
ns
fron
* p < 0.05; ** p < 0.01; *** p < 0.001; ns, no significant.
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4.1 Scaling relationships between leaf traits
and relative benefits

The scaling relationships of leaf traits has been confirmed by a

number of empirical studies, which demonstrated that the habitat,

developmental factors, and phylogeny affect the relationships between

leaf traits (Niklas et al., 2007; Shi et al., 2020). A previous study by Sun

et al. (2017) on five species of bamboos demonstrated a scaling

relationship between LDM and LA under different conditions of

light. Similarly, our results indicated that there was a scaling

relationship between LDM and LA under different light condition,

which supported the law of diminishing returns. Briefly, as the LA

increased, the LDM increased more rapidly, which consequently

decreased the SLA. Interestingly, the scaling exponent (a) of the

LDM and LA of Y. denudata under low light (a = 1.32) was larger

than that of high light intensity (a = 1.09), whereas the scaling

exponents of P. quinquefolia (a = 1.17 and 1.24, respectively, under

low and high light) and W. sinensis (a = 1.11 and 1.13, respectively,

under low and high light) showed a reverse trend. We speculated that

this could be attributed to the differences in plant life forms and leaf

forms (for instance simple and compound leaves). Y. denudata is a

small tree, while the other two plants are woody lianas. There are

significant differences in the hydraulic structures of these plants,

which may lead to differences in laminar and petiolar investment

(Maréchaux et al., 2017). A considerable portion of the biomass of Y.

denudata is contributed to strengthening the support system and

petiolar transportation. In terms of leaf forms, both P. quinquefolia

and W. sinensis have compound leaves, implying that apart from

petioles, the laminar biomass of these plants is also invested in

rachides (Xu et al., 2009). If a scaling relationship exists between

petioles (rachides) and laminar biomass, plants with different leaf

forms may have significant differences in the investment of laminar

biomass (Yang et al., 2009).

In general, regions with high light intensity have lower water

content in soils than regions with low light intensity; therefore, trade-

offs between laminar water content and LDM during plant growth are

more likely under high light intensity than under low light (Meng

et al., 2014; Umaña and Swenson, 2019; Li et al., 2020). The

relationship between LDM and LFM may reflect the variations in

laminar water content, which is the basis of photosynthesis (Santiago

et al, 2018; Dinesh et al., 2019). Our study also demonstrated the

LDM and LFM increased at an equal rate (nearly 1:1) under almost all

conditions, indicating that when the LFM increased, the LDM also

increased gradually, while the water content of the leaves remained

constant. These findings are inconsistent with the results of the study

by Shi et al. (2020) on Fallopia multiflora. These variations are

attributed to differences in the environment between these studies.

Natural rainfall is the only source of water for wild plants; however,

water is not a limiting factor for urban plants. Therefore, urban plants

do not have a very strong demand for water storage during growth

(Song et al., 2021).

Plant SLA in low light habitat was significantly larger than that in

high light habitat, which was consistent with most other studies

(Baird et al., 2017; Power et al., 2019). Plants in high light

environments need to invest more in defense against heat and

damage than shaded plants. Plants under shade may increase their

LA to gain more light, which is consistent with the significant
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difference in LA between different light habitats. We also observed

that the PPI of SLA was the smallest compared with other traits,

which also indicated that SLA was stable and could be used to refer to

the photosynthetic capacity of plants (Liu et al., 2016; Dinesh

et al., 2019).

The trade-offs between pairwise traits in different habitats can

more clearly illustrate the adaptation of plants to the environment.

Only rarely studies have quantified plant habitat preferences using

relative benefits (Cheng et al., 2021; Wang et al., 2021). In general, P.

quinquefolia andW. sinensis have greater relative benefits under high

light habitat, while Y. denudata have greater relative benefits under

low light conditions. This indicates that P. quinquefolia and W.

sinensis can maximize the advantages of functional traits under

high light conditions, while the reverse is observed in Y. denudata.

This may also be the underlying reason why Y. denudata has a higher

slope in low light. In contrast, the slope of the P. quinquefolia andW.

sinensis varied little in different light conditions.
4.2 Stoichiometric characteristics and
strategy shift in leaves

The adaptation of plants to different habitats not only manifests in

leaf morphology but is also observed in the alterations in leaf

inclusions. The results of this study confirmed that the leaves of

plants growing under conditions of low light had lower N and P

contents and N:P ratios. However, this finding was not consistent

with the results of the study by Niinemets et al. (2006), which reported

that plants with larger SLA, corresponding to plants under conditions

of low light in this study, have higher N and P content. Nevertheless,

some studies have suggested that the N and P content of leaves are

expected to increase with increasing light (Katahata et al., 2007;

Puglielli et al., 2020). Compared to conditions of low light, high

light conditions enhance photosynthesis to a certain extent, and also

promote plant growth and development, thereby gradually increasing

the N and P content in leaves. The N:P ratio of the three plants

studied herein was less than 14 or 20 under different light conditions,

indicating that the growth of these plants was restricted by N

availability (Koerselman and Meuleman, 1996; Güsewell, 2004; Yan

et al., 2017). The plants growing under conditions of low light were

more severely restricted by N deficiency, compared to those growing

under conditions of high light. We hypothesized that the lower light

intensity restricted photosynthesis and leaf growth, and that the

canopy intercepted most of the atmospheric N deposition in the

soil. Low N deposition in the soil in which plants are growing can be

an important factor limiting N uptake, especially for urban plants.

The relationships between leaf traits enhance plant adaptability to

the heterogeneous environment. As predicted by the LES (Wright

et al., 2004), the dimensions of LFM, LDM, and LA are different from

the N, P contents and N:P ratios, and their coordination may ensure

the normal growth of plants under different conditions of light (Baird

et al., 2017; Puglielli et al., 2020). It is worth mentioning that the three

urban plants studied herein employed adaptive strategy shifting in

environments with different conditions of light. The relative

displacement of P. quinquefolia was found to be minimal,

suggesting that it has a higher tolerance to conditions of low light

than W. sinensis and Y. denudta. While certain plants are naturally
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capable of tolerating shade, most plants require sufficient light for

carbon gains. Among the six traits, P content appeared to be

independent of the others, and the contribution of P to the PC2

axis was high. This is consistent with the result of significant

difference of P content in leaves under different light habitats, and

also suggests that future research should pay attention to the change

of P content.
5 Conclusion

Adaptive strategy shifting is an important mechanism ensuring

the survival of plants in heterogeneous environments. This study

evaluated plant tendencies under different conditions of light by

incorporating the relative benefits of pairwise leaf traits, and the

results demonstrated that plants perform adaptative strategy shifting

in environments under different conditions of light. In general, the

relationship between LA and LDM under different conditions of light

supported the law of diminishing returns without exception, and

there were significant differences in the stoichiometric characteristics

of leaves under different conditions of light. In future studies, the

coupling relationship between leaf traits and elements should be

clarified, and the adaptation of plants to habitat changes should be

more fully understood in combination with plant biomass and root or

other traits.
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Pérez, H. N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al.
(2013). New handbook for standardised measurement of plant functional traits
worldwide. Aust. J. Bot. 61, 167–234. doi: 10.1071/BT12225

Power, S. C., Verboom, G. A., Bond, W. J., and Cramer, M. D. (2019). Does a tradeoff
between trait plasticity and resource conservatism contribute to the maintenance of
alternative stable states? New Phytol. 223, 1809–1819. doi: 10.1111/nph.15981

Puglielli, G., Laanisto, L., Poorter, H., and Niinemets, Ü. (2020). Global patterns
of biomass allocation in woody species with different tolerances of shade and
drought: Evidence for multiple strategies. New Phytol. 229, 308–322. doi: 10.1111/
nph.16879

Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault,
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