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The NAC transcription factor
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analysis in relation to the rubber
biosynthetic genes
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2National Engineering Research Center of Tree Breeding and Ecological Restoration, College of
Biological Sciences and Technology, Beijing Forestry University, Beijing, China, 3Key Laboratory of
Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry
University, Beijing, China, 4Beijing Laboratory of Urban and Rural Ecological Environment, Beijing
Forestry University, Beijing, China, 5Weixian Eucommia National Forest Tree Germplasm Repository,
Weixian Forestry Cultivation Base of Superior Species, Hebei, China
The NAC transcription factor family is a large plant gene family, participating in

plant growth and development, secondary metabolite synthesis, biotic and

abiotic stresses responses, and hormone signaling. Eucommia ulmoides is a

widely planted economic tree species in China that can produce trans-

polyisoprene: Eucommia rubber (Eu-rubber). However, genome-wide

identification of the NAC gene family has not been reported in E. ulmoides. In

this study, 71 NAC proteins were identified based on genomic database of E.

ulmoides. Phylogenetic analysis showed that the EuNAC proteins were

distributed in 17 subgroups based on homology with NAC proteins in

Arabidopsis, including the E. ulmoides-specific subgroup Eu_NAC. Gene

structure analysis suggested that the number of exons varied from 1 to 7, and

multitudinous EuNAC genes contained two or three exons. Chromosomal

location analysis revealed that the EuNAC genes were unevenly distributed on

16 chromosomes. Three pairs of genes of tandem duplicates genes and 12

segmental duplications were detected, which indicated that segmental

duplications may provide the primary driving force of expansion of EuNAC.

Prediction of cis-regulatory elements indicated that the EuNAC genes were

involved in development, light response, stress response and hormone response.

For the gene expression analysis, the expression levels of EuNAC genes in various

tissues were quite different. To explore the effect of EuNAC genes on Eu-rubber

biosynthesis, a co-expression regulatory network between Eu-rubber

biosynthesis genes and EuNAC genes was constructed, which indicated that

six EuNAC genes may play an important role in the regulation of Eu-rubber

biosynthesis. In addition, this six EuNAC genes expression profiles in E. ulmoides

different tissues were consistent with the trend in Eu-rubber content.
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Quantitative real-time PCR analysis showed that EuNAC genes were responsive

to different hormone treatment. These results will provide a useful reference for

further studies addressing the functional characteristics of the NAC genes and its

potential role in Eu-rubber biosynthesis.
KEYWORDS

Eucommia ulmoides, NAC transcription factor, gene family, gene expression, Eucommia
rubber (Eu-rubber), hormone response
Introduction

NAC [for NAM (no apical meristem), ATAF, and CUC (cup-

shaped cotyledon)] proteins are one of the largest plant

transcription factors (TF) families. NAC TFs are characterized by

a conserved N-terminal NAC domain comprising approximately

150 amino acids and a diversified C-terminal (Ng et al., 2018). The

DNA binding NAC domain is divided into five sub-domains

designated A–E, which are relevant to DNA binding, dimer

formation and multiple other functions (Ooka et al., 2003; Ernst

et al., 2004). In addition, compared with subdomains B and E,

subdomains A, C, and D are highly conserved (Jensen et al., 2010).

The C-terminus has transcriptional activation or transcriptional

repression activity (Mohanta et al., 2020). With the development of

high-throughput sequencing technology, it has become possible to

use genome and transcriptome data to identify and screen all NAC

family genes in species. The members of the NAC gene family has

been widely identified and studied in many species, such as

Arabidopsis thaliana (Ooka et al., 2003), Oryza sativa

(Nuruzzaman et al., 2010), Vitis vinifera (Wang et al., 2013),

Coffea canephora (Dong et al., 2019), and Populus trichocarpa

(Hu et al., 2010).

NAC transcription factors play an important role in regulating

plant growth and development. For example, secondary wall-

associated NAC (SWN) transcription factors play critical roles in

regulating secondary cell wall formation and development (Zhou

et al., 2014; Endo et al., 2015; Zhang et al., 2020; Zhong et al.,

2021a). AtNAC1 and AtNAC2 are involved in lateral root

development by downregulating auxin signals in Arabidopsis

(Guo et al., 2005). At the same time, NAC genes also play a key

role in responses to biotic and abiotic stresses. AtNAC019,

AtNAC055, and AtNAC072 can respond to various abiotic stresses

and hormonal treatments, such as dehydration, cold, salinity,

mechanical damage, and jasmonic acid (JA) and abscisic acid
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(ABA) (Tran et al., 2004). In addition, the involvement of NAC

transcription factors in plant secondary metabolite biosynthesis is

attracting increasing attention (Wang et al., 2018). CsNAC7

positively regulates the caffeine synthase gene yhNMT1 and

promotes caffeine accumulation in Camellia sinensis (Ma et al.,

2022). The overexpression of SmNAC2 reduces the content of

tanshinone in Salvia miltiorrhiza, but silencing SmNAC2

promotes the accumulation of tanshinone (Zhang et al., 2021).

Polyisoprene, an isoprene (C5H8) polymer, is the primary

chemical constituent in natural rubber. Based on the chemical

structures of two isoprene isomers, natural rubber can be

classified as cis-polyisoprene (CPI) and trans-polyisoprene (TPI)

(Baboo et al., 2011). Over 2000 different plant species produce CPI,

including Hevea brasiliensis, Lactuca sativa, Taraxacum kok-saghyz

and Parthenium argentatum. (Mooibroek and Cornish, 2000; van

Beilen and Poirier, 2007). However, only a few plants can produce

trans-rubber, Eucommia ulmoides is a widely known tree species

that can produce TPI: Eu-rubber (Roth et al., 1985; Schlesinger and

Leeper, 2002). Eu-rubber is especially enriched in the leaves, bark,

and peels of E. ulmoides trees (Nakazawa et al., 2009; Wuyun et al.,

2018). Compared with CPI, Eu-rubber has unique features, good

insulation and resistance to acids and alkalis; moreover, it also has

great potential for application in biomedicine, textiles, aerospace

and other fields. (Wang et al., 2020). Therefore, E. ulmoides is an

ideal material for studying the biosynthesis of TPI. Although the

biosynthetic pathway of Eu-rubber has been widely studied, the

molecular mechanisms regulating the biosynthesis of Eu-rubber

remain unclear. However, the NAC gene family of E. ulmoides has

not been systematically analyzed, and its effect on the biosynthesis

of TPI is still unclear.

In this study, we identified 71 E. ulmoides NAC genes and

divided them into 17 subgroups, including an E. ulmoides-specific

subgroup Eu_NAC. A comprehensive analysis of gene structure,

motif composition, chromosomal distribution, gene duplication,

phylogenetic, and cis-acting elements in promoters and syntenic

relationships was completed. In addition, the expression of EuNAC

genes in different tissues was also analyzed. The co-expression

network of EuNAC genes and Eu-rubber biosynthesis genes and

the response to various hormones were also analyzed. The results of

this study will provide a platform to identify the biological function

of NAC genes in E. ulmoides in the future and will be helpful for

further study of the functional characteristics of EuNAC genes in

the mechanism of Eu-rubber biosynthesis.
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Materials and methods

Identification of EuNAC genes in
the E. ulmoides

The protein sequence was obtained from the E. ulmoides

genome. The genome accession number is PRJNA599775 in

NCBI database (https://www.ncbi.nlm.nih.gov/). First, we

downloaded the HMM profile of the NAM domain (PF02365)

from the Pfam database (http://pfam.sanger.ac.uk/). Then, the

HMMER 3.2.1 program was used to identify the NAC protein in

the E. ulmoides genome (Li et al., 2020). The default setting was

used, and the cut-off was 0.01. Finally, the NAM domain of all

candidate NAC genes was determined through CDD (http://

www.ncbi.nlm.nih.gov/cdd) and SMART databases (http://

smart.emblheidelberg.de/). Seventy-one putative NAC genes were

identified. Meanwhile, the physical and chemical parameters of the

EuNAC proteins were predicted by ProtParam (http://

web.expasy.org/protparam/), including the CDS (coding

sequence) length, protein length, molecular weights (MW),

isoelectric points (PI) aliphatic index, and grand average of

hydropathicity (GRAVY). Subcellular localization of all EuNAC

proteins was performed using Euk-mPLoc 2.0 (http://

www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/).
Phylogenetic analysis and
multiple alignments

The NAC protein sequences of Arabidopsis were downloaded

from the Arabidopsis genome TAIR 11 (https://www.arabidopsis.org/

). Multiple sequence alignments of E. ulmoides and Arabidopsis NAC

proteins were performed using MUSCLE with default parameters.

The phylogenetic and molecular evolutionary analyses were

conducted using MEGA (version X) (Sudhir et al., 2018). The

neighbor-joining (NJ) method was selected for constructing the

phylogenetic tree with 1000 bootstrap replications. The

phylogenetic tree was visualized in the EvolView program (https://

www.evolgenius.info//evolview/). All the identified EuNAC genes

were assigned into different groups based on the classification of

the Arabidopsis NACs.
Gene structure and motif analysis

Gene structure was investigated using the TBtools software

(version 1.098696). The MEME online program (http://

meme.nbcr.net/meme/intro.html) for protein sequence analysis

was used to identify conserved motifs in the identified EuNACs

proteins, with the maximum number of motifs set to 10 and the

width of each motif ranging from 6 to 50. The TBtools software was

used to integrate phylogenetic trees, conserved motifs, and gene

structure results (Chen et al., 2020).
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Chromosomal location, gene duplication,
and synteny analysis with several
plant species

The chromosomal position of NAC genes was obtained from the

E. ulmoides genome annotations using TBtools. The chromosomal

map of E. ulmoides NAC genes was visualized by MG2C.10 (http://

mg2c.iask.in/mg2c_v2.1/). EuNAC gene duplication events was

examined by using MCScanX software with default parameters

(Wang et al., 2012). Dual Synteny Plotter software (https://

github.com/CJ-Chen/TBtools/) was used to analyze the homology

of the NAC gene between E. ulmoides and A.thaliana, C.canephora,

V.vinifera, H.brasiliensis, O.sativa, and S.bicolor, respectively.

TBtools software was used to visualize the obtained results, the

obtained NAC homologous pairs are highlighted (Chen et al., 2020).

The parameters non-synonymous mutations (Ka), synonymous

mutations (Ks) and estimated evolutionary constraints (Ka/Ks)

among the EuNACs genes were calculated using TBtools.
Analysis of cis-acting elements in
EuNACs promoters

The promoter refers to the region upstream sequence of the

transcription start site (Shafee and Lowe, 2017). At present, we are

unable to identify the transcription start site of genes in E.ulmoides, so

we used the upstream 2000 bp sequence of the translational start codon

(ATG) of EuNAC genes and Eu-rubber biosynthesis pathway genes,

and the sequences were submitted to PlantCARE database (http://

bioinformatics.psb.ugent.be/webtools/plantcare/html/) to predict cis-

acting elements. This means that we may have explored 5’ UTR or the

sequences analyzed were only part of the promoter regulatory region.
Expression patterns of EuNACs in different
tissue based on the public RNA-seq
data sets

To survey the expression patterns of EuNAC genes in different

tissues, the transcriptome data of E. ulmoides in various tissues (Leaf,

Xylem, Seed, and Peel) were obtained from the NCBI sequence read

archive (SRX7525252-54, SRX7532003-05, SRX7531725-27, and

SRX7533248-50). The transcript abundance of E. ulmoides genes

was calculated as fragments per kilobase of exon model per million

mapped reads (FPKM). The EuNAC genes expression level was

presented based on the transformed data of log2 (FPKM+1) values. A

clustered heat map was drawn using Tbtools software, the approach

of clustering analysis is hierarchical clustering. (Chen et al., 2020).
Gene Co-Expression Network
Construction

To study the relationship between EuNAC genes and Eu-rubber

biosynthesis pathway genes in E. ulmoides, we used the FPKM of
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these genes to construct the network. Pearson’s correlation analysis

was performed using the OmicStudio tools at https://

www.omicstudio.cn/tool/62 (Lyu et al., 2023). Genes with a

Pearson’s correlation coefficient within the appropriate range

(r ≥0.6 or ≤−0.6) and p < 0.05 were selected to generate a co-

expression network using Cytoscape (version 3.9.0). A positive

value represented a positive correlation, and a negative value

represented a negative correlation. The connectivity degree of

genes was calculated using the Cytoscape software. The node size

was positively correlated with the degree of the connectivity of

genes. Nodes were colored red for positive regulation and blue for

negative regulation.
Plant materials and hormone treatments

The E. ulmoides seeds were collected from 20-year-old diploid

E. ulmoides trees at Beijing Forestry University, Beijing, China. The

E. ulmoides were cultured in a growth chamber with a 16-h light/8-h

dark cycle at 28°C. Studies reported that applications of exogenous

hormones, such as 2-(3,4-dichlorophenoxy)-triethylamine

(DCPTA), gibberellin (GA3) and brassinolide (BR) increased Eu-

rubber concentration in E. ulmoides leaves and spaying BR at 5 mg/

L, DCPTA at 500 mg/L and GA3 at 300 mg/L was the optimal

treatment concentration (Liu H. et al., 2018). To examine the effect

of hormones on the expression of EuNAC genes, 5-month-old

seedling leaves of E. ulmoides were sprayed with 300 mg/L GA3, 5

mg/L 1% BR, and 500 mg/L DCPTA until there is liquid dripping.

Spray water was used as the control treatment. The leaves were

sampled at 0, 3, 6, 12, and 24 h after hormone treatments, frozen in

liquid nitrogen, and finally stored at −80°C for RNA extraction.

There were three independent replicates for each treatment.
RNA extraction, cDNA synthesis, and qRT-
PCR gene expression analysis

The RN38-EASYspin Plus Kit (Aidlab Biotechnologies Co., Ltd) was

used to extract total RNA according to themanufacturer’s instructions. A

NanoDrop ND-2000 (Thermo Scientific, USA) spectrophotometer and

1% agarose gel electrophoresis were used to detect the RNA quality of all

samples. The PC54-TRUEscript RT kit (Aidlab Biotechnologies Co., Ltd)

was used to synthesize first-strand cDNA. The real-time polymerase

chain reaction (RT-PCR) was accomplished using SYBR®Green Premix

Pro Taq HS qPCR Kit (Rox Plus) AG11718 (Accurate Biotechnology

(Hunan) Co., Ltd.) using an Applied Biosystems 7500 Fast instrument

(AB Ltd., USA). The qRT-PCR master mix included 10 µL 2× SYBR

Green Pro Taq HS Premix (ROX Plus), 0.4 µL forward primer, 0.4 µL

reverse primer, 2 µL cDNA template, and 7.2 µL RNase-free ddH2O. The

RT-PCR was performed using 40 cycles under the following conditions:

95°C for 1 min for pre-degeneration, 95°C for 5 s for degeneration, and

60°C for 30 s for the extension. Afterward, the samples were heated to 95°

C for 15 s and then 60°C for 1 min for dissolution curve analysis. Three

technical replicates and three biological replicates were used for each

sample and randomly selected genes. The primers used in the present

study were designed using primer3plus (http://www.primer3plus.com/)
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and are listed in Supplementary Table S9. UBCE2 was chosen as the

reference gene (Ye et al., 2018), and the −2–△△Ct method was used to

calculate the relative gene expression levels (Schmittgen and Livak, 2008).
Statistical analysis

The statistical analyses were conducted using SPSS Statistics

version 20 software, and the Student t-test was selected for

significant difference analysis (* p < 0.05 and ** p < 0.01).
Results

Identification of the EuNAC genes
in E. ulmoides

Based on the genomic information of E. ulmoides, 74 putative

NAC genes were obtained using HMM. According to the results of

CDD and SMART databases, three genes without NAC and NAM

domains were eliminated, leaving 71 EuNAC genes, which were

named EuNAC1 to EuNAC71 according to their chromosomal

position (Supplementary Table S1).

Gene characteristics, including the length of the CDS, the length of

the protein sequence, the protein MW, pI, GRAVY, aliphatic index,

and the subcellular localization, were examined (Supplementary Table

S2). The protein sequence length of all EuNAC proteins ranged from

86 (EuNAC49) to 617 (EuNAC65) amino acids. The MW of the

proteins was between 9821.26 (EuNAC49) and 70458.62 (EuNAC65)

Da, and the pI ranged from 4.51 (EuNAC20) to 10.01 (EuNAC5).

The aliphatic index varied from 47.7 (EuNAC35) to 100.0

(EuNAC13), which suggested that these predicted EuNAC

proteins contained rich aliphatic amino acids. The GRAVY values

of the EuNAC proteins were negative, except for EuNAC13, which

has a positive value, indicating that most EuNAC proteins were

hydrophobic. The predicted subcellular localization results showed

that 69 EuNAC proteins were located in the nuclear region, whereas

EuNAC13 was located in the nuclear or mitochondrion, and

EuNAC60 was located in the nuclear or cytoplasm.
Phylogenetic analysis and classification of
EuNAC genes

To explore the evolutionary relationship of theNAC gene family

in E. ulmoides, an unrooted neighbor-joining (NJ) tree (with 1000

bootstraps) was constructed using the amino acid sequence

alignment of NAC proteins from E. ulmoides and A. thaliana

(Figure 1). The 71 E. ulmoides NAC genes could be divided into

17 subgroups: the ONAC022, AtNAC3, ATAF, NAP, SENU5,

ONAC003, TIP, OsNAC8, ANAC063, TERN, ANAC006, NAC2,

ANAC011, NAC1, NAM, OsNAC7 subgroups and an E. ulmoides-

specific subgroup, named Eu_NAC. However, in E. ulmoides, no

NAC members were detected from the ANAC001 subgroup. The

subgroups AtNAC3,OsNAC8, TERN, and ANAC063 each contained

only one EuNAC protein, and only two EuNAC proteins belonged
frontiersin.org
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to the subgroups NAP and SENU5 each, whereas the subgroup

OsNAC7 contained the greatest number of EuNAC proteins (12).
Gene structures, domain, and putative
motifs characterization of EuNAC genes

The NAC proteins comprised an N-terminal NAC domain and a

long transcriptional activation region at the C-terminal (Figure 2C;

Supplementary Table S3). As shown in Figure 3, All the EuNAC

proteins contained five NAC subdomains (A–E), except EuNAC13,

EuNAC43, EuNAC5, and EuNAC18, which lacked domains E.

To reveal the protein structural diversification of EuNAC proteins,

10 conserved motifs were identified by MEME (Figure 2B). The amino

acid sequences of each motif are listed in Figure S1. The lengths of these

conserved motifs ranged from 11 to 57 amino acids and were highly

diverse. Motifs 1–6 were the most conserved motifs in EuNAC proteins,

Motif 8 and Motif 9 only appeared in ONAC003. Among 71 EuNAC

proteins, EuNAC49, EuNAC53, and EuNAC13 only had one type of

motif, whereas EuNAC71, EuNAC64, EuNAC54, EuNAC56, EuNAC55,

EuNAC65, EuNAC70, and EuNAC42 contain the largest number of

motifs (eight types). The motifs of EuNAC members within the same
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subgroups show similar patterns, indicating that NAC proteins placed in

the same group probably have similar functions. However, these motifs’

specific biological functions are unclear and need further study.

To obtain more insights into the evolution of the NAC family in E.

ulmoides, the structural features of all the identified EuNAC genes were

analyzed. As shown in Figure 2D, among the EuNAC genes, all of these

contain exons; only EuNAC5, EuNAC17, EuNAC20, and EuNAC49

had one intron and two exons, and over half (40, 56.34%) had two

introns and three exons, and only EuNAC46 genes had seven introns

and eight exons (Figure 2D; Supplementary Table S4).Most genes from

the same subgroup had a similar exon/intron structure; for example,

87.50% ofNAM subgroup genes in E. ulmoides had three exons, and all

of the ONAC022 subgroups genes had three exons.
Chromosome distribution and synteny
analysis of EuNAC genes

A total of 71 EuNAC genes were unevenly distributed on 16

chromosomes of E. ulmoides, there was no EuNAC located on

chromosome 11. Chromosome 8 had the largest number of EuNAC

genes (8, 25.35%), and chromosome 3 only harbored EuNAC12
FIGURE 1

Phylogeny of the NAC TFs of Arabidopsis thaliana and Eucommia ulmoides. The tree branched the NAC proteins into different groups illustrated by
different colored clusters within the clade. Markers of genes with red circles were EuNAC. The phylogenetic tree was prepared using the neighbor-
joining (NJ) method with 1000 bootstrap replicates using MEGA 6.0.
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(Figure 4). The E. ulmoides-specific NAC genes are distributed on

chromosomes 5 and 14. The EuNAC70 and EuNAC71 genes

mapped to the scaffolds of the E. ulmoides genome.

Tandem duplication is an essential source for the origin and

evolution of multigene families. In this study, only three pairs of

genes of tandem duplicates genes in the EuNAC gene family were

identified: EuNAC9/10, EuNAC27/28, and EuNAC 55/56. These are

highlighted with a red rectangle (Figure 5). The tandem duplicated

genes are presented on chromosomes 2, 7, and 13. There were 12

segmental duplication gene pairs identified in the E. ulmoides NAC

gene family. In addition, the Ka/Ks values for the EuNAC genes in

tandem and segmental duplications were calculated to determine

the selection type that promoted the evolution of the EuNAC family.

The Ka/Ks values of segmental duplication gene pairs ranged from

0.11 to 0.33, and those of the three tandem duplication gene pairs

varied from 0.15 to 0.55, showing that all the gene pairs have a Ka/

Ks ratio <1 (Supplementary Table S5). These results indicated that

the evolution of EuNAC genes is mainly affected under purification

selection pressure.

To further explore the evolutionary relationship of the NAC

gene family in E. ulmoides, we constructed syntenic maps of the E.

ulmoides compared with six different species including four
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dicotyledons (Arabidopsis thaliana, Coffea canephora, Vitis

vinifera and Hevea brasiliensis) and two monocotyledons (Oryza

sativa and Sorghum bicolor). A total of 58, 46, 26, 87, 5, and 10

similar NAC gene pairs were identified between E. ulmoides and

A.thaliana, C.canephora, V.vinifera, H.brasiliensis, O.sativa, and

S.bicolor, respectively (Figure 6, Supplementary Table S6).
Cis-acting elements in the promoters of
EuNAC genes

To investigate the cis-acting elements of the 71 EuNAC genes, a

2000-bp sequence upstream from the translational start codon was

analyzed. The cis-acting elements of the EuNAC genes contained 35

categories, which were related to phytohormone responsive, stress-

responsive, light responsiveness, and plant growth and development

(Figure 7; Supplementary Table S7).

We found that 757 (28.33%) elements, were involved in light

responsiveness, including AE-box, ATC-motif, ATCT-motif, Box 4,

CCGTCC-box, circadian, GATA-motif, G-box, GT1-motif, and

MRE elements. In addition, 70 (2.62%) elements, including CAT-

box, MSA-like, and O2-site, were related to plant growth and
A B DC

FIGURE 2

Phylogenetic relationships, domin, gene structure and architecture of conserved protein motifs in NAC genes from E. ulmoides. (A) Estimated
phylogeny of EuNAC genes. (B) Different motifs were represented by diferent colors. The black lines represented the non-conserved sequences.
Lengths of motifs for each EuNAC protein were displayed proportionally. (C) NAC domains were represented by green. (D) UTR were represented by
green, CDS were represented by yellow. Nucleic acid lengths are indicated by the scale at the bottom.
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development. The promoter regions of many EuNAC genes contain

multiple binding sites involved in stress response. A total of 925

(34.62%) elements were involved in stress response, such as ARE,

GC-motif, LTR, MBS, MYB, TC-rich repeats, W box, and WUN-

motif. The MYB element was related to drought inducibility, 69

EuNAC genes contained the MYB element, which accounted for

16.95% of the total number of cis-acting elements in the EuNAC

family. Moreover, more than half of the EuNAC genes contained the

W box element. A total of 2672 elements were predicted in the

promoter regions of EuNAC genes. Among them, 920 (34.43%)

elements were involved in response to plant hormones, such as

ABA (ABRE), auxin (AuxRR-core, TGA-element), ethylene (ERE),

GA3 (P-box, TATC-box, GARE-motif), salicylic acid (TCA-

element), and methyl jasmonate (CGTCA-motif, TGACG-motif,

MYC). Except for EuNAC7 and EuNAC8, all EuNAC genes

contained MeJA-responsive elements, which accounted for

18.56% of the total number of cis-acting elements in the EuNAC

genes. In addition, 58 EuNAC genes contained ABA-responsive

elements, accounting for 6.62% of the total number of cis-acting

elements in the EuNAC family, followed by 108 (4.04%) ethylene-

responsive elements.
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Expression profiling of EuNAC genes in
various tissues

To determine the expression patterns of individual NAC genes

in various tissues, a hierarchical clustering heat map was

constructed using the public RNA-seq data obtained from NCBI

(Figure 8). A total of 71 EuNAC genes were divided into eight

groups based on their expression profiles. The expression levels of

EuNAC genes were significantly different in diverse tissues. For

instance, the FPKM of 28 EuNAC genes in Group E was less than

0.1 in all examined organizations, wherein EuNAC5, EuNAC9,

EuNAC18 , EuNAC29 , EuNAC53 , EuNAC55 , EuNAC56 ,

EuNAC58, and EuNAC62 had a FPKM value of 0, reflecting their

lack of expression during the sampled stages. In contrast, 11 EuNAC

genes in Group A were expressed at high levels in all examined

tissues. In addition to low expression in leaves, EuNAC12,

EuNAC15, and EuNAC60 were the highest transcript abundances

in the peel, seed, and xylem. Some genes exhibited significant trends

in different tissues. Ten genes in the xylem in group D, two genes in

the seed in group F (EuNAC45 and EuNAC46), and seven genes in

the peel in group H presented high transcript abundances and
A B D EC

FIGURE 3

Sequence alignment of two groups of EuNAC domains amino acid sequences. Subdomains (A–E) are shown by arrows above the sequences.
Overall conserved amino acids were shaded in blue.
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might play a critical role in the development of distinct tissues. The

Group C genes were significantly induced in the peel and seed but

rarely expressed in the leaf and xylem, meaning that EuNAC10,

EuNAC42, and EuNAC8 were associated with fruit development.

The transcriptional levels of EuNAC69, EuNAC68, EuNAC1, and

EuNAC22 in Group G were highly expressed in leaves and peel but

rarely expressed in the xylem and seeds.
Co−expression networks between EuNAC
genes and Eu-rubber biosynthesis genes

It has been reported that at least 52 genes in E. ulmoides are

involved in the biosynthetic pathway of Eu-rubber (Li et al., 2020).

The molecular structure of Eu-rubber is trans-1,4-polyisoprene

(TPI), which is synthesized from the precursor ispentenyl

diphosphate (IPP) via the MVA and MEP pathways.

To understand the possible relationship between NAC

transcription factors in E. ulmoides and Eu-rubber biosynthesis

pathway genes, we constructed a co-expression network containing

Eu-rubber biosynthesis genes and 71 EuNAC genes (Figure 9). The

screening thresholds were |r| ≥0.60 and p < 0.05. The larger nodes

have stronger connectivity degrees, indicating that the genes may be

more important. In the positive regulatory co-expression network, we

identified 345 pairs correlated between 46 Eu-rubber structural genes

and 48 EuNAC genes. The degree means the number of Eu-rubber
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genes associated with EuNAC. Statistical analysis showed that 11

EuNAC genes had a degree of connection greater than 10. Among

them, EuNAC22 had the highest degree of connection, followed by

EuNAC1, EuNAC68, and EuNAC69, all of which have a degree of

connection greater than 20, suggesting that these four genes may play

a crucial positive role in regulating Eu-rubber biosynthesis. In the

negative regulatory co-expression network, we identified 132 pairs

correlated between 37 Eu-rubber structural genes and 35 EuNAC

genes, which was significantly less than the number of positive

regulatory genes. Only EuNAC12 and EuNAC59 had a connection

greater than 10, which might negatively regulate Eu-rubber

biosynthesis. The results showed that EuNAC22, EuNAC1,

EuNAC68, EuNAC69, EuNAC12, and EuNAC59 have the highest

degree of connectivity in the co-expression network, indicating that

these six genes are probably important in the regulation of Eu-rubber.
EuNAC genes expression in response to
hormone treatment

Co-expression analysis was consistent with the results of

expression profiles in different tissues, indicating that EuNAC22,

EuNAC1, EuNAC68, EuNAC69, EuNAC12, and EuNAC59may play

an important role in the regulation of Eu-rubber biosynthesis. To

further explore the potential role of these six genes in Eu-rubber

biosynthesis, we selected these six genes as candidate genes and paid
FIGURE 4

Gene Location on chromosome of E. ulmoides. Vertical bars represent the chromosomes of E. ulmoides. The chromosome number is to the up of
each chromosome. The scale on the left represents chromosome length.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1030298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1030298
attention to the expression levels of these genes after exogenous

hormone treatment, the expression levels of the EuNAC gene family

were tested in E. ulmoides by qRT-PCR under GA3, BR, and

DCPTA treatments.

There were significant expression changes of these genes under

different treatments (Figure 10). Among them, the expression levels of

EuNAC22, EuNAC68, and EuNAC69 were shown to be significantly

up-regulated under GA3 treatment at all detected time points, while the

expression levels of EuNAC12 and EuNAC59 were observably

decreased, the expression level of EuNAC1 was only significantly

increased at 12 h after GA3 treatment. Under BR treatment, the

expression level of EuNAC1 significantly increased 6 h and 24 h after

treatment, the expression levels of EuNAC22 and EuNAC68

significantly increased at all subsequent time points after treatment

(except for 3 h after treatment), and the expression level of EuNAC69

was significantly induced. The expression level of EuNAC59 was not

different from the control at 24 h after treatment, and EuNAC12 and

EuNAC59 were significantly inhibited at other time points. Under

DCPTA treatment, the expression of EuNAC1 and EuNAC22 were

highly induced, and EuNAC68 was significantly increased before 24 h

of DCPTA treatment. Except for 12 h after treatment, the expression
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level of EuNAC69 was higher than that of the control after

DCPTA treatment.

EuNAC1 and EuNAC22 had the highest expression levels under

the DCPTA treatment, EuNAC68 had the highest expression levels

under the GA3 treatment, and EuNAC69 had the highest expression

levels under the BR treatment. The expression of EuNAC68 quickly

reached a maximum at 6 h after GA3 and BR treatments but reached

a maximum at 12 h after the DCPTA treatment. The expression of

EuNAC1 and EuNAC22 was significantly up-regulated at 24 h after

DCPTA treatment. In addition, EuNAC1 and EuNAC69 showed

relative expression peaks at 24 h after BR treatment. These results

suggest that the EuNAC genes respond to hormonal treatment and

that multiple EuNAC genes may play important roles in the

different stages of the hormone response.
Discussion

The NAC family is one of the largest plant transcription factor

families. The NAC transcription factors play a critical role in plant

growth and development, secondary metabolite synthesis, biotic
FIGURE 5

Schematic representations for the chromosomal distribution and interchromosomal relationships of EuNAC genes. Gray lines indicate all synteny
blocks in the pineapple genome, and the red lines indicate duplicated NAC gene pairs. The tandem duplicated genes were highlighted with a red
rectangle. The red scale bar marked on the chromosome represents the length of the chromosome (Mb). The chromosome number is indicated at
the bottom of each chromosome.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1030298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1030298
and abiotic stresses, and hormone signaling pathways (Wang et al.,

2014a; Wang et al., 2014b; Liu et al., 2016; Chen et al., 2018).

Comprehensive investigations of the NAC family genes have been

carried out in various plant species, such as Arabidopsis, rice, maize,

and soybean. However, a systematic and comprehensive analysis of

the E. ulmoides NAC family had not yet been carried out. In this

study, we identified and comprehensively analyzed the genes of the

NAC family of E. ulmoides.

The number of members of the NAC transcription factor gene

family in different species varies significantly. In this study, we used the

E. ulmoides genome to identify 71 EuNAC genes; the number of NAC

genes was similar to C. canephora (63) (Dong et al., 2019) and V.

vinifera (74) (Wang et al., 2013), less than 105 members were

identified in A. thaliana (Ooka et al., 2003), 163 members

were identified in P. trichocarpa (Hu et al., 2010), 189 members

were identified in E. grandis (Hussey et al., 2015). In this study, a total
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of 71NAC genes were identified based on the E. ulmoides genome (size

of 1.02 G) (Li et al., 2020), while the genome size of Arabidopsis is 125

Mb with 105 NAC members, and the genome size of rice is 466 Mb

with 151 NAC members (Ooka et al., 2003). It was indicated that the

genome size and the number of NAC family members are not always

related. We suspected that some EuNAC genes were lost during

evolution, and similar evolutionary loss events occurred in the

WRKY and GLK transcription factor family (Liu et al., 2021; Liu

et al., 2022). The diversity in the number ofNAC gene family members

in different species may be influenced genome duplication events, such

as whole-genome duplication, segmental duplication, or tandem

duplication (Zhang, 2003; Chang and Duda, 2012). In the study,

three pairs of genes of tandem duplication and 12 segmental

duplication were identified among the EuNAC genes. Therefore,

gene duplication, especially segmental duplication, may provide the

primary driving force of expansion of EuNAC. This result indicated
FIGURE 6

Synteny analysis of NAC genes between E. ulmoides and six representative plant species. Gray lines in the background indicate the collinear blocks
within the E. ulmoides and other plant genomes, whereas the red lines highlight the syntenic NAC gene pairs.
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that, although some EuNAC genes were lost during evolution, the

sufficient genetic diversity has been retained in E. ulmoides.

The number of NAC gene family members identified in different

plants is varied. We constructed a phylogenetic tree for E. ulmoides

and A. thaliana and divided the 71 EuNAC genes into 17 subgroups

according to the classification of NAC proteins in A. thaliana,

including one E. ulmoides-specific subgroup. But the result is

inconsistent with other species, such as tomato (12 subgroups)

(Kou et al., 2014), Dactylis glomerata (14 subgroups) (Yang et al.,

2021), Dimocarpus longan (12 subgroups) (Munir et al., 2020), and

Pyrus bretschneideri (38 subgroups) (Gong et al., 2019). This suggests

that although the NAC gene family has similar origins, evolution

differs between species. In addition, only five and 10 with the collinear

relationship were found in O. sativa and S. bicolor. However, we

identified 58, 26, 46, and 87 orthologous pairs in dicotyledonous
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plants A. thaliana, V. vinifera, C. canephora, and H. brasiliensis,

respectively. These results show that the EuNAC genes had higher

similarity and a closer evolutionary relationship with dicotyledons.

The various conserved motifs may be related to particular functions

(Ooka et al., 2003; Jensen et al., 2010; Chen et al., 2011). The predicted 10

motifs are located at the N-terminal, comprising A–E subdomains

(Figures 2B, 3). Motifs 1–6 were the most conserved, among which

motifs 2 and 6 were considered as subdomain C, and motif 1 was

considered as subdomain D, whichmay be responsible for DNA binding

(Olsen et al., 2005). Moreover, subdomain A was represented by motif 3,

which may be involved in dimerization (Ernst et al., 2004; Khedia et al.,

2018). Motif 4 is considered subdomain B, and motif 5 is considered

subdomain E, which is thought to be responsible for the functional

diversity of the NAC proteins (Ooka et al., 2003). Motifs 8 and 9 were

only found in ONAC003 (Figure 2B), which was consistent with the
FIGURE 7

Cis-acting elements in promoter region of EuNAC genes in E. ulmoides. The number and the shade of red indicate the number of cis-acting element.
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results in the NAC family members of kiwifruit (Jia et al., 2021) and

orchardgrass (Yang et al., 2021), indicating that it is a typical component

of these subgroups and may play an important role in stress responses

and secondary cell wall formation (Hussey et al., 2011; Fang et al., 2015;

Zhong et al., 2021b). These results confirm the classification of the

EuNAC gene family and facilitate further study on the function of

EuNAC genes. Most of the EuNAC had two introns and three exons

(Figure 2D) and genes within the same phylogenetic clade (Figure 2A)

have a similar number of exons. These results are consistent with poplar

(Hu et al., 2010) and cucumber (Liu X. et al., 2018)NAC genes suggesting

that the genetic makeup of NAC genes are similar with the previously

reported species.

The same subgroup may have similar biological activities and

functions (Li et al., 2021; Xu et al., 2021). The 71 EuNAC genes were

divided into 17 groups, and the gene structure and motif
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arrangement of the same group of genes were similar (Figures 1,

2). It was possible to predict the functions of E. ulmoides NAC genes

based on the functions of their Arabidopsis orthologues, which could

also be potentially utilized for further functional studies (Lim et al.,

2012). For example, NAP is related to leaf senescence (Guo and Gan,

2006), floral morphogenesis (Sablowski and Meyerowitz, 1998), and

salt stress (Seok et al., 2017). Eucommia ulmoides had seven genes

(EuNAC5, EuNAC9, EuNAC15, EuNAC17, EuNAC18, EuNAC42

and EuNAC62) in this group, which may also have these features.

ANAC019 (AT1G52890), ANAC055 (AT3G15500), and ANAC072

(AT4G27410) belong to the AtNAC3 subgroup, their expression is

induced by drought, high salinity, and ABA (Tran et al., 2004).

Therefore, we speculate that EuNAC10 in the same subgroup is a

drought and high salt responsive gene, which regulates the survival

of E. ulmoides under adverse growth conditions.
A
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FIGURE 8

Expression levels of 71 EuNAC genes in different tissues. The expression level was presented based on the transformed data of log2 (FPKM+1) values.
A total of 71 EuNAC genes were divided into (A–H) groups based on their expression levels. LF leaf; PL peel; XM xylem; SD seed.
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In addition, transcription factors usually play a key role in

controlling the expression of tissue-specific genes (Choi et al., 2006;

Lim et al., 2012; Siew et al., 2016). This study provides useful clues for

understanding gene function concerning specific processes. For

instance, Group D had 10 genes that exhibited a higher expression

level in the xylem than in other tissues. It is worth noting that these 10

genes have high homology with secondary wall-associated NAC

(SWN) transcription factors (Supplementary Table S2), including

SND, NST, and VND, which play critical and dominant roles in

secondary cell wall biosynthesis (Hussey et al., 2011; Zhou et al., 2014;

Zhang et al., 2020). These results demonstrate that the EuNAC genes

in Group D might affect the lignin synthesis of E. ulmoides.

The cis-acting elements which were the binding regions of

transcription factors play an important role in regulating gene

expression (Liu et al., 2016; Kaur et al., 2017). There are four cis-

acting elements in the EuNAC gene promoter: light-responsive

elements, stress-responsive elements, hormone-responsive elements,

and plant growth and development-related elements. Light-responsive

elements are ubiquitous cis-acting elements in the EuNAC promoter,

suggesting that light of different colors and intensities may regulate the

expression of EuNAC genes through different pathways. Previous

studies have shown that MYB26 was the upstream regulator of

secondary wall-associated NAC (SWN) genes (Yang et al., 2007).

Among the promoters of 71 EuNAC genes, 69 EuNAC genes

contained MYB elements and 66 EuNAC genes contained MYC

elements, indicating that MYB and MYC may be important

upstream regulators. The ubiquitous MYB and MYC elements in

EuNAC gene promoters indicate that many other MYBs and MYCs

may regulate their expression by combining with EuNAC gene
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promoters. The regulation of NAC gene expression by plant

hormones has been reported for many plants (Ohnishi et al., 2005; Ji

et al., 2014; Kou et al., 2014; Nieuwenhuizen et al., 2015). These are

inseparable from the fact that the promoter of the NAC gene has

corresponding cis-acting elements. For example, a gibberellic acid-

responsive element in the PeNAC1 promoter was required for response

to gibberellic acid which influenced the salt-stress signaling pathway

(Wang et al., 2016). In this study, 920 (34.43%) elements were involved

in the response to plant hormones in the promoters of EuNAC genes

(Figure 7); EuNAC genes were also associated with different hormone

response classes, including 69 genes in MeJA, 58 genes in ABA, 53

genes in ethylene, and 34 genes in GA responsive cis-elements. This

implied that the expression of EuNAC genes might be induced by ABA,

MeJA, ethylene and GA3, EuNAC genes may play a central role in plant

specific hormone signaling responses. Furthermore, the cis-acting

elements and qRT-PCR analysis indicated that EuNAC1, EuNAC12,

EuNAC22, EuNAC59, EuNAC68 and EuNAC69 responded to GA3

treatment might be dominated by cis-acting elements in the

promoter region.

Some studies have reported that NAC transcription factors play

important regulatory roles in plant natural rubber biosynthesis. For

example, previous studies have found that HbNAC1 regulates natural

rubber synthesis by interacting with natural rubber synthesis-related

genes in H. brasiliensis (Cao et al., 2017). Eu-rubber is an important

natural rubber, similar to H. brasiliensis natural rubber, which is

composed of trans-polyisoprene and cis-polyisoprene, respectively.

To explore the effect of EuNAC genes on Eu-rubber biosynthesis, a

co-expression regulatory network including Eu-rubber biosynthesis

genes and EuNAC was constructed. We found that the positive
A B

FIGURE 9

Co-expression networks between EuNAC genes and Eu-rubber biosynthesis genes. (A) Positive regulatory co-expression network between EuNAC
genes and Eu-rubber biosynthesis genes. (B) Negative regulatory co-expression network between EuNAC genes and Eu-rubber biosynthesis genes.
Orange diamond nodes represent Eu-rubber biosynthetic structural genes. Red circular nodes represent positively regulated EuNAC genes, and blue
circular nodes represent negatively regulated EuNAC genes. The node size is positively correlated with the degree of the connectivity of the genes.
The width of the connecting line is positively related to the correlation between genes.
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regulation between EuNAC and Eu-rubber biosynthesis genes is

dominant. EuNAC22, EuNAC1, EuNAC68, EuNAC69, EuNAC12,

and EuNAC59 have the highest degree of connectivity in the co-

expression network, and EuNAC22, EuNAC1, EuNAC68, and

EuNAC69 had the same expression trend as the Eu-rubber synthetic

structural genes of E. ulmoides, but EuNAC12 and EuNAC59 had

opposite expression trends. Interestingly, the transcript levels of

EuNAC69, EuNAC68, EuNAC1, and EuNAC22 were consistent with

the variation in Eu-rubber content (Wuyun et al., 2018; Li et al., 2020),

that is, high expression in leaves and peel, but less expression in xylem

and seeds. However, the expression level of EuNAC12 and EuNAC59 in

the xylem and seeds was significantly higher than in leaves and peels. In

summary, co-expression analysis was consistent with the results of

expression profiles in different tissues, suggesting that EuNAC22,

EuNAC1, EuNAC68, EuNAC69, EuNAC12, and EuNAC59 may play

important roles in Eu-rubber biosynthesis.

It has been reported that the application of exogenous hormones,

such as DCPTA, GA3 and BR, increases Eu-rubber concentration in E.

ulmoides leaves (Liu H. et al., 2018). To explore the role of EuNAC genes

in hormone response and Eu-rubber biosynthesis, we focused on the

expression levels of EuNAC1, EuNAC12, EuNAC22, EuNAC59,

EuNAC68, and EuNAC69 under exogenous GA3, BR, and DCPTA
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treatment. Six EuNAC genes responded to hormone treatments, but each

gene had different expression patterns under different treatments.

EuNAC68 had higher expression levels at 6 h with GA3 and 6 h with

BR treatment, which then began to decrease, thus indicating that they

may play different roles in the early and late stages of the stress response.

EuNAC1, EuNAC22 and EuNAC69 reached a maximum at 24 h

DCPTA treatment, whereas EuNAC68 had higher expression levels at

12 h, which shows that the EuNAC genes have different sensitivities to

hormone treatment. The expression levels of EuNAC1, EuNAC22,

EuANC68, and EuNAC69 were observably increased by GA3, BR, and

DCPTA treatments. However, EuNAC12 and EuNAC59 expression

levels were significantly decreased under all hormone treatments

(Figure 9). These results indicate that the expression of EuNAC genes

was induced and inhibited to different degrees under different hormone

treatment conditions, the phenotypes induced by hormone treatment

were consistent with the expression trends of EuNAC1, EuNAC22,

EuNAC68, and EuNAC69 but opposite to EuNAC12 and EuNAC59.

In conclusion, these findings supported the view that EuNAC may

positively or negatively affect Eu-rubber biosynthesis.

Furthermore, many NAC transcription factors have been reported

to activate the transcription of target genes by binding to the NACRS

core cis-acting element (CACG or CATGT) at the promoter region
FIGURE 10

The expression patterns of E. ulmoides NAC genes under control condition and hormone treatments were examined by qRT-PCR. Five-month-old
seedling leaves of E. ulmoides were sprayed with 300 mg/L gibberellin (GA3), 5 mg/L 1% brassinolide (BR), and 500 mg/L 2-(3,4-dichlorophenoxy)-
triethylamine (DCPTA) until there is liquid dripping. Spray water was used as the control treatment. Error bars were obtained from three
measurements. The significance analysis was carried out using Student’s t-test (* p < 0.05, ** p < 0.01).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1030298
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1030298
(Fujita et al., 2004; Xu et al., 2013). ANAC019, ANAC055 and

ANAC072 can bind to the core DNA binding element CACG in the

promoter region of the drought-induced gene ERD1 (Tran et al., 2004).

Moreover, CpNAC1 specifically binds to the NACBS element in the

CpPDS2/4 promoter to modulate carotenoid biosynthesis (Fu et al.,

2016). HbNAC1 was also found to bind to the cis-acting element

CACG in the promoter region of SRPP in H. brasiliensis to regulate

natural rubber synthesis (Cao et al., 2017). By analysing the promoters

of the genes involved in the biosynthesis of Eu-rubber, it was observed

that many genes contain multiple NACRS cis-acting elements,

including the CACG element and CATGT element. Exceptions to

this include GGPS6 (evm.model.Chr8.585) and FPS5 (Novel08257),

which have only two CACG elements, and the NgBR-like protein

(evm.model.Chr17.181), which has a single CACG element

(Supplementary Table S8). It was deduced that EuNACs might

regulate the synthesis of Eu-rubber by combining with the promoter

of a gene involved in Eu-rubber biosynthesis. These results provide new

insight and can be useful for further verification of the EuNAC gene

functions in Eu-rubber biosynthesis.
Conclusion

In this study, 71 EuNAC genes were identifed from the E. ulmoides

genome, which were unevenly distributed on 16 chromosomes. Based

on the phylogenetic tree, all the EuNAC genes were divided into 17

subfamilies. A comprehensive analysis of gene structure, motif

composition, chromosomal distribution, gene duplication,

phylogenetic, and cis-acting elements in promoters and homologous

relationships were investigated. In addition, the expression of EuNAC

genes in different tissues, co-expression network analysis and responds

to various phytohormones implied that six EuNAC genes may

participate in the biosynthesis of Eu-rubber. In the future, more

comprehensive and in-depth studies on the functional properties of

the EuNAC genes will be required. The results of this study provides

valuable information for further study on the molecular mechanism of

EuNAC genes in the biosynthesis of Eu-rubber.
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