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Controlled-release urea
application and optimized
nitrogen applied strategy reduced
nitrogen leaching and maintained
grain yield of paddy fields in
Northwest China
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Xinping Mao1,2 and Jun Yi3*

1Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science,
Yinchuan, China, 2National Agricultural Environment Yinchuan Observation and Experiment Station,
Ningxia Academy of Agro-forestry Science, Yinchuan, China, 3Hubei Province Key Laboratory for
Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
Nitrogen loss from paddy fields contributes to most of the nitrogen pollution load in

the Ningxia Yellow River irrigation area, threatening the water quality of the Yellow

River. Consequently, optimizing the nitrogen management practices in this area is

essential, which can maintain paddy grain productivity and reduce nitrogen loss

simultaneously. Five treatments with different nitrogen application rates and nitrogen

fertilizer types were set in this study, including conventional urea application with

zero nitrogen application rate (CK, 0 kg hm-2), nitrogen expert-based fertilization

application strategy (NE, 210 kg hm-2), optimized nitrogen fertilizer application

strategy recommended by local government (OPT, 240 kg hm-2), and farmer’s

experience-based nitrogen fertilizer application strategy (FP, 300 kg hm-2), and

controlled-release urea application (CRU, 180 kg hm-2). The data from one growth

season field experiment in 2021 revealed the dynamics of nitrogen concentration,

paddy yield and its nitrogen uptake characteristic, and nitrogen balance in the paddy

field under different nitrogen application practices. Most nitrogen leaching was

observed during the seedling and tillering stages in the form of nitrate nitrogen

(NO3
–N). Compared with the FP, the CRU and OPT significantly reduced the

nitrogen concentrations of total nitrogen (TN), ammonium nitrogen (NH4
+-N), and

NO3
–N in the surface and soil water and reduced the nitrogen leaching at 100 cm

soil depth. Meanwhile, the paddy grain yield in CRU (7737 kg hm-2) and OPT (7379 kg

hm-2) was not significantly decreased compared with FP (7918 kg hm-2), even

though the nitrogen uptake by grain and straw was higher in FP (135 kg hm-2) than in

other treatments (52.10~126.40 kg hm-2). However, the grain yield in NE (6972 kg

hm-2) was decreased compared with the FP. The differences in grain yield among

these treatments were mainly attributed to the ear number and grain number

changes. Also, the highest nitrogen use efficiency (40.14%), apparent nitrogen

efficiency (19.53 kg kg-1), and nitrogen partial productivity (43.98 kg kg-1) were

identified in CRU than in other treatments. Considering increased grain yield and

reducing nitrogen loss in the paddy field simultaneously, the treatments of CRU (i.e.,

180 kg hm-2 nitrogen application rate with controlled-release urea) and OPT (i.e.,
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240 kg hm-2 nitrogen application rate with conventional urea) were recommended

for nitrogen fertilizer application in the study area.
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Introduction

Paddy (Oryza sativa L.) is one of China’s most important grain

crops, producing 37.31% of the total paddy grain yield worldwide

(Hua et al., 2019). In order to maintain the high production of paddy

grain with limited farmland area, massive nitrogen fertilizer was used

in the paddy fields in China, with the nitrogen application rate

increasing year by year (Liang et al., 2013; Chen et al., 2014;

Shcherbak et al., 2014). It is reported that China consumed 30% of

the chemical nitrogen fertilizer around the world, while the nitrogen

use efficiency (NUE) in China (25%) was much lower than those in

European (52%) and North American countries (Ke et al., 2016).

Consequently, plenty of adverse effects appeared when the nitrogen

fertilizer was overused, including reduced NUE, increased greenhouse

gas emission, accelerated soil acidification, and aggregated water

pollution (Kim et al., 2005; Ju et al., 2009; Kakuturu et al., 2013; Liu

et al., 2013; Huang et al., 2017). Therefore, many studies were

conducted in paddy fields to improve the NUE and reduce the

adverse environmental effects aroused by nitrogen fertilizer

application without reducing the paddy grain yield at the same time

(Shcherbak et al., 2014; Xu et al., 2014a; Zhang et al., 2016; He

et al., 2022).

The effects of applied nitrogen fertilizer amount on paddy growth

indexes and nitrogen loss characteristics were widely reported (Ju

et al., 2009; Zhang et al., 2010; Ruidisch et al., 2013; Chen et al., 2017),

as the yield and nitrogen loss amount was directly affected by the

fertilizer application rate. Based on the results from previous studies,

the optimized nitrogen application amounts in the paddy field in

different regions in China were pronounced (Yang et al., 2012; Xu

et al., 2014a; Li et al., 2015). In order to increase the NUE and reduce

non-productive nitrogen loss further, the effects of nitrogen fertilizer

application strategy and fertilizer types on paddy nitrogen uptake and

nitrogen loss were also evaluated (Gaudin, 2012; Xu et al., 2014b;

Huang et al., 2021). The methods of soil testing and fertilizer

recommendation (STFR) and nitrogen expert-based fertilization

application strategy (NE) were two of the widely recommended

nitrogen application techniques. The STFR technique considers the

differences in soil nutrient content, crop nutrient demand

characteristics, and fertilizer varieties. Moreover, it provides

optimized information on applied fertilizer amount, time, and

method to increase fertilizer use efficiency and reduce fertilizer loss

(He et al., 2022). As the local government has detailed soil data and is

responsible for the optimized fertilizing recommendation, the STFR

can also be called an optimized nitrogen fertilizer application

recommended by the local government (OPT). Also, the NE is

computer software for recommending fertilizer applications

(Pampolino et al., 2012). The applied fertilizer amount and time
02
will be recommended by NE when the target yield is set, which also

considers the differences in crop varieties, soil properties, and

cultivation and management methods (Xu et al., 2014b). In

addition, the application of controlled-release urea (CRU) was an

exemplary method for reducing nitrogen loss and providing paddy

grain yield (Kiran et al., 2010; Sun et al., 2020). The CRU is coated

with polymers that slowly release nitrogen for plant uptake (Fageria

and Carvalho, 2014; Sun et al., 2022), once applied as base fertilizer

and can save labor costs (Cheng et al., 2020). Furthermore, the non-

productive nitrogen was reduced while the paddy grain yield and

NUE were increased simultaneously (Du et al., 2016; Tian et al., 2019;

Sun et al., 2020; Hou et al., 2021). Although these nitrogen

management methods (i.e., OPT, NE, and CRU) were positively

evaluated in some studies (Yang et al., 2013; Ke et al., 2016; He

et al., 2022), the effects of these methods on paddy grain production

and nitrogen loss were less compared in the same region during the

same study period. Also, the performances of these methods were

affected by the soil properties, climate conditions, and paddy

specifications. Hence, further studies should be conducted to

evaluate these nitrogen management practices on paddy grain

production and nitrogen loss.

Ningxia Yellow River irrigation area is located in the arid region

of North-west China, one of the commodity grain bases in China

(Zhang et al., 2014). The agriculture system strongly depends on the

Yellow River, the essential water resource for farmland irrigation in

this region (Liu et al., 2019), as the annual precipitation was always no

more than 200 mm. Due to the slight soil salinization in this area, the

irrigation amount was much higher than the crop water requirement

for reducing the soil salt content (Zhang et al., 2014). Consequently,

the percolation in the farmland was extremely large and much higher

than in other irrigation areas, accelerating dissolved nutrient (e.g.,

nitrogen, phosphate) percolation. It is reported that 40% of the

irrigation water (i.e., three billion m3) was percolated and flew back

to the Yellow River (Zheng et al., 2018), which threatened the water

quality of the local water system and even the Yellow River (Liu et al.,

2019; Zhang et al., 2020). Paddy was the main grain crop in the

Ningxia Yellow River irrigation area, which was supported by the

large irrigation amount (~2000 mm per year) and nitrogen fertilizer

input (>300 kg hm-2 per year). The vast input of water and nitrogen

fertilizer resulted in a low NUE and high nitrogen loss ratio (20%

~65%) (Zhang et al., 2010), which resulted in a high nitrogen

concentration in both surface water and shallow groundwater

(Zhang et al., 2014; Liu et al., 2015). Also, Cao et al. (2011)

reported that the paddy field in this area contributed 72% of the

nitrogen pollution load in agricultural wastewater. Hence, it is

essential to enhance the NUE and reduce the nitrogen loss in the

paddy field for non-point source water pollution control in the
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Ningxia Yellow River irrigation area (Zhang et al., 2020; Zhang et al.,

2021). Although many studies evaluated the effects of nitrogen

fertilizer application strategy or fertilizer type on grain yield and

nitrogen loss in the paddy field, fewer were conducted in the Ningxia

Yellow River irrigation area during the same period.

In this study, it is assumed that the performance of nitrogen

concentration in both water and soil, nitrogen uptake by paddy plant,

and nitrogen loss in paddy fields varied among these positively

evaluated nitrogen application treatments (i.e., OPT, NE and CRU).

The objectives of this study were to explore the optimized nitrogen

treatments for realizing high paddy grain yield and low nitrogen loss

amount simultaneously in the Ningxia Yellow River irrigation area.
Materials and methods

Study area

The experiment site was located in the field experiment station of

Ningxia Academy of Agriculture and Forestry Sciences (106°22′14″E,
38°47′62″N), Ningxia Hui autonomous region, Northwest China.

This site belongs to the critical zone of the Ningxia Yellow River

irrigation area, characteristic of the middle temperate arid climate

zone. The average annual temperature is 8.7 °C, and the cumulative

annual sunshine hours are 2867 h. The average annual precipitation is

200 mm, with about 62% of precipitation observed from July to

September. At the same time, the annual pan evaporation is 1470 mm,

which is much higher than the precipitation. The main crop in this

area contains paddy, maize (Zea mays L.), and wheat (Triticum

aestivum L.), frequently irrigated by Yellow River water, ascribing

to the limited precipitation. The primary soil type in this area is

anthropogenic-alluvial soil with coarse soil texture, characterized by a

high sand content (>50%) and low clay content (<5%). Also, the

contents of soil organic matter, total nitrogen, and available nitrogen

were relatively low. The soil properties are shown in Table 1.
Experimental details

Five nitrogen application treatments were set in this study,

including conventional urea application with zero nitrogen

application rate (CK), nitrogen expert-based fertilization application

strategy (NE), optimized nitrogen fertilizer application recommended

by local government (OPT), and farmer’s experience-based fertilizer

application strategy (FP), and controlled-release urea application
Frontiers in Plant Science 03
(CRU). The total nitrogen application amounts in CK, CRU, NE,

OPT, and FP were 0, 180, 210, 240, and 300 kg hm-2, respectively. At

the same time, the same phosphate (P2O5, 90 kg hm
-2) and potassium

(K2O, 45 kg hm-2) amounts were used for five treatments.

Three replicated plots were set for each treatment, with an area of

60 m2 for each plot. These plots were separated with plastic film from

30 cm above the soil surface to 100 cm soil depth, which can prevent

the lateral water flow among these plots. The paddy field was

cultivated with the direct-seed method on 4th May 2021, with

20 cm line spacing and 8~10 cm row spacing, respectively. The

nitrogen fertilizer used in CRU was polymer-coated urea, while it was

conventional urea for NE, OPT, and FP treatments. The polymer-

coated urea was once applied as base fertilizer (i.e., on 3rd May) in

CRU, while 40%, 25%, and 35% of the conventional urea were applied

on 3rd May (base fertilizer), 6th June (during the seeding stage), and

25th June (during the tillering stage) in NE, respectively. Similarly,

50%, 20%, and 30% of the conventional urea were applied one day

before sowing, during the seeding stage, and during the tillering stage

in both OPT and FP, respectively. Meanwhile, the phosphate and

potassium were applied one day before sowing as base fertilizer.

During the paddy growth period (i.e., 4th May to 28th September),

each plot was irrigated eighteen times with a 2145 mm irrigation

amount, and the total precipitation was 98 mm.
Sampling and laboratory analysis

In the center area of each plot, two water suction cups were

installed at 20 and 100 cm soil depth, respectively, which were used to

collect soil water samplers. During the paddy growth period, the soil

water and field surface samples were collected in 1~15 days intervals,

with a shorter time interval after applying nitrogen fertilizer than at

other times. After then, these samples were analyzed in the laboratory

for the items of total nitrogen (TN) concentration, ammonium

nitrogen (NH4
+-N) content, and nitrate nitrogen (NO3

–N) content.

Meanwhile, soil samples were collected with a soil auger from the soil

surface to 100 cm soil depth in 20 cm intervals before paddy seed

sowing (3rd May) and after paddy harvest (28th September), which

were used for NH4
+-N and NO3

–Nmeasurements. Also, the irrigation

water and precipitation samples were collected, and the

concentrations of TN, NH4
+-N, and NO3

–N were determined.

During the paddy harvest period, grain and aboveground straw

biomass were measured in each plot. Meanwhile, the total nitrogen

contents of grain and straw were measured. The total N

concentrations in field surface water, soil water, irrigation water,
TABLE 1 The basic soil properties in the study area.

Depth
(cm)

Bulk density
(g cm-3)

Total porosity
(%)

Total salt
(g kg-1)

Organic matter
(g kg-1)

Total nitrogen
(g kg-1)

Available nitrogen
(mg kg-1)

0-20 1.36 48.7 0.49 10.74 1.01 38.66

20-40 1.36 48.8 0.40 8.71 0.85 26.98

40-60 1.53 42.3 0.39 5.26 0.40 25.12

60-80 1.64 39.0 0.35 4.41 0.31 24.31

80-100 1.44 45.4 0.31 3.15 0.29 23.58
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and precipitat ion were determined by Per sulfate-UV

spectrophotometry (Bao, 2000), while the concentrations/contents

of NH4
+-N and NO3

–N in these water samples and soil samples were

measured by continuous-flow nitrogen analyze (Skalar, San Plus

System, Netherlands).
Calculations

Based on the above data, the NUE (%), nitrogen agronomic

efficiency (NAE, kg kg-1), nitrogen partial productivity (NPP, kg kg-

1), and apparent nitrogen loss amount (ANL, kg hm-2) were

calculated as follows:

NUE  %ð Þ = UN − UN0ð Þ
FN

� 100 (1)

Where UN and UN0 are the total N uptake (kg hm-2) at the

maturity stage with and without nitrogen fertilizer input, respectively,

and FN is the amount of nitrogen fertilizer input.

NAE =
GYN

FN
(2)

Where GYN is the paddy grain yield (kg hm-2) in nitrogen

fertilizer application treatments at the maturity period.

NPP =
GYN   − GYN0ð Þ

FN
(3)

Where GYN0 is the paddy grain yield (kg hm-2) in CK treatments

at the maturity period.

ANL = Ninput − NGY − NSY − Nleaching (4)

Where Ninput is the total nitrogen input in the paddy field; NGY

and NSY are the N uptake (kg hm-2) in paddy grain and straw at

maturity period, respectively; NLeaching is the total nitrogen leaching

amount (kg hm-2) at reference soil depth.

As no runoff event was observed during the study period, the

nitrogen balance (kg hm-2) in the paddy field was calculated as

follows:

Nfer + Nirr + Npre + Nmin

= Nvol + Nden + NGY + NSY + Nleaching + NDS (5)

Where Nfer, Nirr, Npre, and Nmin are the nitrogen inputs from

fertilizer, irrigation, precipitation, and mineralization, respectively;

Nvol and Nden are the nitrogen losses by volatilization and

denitrification, respectively; NDs in the nitrogen storage change in

the soil profile during the study period. In this study, the summary of

Nvol, Nden, and NLeaching is defined as apparent nitrogen loss, while the

summary of Nvol and Nden is defined as undefined nitrogen loss.
Statistical analysis

The statistical software SPSS 22.0 was used for One-way analysis

of variance (ANOVA) with the least significant difference (LSD) test

at the 5% level.
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Results

Dynamics of nitrogen concentration of the
surface water in paddy fields

The nitrogen fertilizer application affected the TN concentration

in the surface water, which increased with the nitrogen input amount

(Figure 1A). Much higher fluctuations in TN concentrations and peak

values were identified in NE (25.16 mg L-1), OPT (30.55 mg L-1), and

FP (33.43 mg L-1) than in CRU (10.01 mg L-1) and CK (6.23 mg L-1).

For NE, OPT, and FP treatments, the TN concentration reached the

highest value on the third day after nitrogen application, then it

decreased gradually and reached a shallow level ten days later. In

contrast, the relatively high TN concentration (10.33 mg L-1) in CRU

was only observed on the 52nd day after sowing, nearly 70% lower

than that in FP.

The dynamics of NH4
+-N and NO3

–N concentration in the field

surface water was similar to the TN concentration (Figures 1B, C).

Much higher fluctuations in NH4
+-N and NO3

–N concentrations and

peak values were identified in NE (13.42 and 7.73 mg L-1), OPT (14.44

and 8.73 mg L-1), and FP (16.05 and 9.11 mg L-1) than in CRU (8.55

and 3.35 mg L-1) and CK (1.28 and 1.20 mg L-1). For NE, OPT, and FP

treatments, the peak value of NH4
+-N and NO3

–N concentrations

were about 50% and 20% of the TN concentration, respectively. Also,
A

B

C

FIGURE 1

Dynamics of (A) TN, (B) NH4
+-N, and (C) NO3

–N concentration of the
surface water in paddy fields under different nitrogen treatments. The
vertical bars mean standard deviations of the means CK, zero nitrogen
application; CRU, controlled-release urea application; NE, nitrogen
expert-based fertilization application strategy; OPT, optimized
nitrogen fertilizer application strategy recommended by local
government; FP, farmer's experience-based nitrogen fertilizer
application strategy.
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the peak values of NH4
+-N and NO3

–N concentration were 1~3 days

later than that of TN.
Dynamics of nitrogen concentration of the
leaching water at different soil depths in
paddy fields

The TN, NH4
+-N, and NO3

–N concentrations in leaching water at

20 cm soil depth were also dramatically affected by nitrogen fertilizer

application (Figure 2). The dynamics of TN concentrations between

20 cm soil depth and surface water were similar to some degree. The

highest TN concentrations were observed at 12~52 days in CRU

(10.70 mg L-1), NE (17.39 mg L-1), OPT (20.33 mg L-1), and FP (22.66

mg L-1) after sowing, while the relatively high TN concentrations in

CK (5.55 mg L-1) were identified at 12~25 days after sowing. After

that, the TN concentration was maintained at a low level. The

dynamics of NH4
+-N concentration at 20 cm were similar to that of

the field surface water, while the peak concentrations at these

treatments (0.88~5.97 mg L-1) were about 70% lower. Different

from the dynamics of TN and NH4
+-N concentrations, the highest

NO3
–N concentration was observed on the first day of leaching water

sampling (1.80~14.89 mg L-1). Then it decreased gradually without an

obvious peak value. Similarly, the NE, OPT, and FP treatments had
Frontiers in Plant Science 05
higher concentrations of TN, NH4
+-N, and NO3

–N than CRU and CK

at 12~60 days after sowing.

Figure 3 showed that the split fertilizing did not directly affect the

dynamics of TN, NH4
+-N, and NO3

–N concentrations in leaching

water at 100 cm soil depth. The TN concentration gradually decreased

with the paddy growth period extending, which reached a very low

value (0~2 mg L-1) from 80 days after sowing. From 12 to 50 days

after sowing, the TN concentrations were in the order of

FP>OPT=NE>CRU>CK. In contrast, no apparent differences were

observed after that. The dynamics of NO3
–N concentration were

similar to that of TN in 100 cm soil depth. However, the higher

concentration in FP (6.82 mg L-1) and OPT (4.93 mg L-1) than in

CRU (2.69 mg L-1) was only identified from 12 to 24 days after

sowing. Differently, very low NH4
+-N concentrations (<0.7 mg L-1)

were observed in all treatments, which showed a slow increment

during the study period.
Nitrogen leaching at 100 cm soil depth in
paddy fields

Obvious TN leaching was observed in all treatments, while most

were identified at the seeding and tillering stages (Table 2). It is

noticeable that more than 12 kg hm-2 of TN was leached in the CK
A

B

C

FIGURE 2

Dynamics of (A) TN, (B) NH4
+-N, and (C) NO3

–N concentration of the
leaching water at 20 cm soil depth in the paddy fields under different
nitrogen treatments. The vertical bars mean standard deviations of the
means CK, zero nitrogen application; CRU, controlled-release urea
application; NE, nitrogen expert-based fertilization application
strategy; OPT, optimized nitrogen fertilizer application strategy
recommended by local government; FP, farmer's experience-based
nitrogen fertilizer application strategy.
A

B

C

FIGURE 3

Dynamics of (A) TN, (B) NH4
+-N, and (C) NO3

–N concentration of the
leaching water at 100 cm soil depth in the paddy fields under different
treatments. The vertical bars mean standard deviations of the means
CK, zero nitrogen application; CRU, controlled-release urea
application; NE, nitrogen expert-based fertilization application
strategy; OPT, optimized nitrogen fertilizer application strategy
recommended by local government; FP, farmer's experience-based
nitrogen fertilizer application strategy.
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treatment without nitrogen fertilizer application. Meanwhile,

significant differences in TN leaching were observed among the five

treatments. During the whole paddy growth season, the highest TN

leaching was found in FP (59.13 kg hm-2) and OPT (48.04 kg hm-2),

followed by the NE (44.01 kg hm-2), with the least TN leaching in

CRU (32.91 kg hm-2) and CK (12.30 kg hm-2). Similarly, a higher TN

leaching amount was likely observed in FP, OPT and NE than in CRU

and CK in the seeding, tillering, jointing, and booting stages. In

comparison, no significant differences in TN leaching amount were

identified among all treatments in the filling stage (1.03~2.17 kg

hm-2).
Residual mineral nitrogen distribution along
the soil profile after paddy harvest

Figure 4 showed that the residual NH4
+-N contents (0.3~1.2 mg

kg-1) along the soil profile were much lower than the NO3
–N contents

(0.8~9.6 mg kg-1). With soil depth increasing, both the NH4
+-N and

NO3
–N contents decreased gradually. For 0~20 cm soil depths, FP

had the highest NH4
+-N and NO3

–N contents (1.20 and 9.62 mg kg-

1), followed by OPT (0.78 and 6.92 mg kg-1), NE (0.74 and 6.59 mg kg-

1), and CRU (0.68 and 7.87 mg kg-1), with the lowest contents in CK

(0.39 and 3.19 mg kg-1). For 20~40 cm soil depth, the NH4
+-N

content in CK (0.32 mg kg-1) was significantly lower than other

treatments, while the NO3
–N contents were in the order of

OPT>FP=NE>CR>CK. However, the five nitrogen treatments

identified slight differences in NH4
+-N and NO3

–N contents in the

deeper soil layers.
Grain yield and yield components

Table 3 showed apparent differences in paddy grain yield and

yield components among different nitrogen fertilizer treatments. FP

(7918 kg hm-2) and CRU (7737 kg hm-2) had the highest yield,

significantly higher than NE (6972 kg hm-2) and CK (4221 kg hm-2).

In contrast, there was no significant difference in grain yield among

FP, CRU, and OPT. Also, higher ear densities were identified in CRU

(5.14 million hm-2), OPT (5.18 million hm-2), and FP (5.13 million

hm-2) than in CK (3.63 million hm-2). At the same time, no significant

differences were observed among CRU, NE, OPT and FP or between
Frontiers in Plant Science 06
CK and NE. Similarly, FP (112.33) and CRU (106.50) had a much

higher grain spike number than NE (87.27) and CK (70.13). No

significant differences in thousand seed weight (24.96~25.39 g) and

seed setting rate (84.26%~88.98%) were observed among

all treatments.

The nitrogen uptake by paddy was strongly affected by the

nitrogen application rate, indicated by the much lower nitrogen

uptake by grain and straw in CK (34.95 and 17.15 kg hm-2) than in

other treatments (Table 4). Also, the biomass above ground (i.e., grain

and straw) in FP (135.14 kg hm-2) had more nitrogen amount than

NE (114.24 kg hm-2), while no significant differences in nitrogen

uptake were observed among FP, OPT, and CRU or among OPT, NE,

and CRU. Meanwhile, the paddy grain contained the highest nitrogen

amount in FP (85.83 kg hm-2) and OPT (85.32 kg hm-2), followed by

CRU (81.27 kg hm-2) and NE (76.55 kg hm-2), with the lowest amount

in CK (34.95 kg hm-2). Similarly, the highest NSY was observed in FP

(49.31 kg hm-2) and CRU (43.07 kg hm-2). Differently, the NUE was

decreased with nitrogen fertilizer application rate, which was in the

order of CRU>NE>OPT>FP. In addition, CRU had a much higher

MAE and NPP than NE, OPT, and FP, while no significant differences

were identified among NE, OPT, and FP.
Nitrogen balance in 0-100 cm depth soil
profile during paddy growth period

The nitrogen balance results (Table 5) showed that the nitrogen

input from irrigation (precipitation), seed, and mineralization were

25.95, 5.72, and 9.73 kg hm-2, respectively. Meanwhile, the nitrogen

fertilizer application rate increased the apparent nitrogen loss,

nitrogen leaching amount, and undefined nitrogen loss amounts.
Discussion

Effects of nitrogen management on nitrogen
dynamics and leaching in paddy field

The nitrogen concentration and nitrogen loss in the paddy field

were affected by nitrogen fertilizer application. The highest NH4
+-N

concentration of surface water was observed 1~3 days after fertilizer

application, while the peak value of NO3
–N concentration was 1~3
TABLE 2 Total nitrogen (TN) leaching amount at 100 cm soil depth in paddy fields under different treatments during different growth stages (unit: kg hm-2).

Treatments TN leaching amount at the main growth stages TN leaching amount at the whole growing season

SS TS JS BS FS

CK 5.88 ± 1.12d 2.63 ± 0.99d 1.95 ± 0.21d 0.81 ± 0.11d 1.03 ± 0.15b 12.30± 2.58d

CRU 18.09 ± 1.99c 8.27 ± 1.11c 2.90 ± 0.25cd 1.67 ± 0.25bc 1.95 ± 0.22a 32.91 ± 3.76c

NE 23.05 ± 1.53bc 12.58 ± 1.55b 4.42 ± 0.35bc 2.16 ± 0.12b 1.80 ± 0.21a 44.01 ± 3.76b

OPT 24.92 ± 2.12b 13.57 ± 0.75ab 5.18 ± 0.75ab 2.2 ± 0.24ab 2.17 ± 0.32a 48.04 ± 4.17ab

FP 31.01 ± 2.91a 15.91 ± 1.31a 7.35 ± 1.68a 2.78 ± 0.32a 2.08 ± 0.29a 59.13 ± 6.51a
SS, seedling stage; TS, tillering stage; JS, jointing stage; BS: booting stage; FS, filling stage; CK, zero nitrogen application; CRU, controlled-release urea application; NE, nitrogen expert-based
fertilization application strategy; OPT, optimized nitrogen fertilizer application strategy recommended by local government; FP, farmer’s experience-based nitrogen fertilizer application strategy.
The values before and after the “±” indicate the average value and standard deviation, respectively.
Means within the same column that do not share the same letter are statistically different at P<0.05.
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days after that, which was attributed to the reaction time needed for

hydrolysis and nitrification (Wang et al., 2019). Compared with the

surface water, the NH4
+-N concentration in the leaching water was

much lower than that, especially at 100 cm soil depth (Figure 3). The
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much lowered NH4
+-N concentration in the leached water can be

explained by the soil absorption of NH4
+-N (Zhang et al., 2018).

Consequently, the NO3
–N was the primary form of nitrogen leaching.

Meanwhile, the meager NH4
+-N contents were observed along the
TABLE 3 The grain yield and yield components under different nitrogen fertilizer treatments after harvest.

Treatment Grain yield
(kg hm-2)

Ear density
(million hm-2)

Grain spike number (-) Thousand seed weight (g) Seed setting rate (%)

CK 4221 ± 294c 3.63 ± 0.25b 70.13 ± 6.34c 24.96 ± 0.49a 88.98 ± 3.02a

CRU 7737 ± 261a 5.14 ± 0.31a 106.50 ± 12.30a 25.37 ± 0.54a 84.26 ± 2.05a

NE 6972 ± 462b 4.85 ± 0.78ab 87.27 ± 8.85b 25.39 ± 0.71a 86.65 ± 2.07a

OPT 7379 ± 320ab 5.18 ± 0.635a 99.93 ± 3.97ab 25.27 ± 0.48a 86.12 ± 2.59a

FP 7918 ± 179a 5.13 ± 0.58a 112.33 ± 8.80a 25.22 ± 0.77a 87.77 ± 3.49a
CK, zero nitrogen application; CRU, controlled-release urea application; NE, nitrogen expert-based fertilization application strategy; OPT, optimized nitrogen fertilizer application strategy
recommended by local government; FP, farmer’s experience-based nitrogen fertilizer application strategy.
The values before and after the “±” indicate the average value and standard deviation, respectively.
Means within the same column that do not share the same letter are statistically different at P<0.05.
TABLE 4 Nitrogen uptake, Nutrient use Efficiency (NUE), Nitrogen Agronomic Efficiency (NAE), and Nitrogen Partial Productivity (NPP) under different
nitrogen treatments during the paddy growing seasons.

Treatment NGY+NSY (kg hm-2) NGY (kg hm-2) NSY (kg hm-2) NUE (%) NAE (kg kg-1) NPP (kg kg-1)

CK 52.10 ± 0.82c 34.95 ± 2.08c 17.15 ± 1.84c – – –

CRU 124.35 ± 5.62ab 81.27 ± 3.43b 43.07 ± 2.98ab 40.14 ± 2.67a 19.53 ± 1.30a 42.98 ± 1.45a

NE 114.24 ± 5.79b 76.55 ± 6.41b 37.70 ± 0.64b 27.24 ± 2.37c 13.10 ± 1.14b 33.20 ± 2.20b

OPT 126.40 ± 5.05ab 85.32 ± 6.60ab 41.08 ± 2.32b 30.95 ± 1.76b 13.16 ± 0.75b 20.75 ± 1.33b

FP 135.14 ± 15.43a 85.83 ± 13.78a 49.31 ± 5.12a 27.68 ± 4.87c 12.32 ± 2.17b 26.39 ± 0.60b
CK, zero nitrogen application; CRU, controlled-release urea application; NE, nitrogen expert-based fertilization application strategy; OPT, optimized nitrogen fertilizer application strategy
recommended by local government; FP, farmer’s experience-based nitrogen fertilizer application strategy; NGY: nitrogen uptake by paddy grain; NSY: nitrogen uptake by paddy straw.
The values before and after the “±” indicate the average value and standard deviation, respectively.
Means within the same column that do not share the same letter are statistically different at P<0.05.
A B

FIGURE 4

Vertical distribution of (A) NH4
+-N and (B) NO3

–N contents along the 0-100 cm depth soil profile after paddy was harvested. The horizontal bars mean
standard deviations of the means CK, zero nitrogen application; CRU, controlled-release urea application; NE, nitrogen expert-based fertilization
application strategy; OPT, optimized nitrogen fertilizer application strategy recommended by local government; FP, farmer's experience-based nitrogen
fertilizer application strategy.
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soil profile when the paddy was harvested, and they can be explained

by thoughtful nitrification as the time for the last fertilizer application

was two months ago. This finding was also identified by Yang et al.

(2012), who studied the process of nitrogen migration and

transformation in paddy fields with controlled-release nitrogen

fertilizers. Additionally, it was found that most of the nitrogen

leaching happened forty days after seed sowing. This result was

attributed to the fertilizer application time distribution. Hua et al.

(2019) found that nitrogen leaching mainly occurred in the first fifty

days of paddy planting (during fertilization). Hence, the nitrogen

fertilizer application rate and time can be improved further, especially

considering the high base fertilizer application rate (Zhang et al.,

2017). It was found that the net nitrogen leaching amount was in the

range of 12.60~38.83 kg hm-2, which was much higher than the

results from Ke et al. (2016) (1.80~6.65 kg N hm-2). This difference

was mainly attributed to the sandier soil texture and much large

irrigation amount in this study (Witheetriron et al., 2011).

Much higher nitrogen concentration and nitrogen leaching were

identified in FP than in other treatments, implying more water

pollution by FP treatment. It was reported that optimizing the

nitrogen fertilizer application rate was a practical and cost-effective

method for controlling nitrogen loss at the source (Kiran et al., 2010;

Ruidisch et al., 2013; Zhang et al., 2018). Compared with FP, the

much lower nitrogen concentration in the surface and soil water were

observed in the treatments with reduced nitrogen fertilizer

application (Figures 1–3), implying less risk for nitrogen leaching.

The calculated nitrogen loss amount also confirmed this under

different treatments in this study (Table 2). Zhang et al. (2018) also

found that optimizing agronomic management practices and

intercepting nitrogen migration could reduce nitrogen losses by

15% to 82%. Hence, it is better to apply nitrogen fertilizer as little

as possible to reduce nitrogen loss. Besides reducing the nitrogen

fertilizer application rate, using controlled-released nitrogen fertilizer
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was another excellent choice for reducing nitrogen loss. The much

lower nitrogen concentration indicated this in surface and soil water

without apparent peak values (Figures 1–3) and the lower nitrogen

leaching amount compared with FP, OPT, and NE. These

observations were consistent with the results of other studies

(Wang et al., 2019; Sun et al., 2022), which explained that the

nitrogen released rate was slowed down, and the soil absorbed the

nitrogen well. In the end, CRU was an excellent choice for nitrogen

loss reduction.
Effects of nitrogen management on paddy
plant nitrogen uptake and productivity

Nitrogen is vital for crop production, as the proper nitrogen

application rate can promote paddy plant growth and its dry matter

accumulation and increase grain yield in the end (Chen et al., 2014).

However, the grain yield will not infinitely increase with the nitrogen

input amount, which will even decrease when too much nitrogen

fertilizer is applied (Zhang et al., 2014). It was found that there was

great potential in reducing the nitrogen application rate in the study

area, which was indicated by the same grain yield in OPT with 240 kg

hm-2 nitrogen input compared with FP with 300 kg hm-2 nitrogen

fertilizer. Furthermore, this was also proved by the findings of Zhang

et al. (2014) in the same study area. It showed that those four yield

components were not decreased in OPT compared with FP (Table 2),

while the ear density and grain yield significantly reduced when the

nitrogen fertilizer application rate reduced further. However, the yield

components of thousand seed weight and seed setting rate were not

related to the nitrogen management practices in this study. These

findings were also identified by Gen et al. (2015), who pronounced

that the thousand seed weight was only affected by the paddy species

but not the nitrogen fertilizer application rate. Hence, increasing the
TABLE 5 Nitrogen balance in 0-100 cm depth soil profile under different nitrogen fertilizer treatments during the paddy growth period (unit: kg hm-2).

Items CK CRU NE OPT FP

Total N input 86.27 266.27 296.27 326.27 386.27

Soil mineral nitrogen before transplant 45.23 45.23 45.23 45.23 45.23

Fertilizer 0.00 180.00 210.00 240.00 300.00

Irrigation and precipitation 25.95 25.95 25.95 25.95 25.95

Seed 5.72 5.72 5.72 5.72 5.72

Apparent nitrogen mineralization 9.37 9.37 9.37 9.37 9.37

Total nitrogen output 69.50 166.72 163.90 179.07 197.55

Paddy plant nitrogen uptake 52.10c 124.35ab 114.24b 126.4ab 135.14a

Soil mineral nitrogen after harvest 17.40d 42.37c 49.66b 52.67b 62.41a

Apparent nitrogen loss 16.77d 99.55c 132.37b 147.20b 188.72a

Leaching loss 12.30d 32.91c 44.01b 48.04ab 59.13a

Undefined nitrogen loss 4.47d 66.64c 88.36b 99.16b 129.59a
CK, zero nitrogen application; CRU, controlled-release urea application; NE, nitrogen expert-based fertilization application strategy; OPT, optimized nitrogen fertilizer application strategy
recommended by local government; FP, farmer’s experience-based nitrogen fertilizer application strategy.
Apparent nitrogen loss (kg hm-2) = nitrogen input (initial soil mineral nitrogen) in the 0-100 cm soil layer + nitrogen fertilizer rate + nitrogen from irrigation and precipitation+ nitrogen in the seed +
the apparent Nitrogen mineralization) – nitrogen output (residual soil mineral nitrogen in the 0-100 cm soil layer + paddy plant nitrogen uptake).
The values before and after the “±” indicate the average value and standard deviation, respectively.
Means within the same row that do not share the same letter are statistically different at P<0.05.
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ear density and grain spike was crucial for enhancing the grain yield

in the paddy field.

However, there is a lower limit for nitrogen fertilizer application,

as the grain yield in NE with 210 kg hm-2 nitrogen application rate

was significantly lower than FP, even though the nitrogen application

time was optimized. These results were also supported by the findings

of Liu et al. (2015), who found that the paddy grain yield decreased

when the nitrogen application rate was reduced by 30% (from 300 kg

hm-2 to 210 kg hm-2) in the same study area. Hence, when the

conventional urea was applied, the optimized nitrogen application

rate probably ranged from 210 to 240 kg hm-2. This optimized

fertilizer rate was much higher than the results of Qiao et al. (2013)

(150~210 kg hm-2), mainly ascribing to the differences in soil nutrient

content and texture. The soil parent in this area was mainly from the

Yellow River alluvium, which was characterized by low nutrients (e.g.,

total nitrogen was about 0.8~1.1g kg-1) and coarse soil particles (Cao

et al., 2011), which limited the soil nutrient supply and increased the

nitrogen fertilizer leaching consequently. Hence, it is necessary to

increase the soil nutrient contents (e.g., organic matter, total nitrogen)

by applying organic fertilizer application and straw incorporation

practices (Zhang et al., 2014), reducing the nitrogen fertilizer

application rate further.

Compared with the conventional urea fertilizer, the CRU

presented a higher potential for fertilizer application rate reduction

(Fageria and Carvalho, 2014; Hou et al., 2016). This result was

supported by the same grain yield in CRU and OPT, although the

total nitrogen input in the CRU was reduced by 40% (180 kg hm-2)

compared with the FP. This phenomenon was also proved by Gen

et al. (2015), who found that the crop yield was not decreased when

the total nitrogen was reduced by 50% when the controlled-release

urea was used. The reason for the great potential in nitrogen

reduction with controlled-release urea was revealed by Liu et al.

(2019) and Yang et al. (2012), who pronounced that the nitrogen

release rate in CRU was well matched with the nitrogen requirement

of the paddy plant. Consistent with Yang et al. (2012) and Li et al.

(2017), the NUE in CRU was obviously improved compared with the

FP treatment in this study. Also, Husain et al. (2019) found that the

CRU treatment (nitrogen fertilizer reduced by 20%) increased grain

yield and reduced nitrogen loss from runoff and leaching compared

with the FP. These results proved the great potential in total nitrogen

reduction with CRU.

In the end, both CRU and OPT treatments maintained paddy

grain yield and simultaneously reduced nitrogen loss in the study

area. In contrast, the NE and PF had a lousy performance in

maintaining grain yield and reducing nitrogen loss, respectively.

The optimized total nitrogen application rate was 210~240 kg hm-2

and<180 kg hm-2 for conventional urea and controlled-release urea,

respectively. Noticeably, overmuch irrigation water was consumed

in the study area, much higher than the paddy evapotranspiration.

As a result, a massive amount of the irrigated water was percolated,

which promoted nitrogen leaching further. Hence, water-saving

practices should be conducted in the paddy field, which can

reduce nitrogen leaching and increase the NUE simultaneously,

and the nitrogen application rate can be reduced further as a

consequence. Meanwhile, reducing the unit price of controlled-

release urea is better, which will promote its popularization and

application in the paddy field.
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Shortage and prospect

Indeed, the differences in nitrogen leaching amount and grain

yield among these five treatments in this study will vary with paddy

cultivation year and climate conditions. Hence, it is better to conduct

these experiments for longer, which can help us obtain a more reliable

result for choosing an optimized nitrogen application treatment.

Meanwhile, the nitrogen loss amount may increase in global

warming as more irrigation water will be applied due to the

increased evapotranspiration. Meanwhile, the higher temperature

resulting from global warming may deteriorate water pollution as

the eutrophication process will be accelerated. In addition, the

practices of deep placement of nitrogen fertilizer, applying

nitrification inhibitor, and optimizing the coat of controlled-release

urea fertilizer can reduce nitrogen loss and increase the grain yield

further (Kiran et al., 2010; Gaudin, 2012), which have to be evaluated

in future in the study area. Also, monitoring NH3 volatilization and

N2O emission under different nitrogen management practices will be

done in the future, as these gases have adverse effects on the

environment (Katata et al., 2013; Shcherbak et al., 2014) and should

be evaluated for optimizing nitrogen application practices.
Conclusion

This study investigated thedynamicsofnitrogenconcentration,paddy

yield and its nitrogen uptake characteristic, and nitrogen balance in the

paddy field under different nitrogen application practices in Northwest

China.Comparedwith theFP, theCRUandOPTsignificantly reduced the

nitrogen concentrations (i.e., TN, NH4
+-N, NO3

–N, and TN) in both

surface water and soil water and reduced the nitrogen leaching at 100 cm

soil depth. Meanwhile, the grain yield in CRU and OPT was not

significantly decreased compared with FP, even though the nitrogen

uptake by grain and straw was higher in FP than in other treatments.

However, the grain yield in NEwas decreased compared with the FP. The

differences ingrain yield among these treatmentsweremainly attributed to

the ear number and grain number changes. Also, the highest NUE, NAE,

and NPP were identified in CRU than in other treatments. Considering

increasing grain yield and reducing nitrogen loss simultaneously, the

treatments of CRU and OPT were first recommended for nitrogen

fertilizer application in the study area. The monitoring of volatilization

and denitrification will be done in the future to comprehensively evaluate

the adverse environmental effects of nitrogen fertilizer application.
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