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Calibration to maximize
temporal radiometric
repeatability of airborne
hyperspectral imaging data

Christian Nansen*, Hyoseok Lee and Anil Mantri

Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
Many studies provide insight into calibration of airborne remote sensing data but very

few specifically address the issue of temporal radiometric repeatability. In this study,

we acquired airborne hyperspectral optical sensing data from experimental objects

(white Teflon and colored panels) during 52 flight missions on three separate days.

Data sets were subjected to four radiometric calibration methods: no radiometric

calibration (radiance data), empirical line method calibration based on white

calibration boards (ELM calibration), and two atmospheric radiative transfer model

calibrations: 1) radiometric calibration with irradiance data acquired with a drone-

mounted down-welling sensor (ARTM), and 2)modeled sun parameters andweather

variables in combination with irradiance data from drone-mounted down-welling

sensor (ARTM+). Spectral bands from900-970 nmwere found to be associated with

disproportionally lower temporal radiometric repeatability than spectral bands from

416-900 nm. ELM calibration was found to be highly sensitive to time of flight

missions (which is directly linked to sun parameters and weather conditions). Both

ARTM calibrations outperformed ELM calibration, especially ARTM2+. Importantly,

ARTM+ calibration markedly attenuated loss of radiometric repeatability in spectral

bands beyond 900 nm and therefore improved possible contributions of these

spectral bands to classification functions. We conclude that a minimum of 5%

radiometric error (radiometric repeatability<95%), and probably considerably more

error, should be expected when airborne remote sensing data are acquired at

multiple time points across days. Consequently, objects being classified should be in

classes that are at least 5% different in terms of average optical traits for classification

functions to perform with high degree of accuracy and consistency. This study

provides strong support for the claim that airborne remote sensing studies should

include repeated data acquisitions from same objects at multiple time points. Such

temporal replication is essential for classification functions to capture variation

and stochastic noise caused by imaging equipment, and abiotic and

environmental variables.
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Introduction

Optical sensing, machine vision, and remote sensing are common

terms referring to the process of acquiring optical signals to detect and

classify individual “objects” into pre-defined categories or along

continuous gradients. Across spatial scales and types of optical

sensors, classifications of remote sensing data are based on the

fundamental assumption that unique and detectable “optical traits”

within optical signals can be acquired consistently and used

accurately to identify and/or characterize objects. As an example, a

thorough and well-performed study concluded that reflectance values

in spectral bands near 700 nm provide quase-universal indication of

abiotic and biotic stress in plants (Carter and Knapp, 2001).

Importantly, non-stressed plants also have reflectance near 700 nm,

so the optical classification challenge is to identify and quantify what

would be considered non-stress reflectance at 700 nm in order to use

this spectral information as an optical trait to detect and diagnose

plant stress. Simply stated and when objects are classified into

categories, it is assumed that between-category difference of optical

signals is greater than within-category variation.

Within-category variation may be viewed as noise or error, and

several sources of error adversely affect classification of objects based

on airborne remote sensing data (Anderson and Peleg, 2007; Schott,

2007; Hruska et al., 2012; Zhang and Kovacs, 2012; Aasen et al., 2018).

In airborne remote sensing studies and applications, sources of error

are markedly influenced by spatio-temporal dynamics of sun

parameters (i.e. altitude, azimuth, and distance from earth) and

atmospheric conditions. Specific studies have measured and

modeled influence of solar irradiance and angle as functions of time

of day (King et al., 1997) and effects of atmospheric contributions and

drone flight configurations on airborne remote sensing data sets

(Kedzierski et al., 2019; Poncet et al., 2019; Zarzar et al., 2020).

Radiometric calibration is performed to minimize optical signal noise

induced by dynamics of sun parameters and atmospheric conditions,

and it can be accomplished via deployment of stationary reference

objects, which is referred to as vicarious calibration or empirical line

method (ELM) (Smith and Milton, 1999; Karpouzli and Malthus,

2003; Baugh and Groeneveld, 2008; Del Pozo et al., 2014; Wang and

Myint, 2015; Aasen et al., 2018; Iqbal et al., 2018; Mafanya et al., 2018;

Poncet et al., 2019; Agapiou, 2020; Zarzar et al., 2020). Several articles

have provided comprehensive discussions of ELM calibration and
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listed important underlying assumptions when this radiometric

calibration method is used (Smith and Milton, 1999; Baugh and

Groeneveld, 2008; Aasen et al., 2018). Alternatively, radiometric

calibration may be based on solar and atmospheric modeling

(atmospheric radiative transfer models, ARTMs) (Biggar et al.,

1994; Aasen et al., 2018; Poncet et al., 2019). ARTM calibration is

based on parameterization of incident irradiance and potentially

other variables, including time of day, date, location, and weather

conditions (Aasen et al., 2018), and the basic goal is to generate an

estimate of Lambertian radiance, which is then used as reference.

Moreover, radiance signals from target objects are divided with

ARTM calibration estimates of Lambertian radiance to obtain

reflectance. Thus, the fundamental difference between ELM and

ARTM calibration is whether to use an actual calibration board,

such as, white Teflon in ELM calibration or to use a virtual or model-

based reference (ARTM for radiometric calibration. A key challenge

in ARTM calibration is accurate measurement or theoretical

calculation of incident irradiance (Smith and Milton, 1999), but

possible solutions include deployment and integration of a

stationary reference spectrometer or sun photometer (Zarco-Tejada

et al., 2012; Burkart et al., 2013; Del Pozo et al., 2014), or irradiance

data acquisition with a drone-mounted down-welling sensor

(Nevalainen et al., 2017; Mamaghani and Salvaggio, 2019). As an

example, Figures 1A, B show the optical drone system used in this

study. Through software control and integration, down-welling

irradiance data are acquired as a separate file (but concurrently

with optical sensing data of objects) and later used as white balance

to convert radiance data from target objects into reflectance.

Several articles have highlighted importance of low radiometric

repeatability and its adverse effect on accuracies of optical sensing

classification functions (Peleg et al., 2005; Baghzouz et al., 2006;

Anderson and Peleg, 2007; Vilaseca et al., 2014; Nansen and Elliott,

2016). In a few studies, radiometric repeatability was examined

experimentally manipulated to determine its relative effect on

accuracy of classification functions (Nansen et al., 2019; Nansen

et al., 2022). Effective and user-friendly radiometric calibration

methods are needed to minimize within-class optical noise and to

maximize between-class differences in airborne remote sensing data

sets. However, it is surprisingly rare that studies of radiometric

calibration methods include a temporal component as part of

optimizing what is here referred to as “temporal radiometric
BA

FIGURE 1

Octocopter drone system used in this study (A) with down-welling irradiance sensor (B).
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repeatability”, Tr, which we defined as:

Equation   1 :Tr =   100 −  
Confid95  �100

Signalavg

( )

In which, it is assumed that optical sensing data (i.e. radiance or

reflectance) in individual spectral bands follow a normal distribution

when an object is imaged multiple times. Moreover, we calculated

95% confidence intervals (Confid95) for each spectral band and divide

with average signal value (Signalavg). This ratio is converted into

percentage, and finally subtracted from 100. Accordingly, 100 equals

the maximum radiometric repeatability, and due to standardization

(division with average signal value), it can be compared across

spectral bands with varying signal intensities. Peleg et al. (2005)

boldly and eloquently stated the following: “Hyperspectral image cubes

acquired in consecutive flights over the same target should ideally be

identical. In practice, two consecutive flights over the same target

usually yield significant differences between the image cubes. These

differences are due to variations in: target characteristics, solar

illumination, atmospheric conditions and errors of the imaging

system proper”. Peleg et al. (2005) characterized and quantified

levels of radiometric repeatability in optical sensing data acquired

both under controlled laboratory conditions with artificial lighting

and from airborne remote sensing missions (sun as light source). We

are unaware of any similar research articles, in which temporal

radiometric repeatability has been experimentally tested and

accompanied by statistical analyses. The fundamental issue is that

training data used to develop classification functions should ideally

include acquisitions of remote sensing data at more than one time

point. Furthermore, performance validation of optical classifications

should ideally be based on truly independent data (Nansen

et al., 2022).

In this study, we acquired airborne hyperspectral optical sensing

data from experimental objects (white Teflon and colored panels)

during 52 flight missions on three separate days. The following

variables were controlled/fixed during flight missions: 1) position of

experimental objects (placed always in same positions and sequence),
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2) type of experimental objects (exact same objects used in during all

flight missions), 3) quality of objects (as they were plastic, we assumed

negligible change during course of this study), 4) distance and angle of

imaging lens in relation to objects (drone altitude, speed, and linear

trajectory were programmed and assumed to be the same for all flight

missions), and 5) camera settings and imaging (e.g. exposure time and

frame rate) so that hyperspectral images were acquired under

constant settings and therefore directly comparable. However, the

following variables were not controlled during and among flight

missions: sun parameters (altitude, azimuth, and distance from

earth), cloud cover, atmospheric composition, and weather

conditions. We tested the hypothesis that radiometric calibration,

encompassing non-linear dynamics of sun parameters and weather

conditions, can significantly improve radiometric repeatability. To

address this hypothesis, three separate data analyses were performed.

Firstly, we compared radiometric repeatability of average profiles,

when imaging data were subjected to different levels of radiometric

calibration [radiance calibration (no radiometric calibration), ELM

calibration, and ARTM and ARTM+ (Figure 2A). Importantly,

Analysis 1 focused on the overall repeatability among levels of

radiometric calibration. Furthermore, Analysis 1 was used to

identify spectral regions with comparatively low/high radiometric

repeatability. That is, insight into portions of the radiometric

spectrum with comparatively high radiometric repeatability can be

used to select spectral bands from such regions and thereby optimize

likelihood of high overall performance of classification functions.

While Analysis 1 was performed to characterize the overall level of

radiometric repeatability, Analysis 2 examined radiometric

repeatability from a different perspective, as optical sensing data

acquired close to zenith on day 2 (Figure 2B at 12:12 pm on March

18) were used to develop a classification function of pixels from the

seven color panels. Subsequently, this classification function was

applied to the remaining 51 optical sensing data sets acquired

earlier and later the same day and also on days before and after.

Thus, Analysis 2 represented a scenario, in which a classification

model based on optical sensing data from a single flight mission was

applied to data from all other flight missions and therefore provided
B CA

FIGURE 2

Illustration of data work flow related to radiometric calibration of optical sensing data (A). Time of 52 flight missions on three separate days (B). Optical
sensing data acquired during one flight mission (Day 2, 12:12) is highlighted as it was used as to develop classification functions (one for each level of
radiometric calibration), which were applied to the remaining 51 optical sensing data sets. Experimental objects (white Teflon and seven colored panels)
placed on top of wooden boards and imaged during 52 flight missions (C).
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insight into “robustness” (Nansen, 2011) of the classification model.

High level of robustness (similar classification results among optical

sensing data sets would provide strong indication of high repeatability

due to high-performance of radiometric calibration. In Analysis 2, the

fundamental assumption was that numbers pixels classified as one of

the seven panels should remained similar over time (within and

between days of flight missions). Accordingly, variation in number of

pixels classified as each panel among flight missions was interpreted

using Equation 1 and therefore used as proxy of radiometric

repeatability. As Analysis 3, a classification function of pixels from

the seven color panels was developed, in which spectral bands with

low radiometric repeatability had been omitted. Meaning the level

and type of radiometric calibration was identical to that of Analysis 2,

but the number of spectral bands included to develop classification

functions had been optimized to only include those with high spectral

repeatability (derived from Analysis 1).

Based on experimental airborne optical sensing data and three

separate analyses, this study confirms what Peleg et al. (2005)

eloquently highlighted as a major issue being ignored in most

remote sensing studies – that optical sensing data acquired from

the same object at multiple time points show considerable variability.

Thus, the issue of temporal radiometric repeatability is highlighted, as

most published optical sensing studies lack repetition over time of

data acquisitions. Results from this study highlight concerns about

radiometric repeatability as being relevant, even when optical sensing

data are used to classify objects distinguishable by the human eye. We

argue that this study is relevant to virtually all studies involving

applications of airborne remote sensing.
Materials and methods

Drone-based imaging of
experimental objects

A total of 52 flight missions were completed (Table 1 and

Figure 2B), in which we acquired optical sensing data from white

Teflon and seven color panels (red, light blue, green, dark blue,

orange, yellow, and blue grey) (Figure 2C). We used a push-broom
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hyperspectral camera (PIKA L, Resonon Inc., Bozeman, MT, USA)

with the following specifications: digital output (12 bit), angular

field of view of 7 degrees, objective lens had a 17 mm focal length

(maximum aperture of F1.4), spectral range of 380-1,015 nm, and

spectral resolution of 150 bands (4.2 nm). However, we only

analyzed reflectance values in 131 spectral bands from 416 -970

nm due to concerns about low signal to noise ratio in both ends of

the spectral range. The hyperspectral camera was mounted on a

gimbal (DJI Ronin-M Model R-6, DJI, Shenzen, China) and flown

with an octocopter (DJI S1000 octocopter, DJI, Shenzhen, China),

which was controlled using a DJI A3 Pro flight controller and a DJI

Lightbridge 2 radio controller. To obtain directly comparable

remote sensing data, the following variables were controlled/fixed

during flight missions: 1) position of experimental objects (placed

always in same positions and sequence), 2) type of experimental

objects (exact same objects used in during all flight missions), 3)

quality of objects (as they were plastic, we assumed negligible

change during course of this study), 4) distance and angle of

imaging lens in relation to objects (drone altitude = 30 meters,

speed = 1.3 meters per second, and linear trajectory were

programmed and assumed to be the same for all flight missions),

and 5) all camera settings were constant and identical for all flight

missions (integration time = 3 milliseconds, frame rate = 130 per

second, and gain = 0).

Hyperspectral images were acquired with a spatial resolution of

about one pixel per cm2. For each combination of flight mission and

white Teflon or colored panel, we selected about 225 central pixels (15

× 15 = 225), which were averaged as a single hyperspectral profile. To

ensure identical sequence, position, and to avoid dust deposition

during flight missions, white Teflon and colored panels were cleaned

between flight missions and placed on top of cinder blocks. A down-

welling sensor (Flame-S, Ocean Insight, Orlando, FL) was mounted

on top of the drone and used to acquire irradiance data (Figure 1B),

and it was connected to the drone computer with a fiber-optic cable.

The following four weather variables were acquired with a ground-

based weather station (HOBO U30 Station, Onset, Bourne, MA):

wind speed (m/s), ambient temperature (°C), relative humidity (%),

and barometric pressure (bar) during all flight missions. The

following three sun parameters were obtained from a website
TABLE 1 Weather variables and sun parameters and during flight missions on three separate days.

3/15/2022 3/18/2022 3/23/2022 Repeatability

Flight time (first-last) 10:39-16:12 10:22-15:40 10:52-16:43

Number of flights 11 18 23

Wind speed 1.35 (0.00-3.02) 0.66 (0.00-2.52) 0.88 (0.00-2.01) 74.43

Temperature °C 22.07 (21.73-26.35) 18.46 (17.03-20.56) 24.61 26.40-29.17 95.98

Relative humidity (%) 55.58 (39.78-43.21) 44.70 (31.40-37.80) 75.30 (54.70-54.40) 94.07

Barometric pressure 1.02 (1.02-1.02) 1.02 (1.01-1.02) 1.02 (1.02-1.02) 99.94

Altitude 39.31 (32.82-47.42) 44.00 32.54-50.58 43.40 29.46-52.65 95.85

Azimuth 201.01 (128.86-235.77) 173.42 (121.87-229.15) 195.05 (130.33-245.43) 94.15

Distance 148.79 (148.78-148.79) 148.91 (148.90-148.91) 149.12 (149.11-149.12) 99.98
Average, and minimum and maximum (inside brackets) weather variables: wind speed (m/s), ambient temperature, relative humidity, and barometric pressure (bar). Average, and minimum and
maximum (inside brackets) sun parameters, and data for all 52 flight missions were obtained a from website (https://www.suncalc.org/): altitude (deg), azimuth (deg), and distance (million km) from
earth. Repeatability was calculated based on Equation 1 and data from all 52 flight missions.
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(https://www.suncalc.org/): altitude (deg), azimuth (deg), and

distance (km) from earth.
Data analysis

All data processing and classifications were performed in R

v3.6.1 (The R Foundation for Statistical Computing, Vienna,

Austria). Optical sensing data from the 52 flight missions were

subjected to four levels of radiometric calibration [radiance

calibration (no radiometric calibration), ELM calibration, and

ARTM and ARTM+ calibrations]. These radiometric calibration

methods are illustrated in Figure 2A and briefly described in the

workflow below:
Fron
• Raw hyperspectral imaging data from both white Teflon and

colored boards and irradiance down-welling sensor data were

acquired simultaneously with flying drone during 52 flight

missions.

• Using Spectronon Pro software (www.resonon.com), raw

hyperspectral imaging data from colored panels were

converted into radiance, and this represented the first

radiometric calibration level, which is referred to as

“radiance calibration”.

• Using irradiance data from on-board down-welling sensor,

radiance optical sensing data were converted into relative

reflectance. This level of radiometric calibration was

performed using the software, Spectronon Pro (www.

resonon.com), and it is referred to as “ARTM”.

• Averaged radiance profiles from all combinations of flight

mission and colored panel were divided with averaged

radiance profiles from corresponding white Teflon. This

level of radiometric calibration is referred to as “ELM”.

• Data for seven explanatory variables (four weather variables

and three sun parameters) were obtained for the time period

of each of the 52 flight missions, and support vector machine

(svm) modeling [using the library(e1071) with radial kernel

function and no specific hyperparameters (i.e., cost or

gamma)] was performed with reflectance data from white

Teflon. Separate svm models were performed with reflectance

signals in 131 individual spectral bands. These svm model

outputs may be considered virtual reference calibration

boards, and reflectance data from color panels were divided

with svm model outputs. This level of radiometric calibration

is referred to as “ARTM+”, as it included calibration based on

both irradiance signals from the on-board down-welling

sensor and from svm modeling of sun parameters and

weather variables.
Three separate analyses were performed based on the

abovementioned levels of radiometric calibration of optical sensing

data. In Analyses 1 and 3, highly similar results were obtained with all

seven color panels. Accordingly, only results from a single color panel

(red panel) are presented. Regarding Analysis 2, results from all seven

color panels are presented.

Analysis 1: We quantified radiometric repeatability as a function

of level of radiometric calibration of average profiles from the 52 flight
tiers in Plant Science 05
missions. Equation 1 was used to generate radiometric repeatability

estimates for all combinations of radiometric calibration method

(four methods) and spectral bands (131 spectral bands). This

analysis represents a post-hoc (after completion of all flight

missions) characterization and assessment of the overall level of

radiometric repeatability.

Analysis 2: Optical sensing data acquired at 12:12 pm on March

18 were used to develop classification functions (one for each level of

radiometric calibration) of pixels from the seven color panels. These

classification functions were applied to the 51 remaining optical

sensing data sets acquired earlier and later the same day and also

on days before and after. Thus, we take an analytical approach which

is similar to what would be deployed by optical sensing practitioners

when an existing classification function (with corresponding

radiometric calibration) is used and applied to “new” optical data

sets. In addition to categories representing each of the seven color

panels, we included categories representing: wooden board

underneath color panels, and soil/vegetation. Svm modeling [using

the library(e1071) with radial kernel function and no specific

hyperparameters (i.e., cost or gamma)] was used to generate

classification function based on optical sensing data from 12:12 pm

on March 18. In Analysis 2, the fundamental assumption was that

numbers pixels classified as one of the seven panels should remain

similar over time (within and between days of flight missions).

Accordingly, variation in number of pixels assigned to each panel

among flight missions was interpreted using Equation 1 and therefore

used as proxy of radiometric repeatability. We used paired t-test

(library(rstatix)) for statistical comparisons of average radiometric

repeatability values for the seven color panels among levels of

radiometric calibration. This analysis enabled direct comparison

and assessment of effect of calibration on radiometric repeatability.

Additionally, 2nd order polynomial regression analyses were

performed for optical sensing data acquired with each of the four

levels of radiometric calibration. In these regression analyses, azimuth

(deg) of each flight mission was used as explanatory variable, while

number of pixels (only data from green color panel are presented) was

used as response variable. A straight regression with slope close to

zero would imply low sensitivity of pixel numbers correctly classified

to weather variables and sun parameters at time of flight missions.

Conversely, a unimodal regression fit would indicate high sensitivity

of pixel numbers correctly classified to abiotic conditions at time of

flight missions.

Analysis 3: the same analytical approach as described in Analysis

2 was applied to all four radiometric calibration levels, but instead of

using all 131 spectral bands (416-970 nm) we only used 115 spectral

bands from (416-900 nm), thus excluding spectra bands >900 nm, as

these were found to be associated with comparatively low radiometric

repeatability during Analysis 1.
Results

Analysis 1 - radiometric repeatability of
average profiles

Table 1 lists minimum, maximum, and average times of the 52

flight missions, and we used Equation 1 to calculate repeatability of
frontiersin.org
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decimal flight times. Similar repeatability values were calculated for

sun parameters and weather variables, and it is seen that all

variables, except wind speed, were associated with repeatability

scores between 94-100. In other words, only about 5% of data sets

would be expected to fall outside 95% confidence intervals of these

variables. Regarding down-welling irradiance data, radiometric

repeatability values ranged from 95-98% for spectral bands in the

examined radiometric spectrum (Figure 3A). In other words, only 2-

5% of down-welling sensor data would be expected to fall outside

95% confidence intervals of average values. Radiometric

repeatability values of radiance calibration acquired from the

white Teflon board were around 94% in spectral bands from 416-

900 nm and decreased markedly in spectral bands from about 900-

970 nm (Figure 3A). It is highly noteworthy that radiometric

repeatability values of radiance calibration data acquired from the

white Teflon board were consistently lower than those of irradiance

data and similar to those of sun parameters and weather variables.

This may be interpreted as variables other than sun light intensity

(irradiance) markedly influencing radiance data acquired with a

flying drone.

Figure 3B shows average radiometric repeatability profiles from

the red color panel in response to four different levels of radiometric

calibration. Only data from the red color panel are shown, but very

similar results were observed for other six color panels. It is seen that

radiometric repeatability of radiance calibration from the red color

(Figure 3B) was almost identical to that of white Teflon (Figure 3A).

As expected, all three calibration methods greatly improved

radiometric repeatability compared to non-calibrated radiance data,

and they all showed similar radiometric repeatability as irradiance

data, except for spectral bands beyond 900 nm. This decrease suggests

spectral bands in this portion of the radiometric spectrum may be

associated with considerable stochastic noise and therefore adversely

affect performance of classification functions. Importantly, ARTM+

calibration yielded considerably higher radiometric repeatability in

spectral bands beyond 900 nm than other radiometric

calibration methods.
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Analysis 2 - radiometric repeatability of
classified color panels

We are unaware of any published studies in which one

classification function is truly validated based on 51 additional

optical sensing data sets. The seven color panels were visibly

distinguishable, so, as expected, svm classification functions of data

from all four levels of radiometric calibration yielded classification

accuracies exceeding 98% (based on 10-fold validation) (classification

results not shown). Meaning, irrespectively of level of radiometric

calibration, it could be concluded that each classification function

(based only on remote sensing data acquired from a single flight

mission at 12:12 on March 18), irrespectively of radiometric

calibration method, could be used with similar level of performance

accuracy to classify remote sensing data from the remaining 51 flight

missions. This issue is what was experimentally tested in this study, as

most remote sensing studies ignore the importance of acquiring data

from the same objects multiple times and applying classification

function to new and independent data sets (Peleg et al., 2005;

Anderson and Peleg, 2007). Accordingly, we applied classification

functions derived from the flight mission at 12:12 on March 18 to

optical sensing data acquired during the remaining 51 flight missions

(Figure 4). Radiance and ELM calibrations showed significantly lower

radiometric repeatability than data subjected ARTM calibrations. In

addition to low average radiometric repeatability, there was

considerable sensitivity to specific colors of panels for both radiance

and ELM calibrations. As an example, radiance calibration of the

yellow color panel was associated with a radiometric repeatability of

77.3%, while that of the blue grey panel was 87.6%. Similarly for ELM

calibration, the yellow color panel was associated with a radiometric

repeatability of 71.4%, while that of the blue grey panel was 87.1%.

This inconsistency among color panels means that classification

accuracies appeared to be highly sensitive to colors of target objects

and therefore of optical traits of categories included in classification

functions. In contrast, both ARTM calibrations yielded highly

consistent average radiometric repeatability values for all seven
BA

FIGURE 3

Equation 1 was used to calculate spectral repeatability of irradiance profiles (acquired with drone-mounted down-welling sensor) and of radiance profiles
from white Teflon from 52 flight missions (A). Equation 1 was also used to calculate spectral repeatability of profiles from red color panel based on four
levels of spectral calibration (B): 1) no spectral calibration (radiance data), 2) spectral calibration based on white calibration boards (empirical line method,
ELM calibration), 3) spectral calibration with irradiance data acquired with a drone-mounted down-welling sensor (ARTM), and 4) modeled sun
parameters and weather variables in combination with irradiance data from drone-mounted down-welling sensor (ARTM+).
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color panels, and overall radiometric repeatability values around 95%

with ARTM+ calibration being significantly higher than ARTM

calibration (df = 6, t-stat = 3.742, P = 0.010).

With flight missions performed across wide time spans on each of

three days, we examined effects of time difference from model data

acquisition (12:12 pm). For each of the 52 flight missions, number of

pixels correctly classified as green color panel was determined and

used to calculate radiometric repeatability scores (green color panel

was representative of all color panels). We observed that, regarding

radiance (Figure 5A) and ELM calibration (Figure 5B), the green color

panel was represented by approximately 200 pixels in data sets

acquired with azimuth near 150°. However, classification functions
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failed to identify any pixels correctly as green color panel (green

pixels = 0) in many of the data sets acquired with azimuth below 130°

or above 235°. Instead, pixels from green color panel (and those from

five other color panels: red, light blue, dark blue, orange, and yellow)

were misclassified as wood board, ground, and blue grey panel.

Consequently, there was as strong unimodal response of green

panel pixels to time of day for both radiance and ELM calibration.

Conversely, both ARTM calibrations showed low sensitivity to

azimuth and therefore to time of day and other sun parameters and

environmental variables (Figures 5C, D). Moreover both polynomial

regression slopes were almost linear and with a negative slope,

ARTM = -0.18 and ARTM+ = -0.15. Thus, in direct comparison,
B

C D

A

FIGURE 5

Based on remote sensing data acquired from green color panel (considered representative for all seven color panels), numbers of correctly classified
pixels are plotted as a function of azimuth (deg) for each of the four levels of spectral calibration (red dots denote time point of data used to generate
classification function): 1) no spectral calibration (radiance data) (A), 2) spectral calibration based on white calibration boards (empirical line method, ELM
calibration) (B), 3) spectral calibration with irradiance data acquired with a drone-mounted down-welling sensor (ARTM) (C), and 4) modeled sun
parameters and weather variables in combination with irradiance data from drone-mounted down-welling sensor (ARTM+) (D). In each graph,
hyperspectral remote sensing data acquired during one flight mission (Day 2, 12:12) are presented as a white dot, as this was used to training data for the
classification function applied to data from all 52 flight missions. A second order polynomial regression fit was deployed to each data set, and grey areas
denote 95% confidence intervals.
FIGURE 4

Classification functions derived from optical remote sensing data acquired from colored panels during one flight mission (Day 2, 12:12) were used to
develop classification functions for each of the four levels of spectral calibration. Subsequently, these classification functions were applied to
hyperspectral remote sensing data acquired during each of the 52 flight missions. Numbers of correctly classified pixels were used as proxy to estimate
spectral repeatability for each color panel. Letters indicate statistical difference at the 0.05-level.
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ARTM+ calibration showed slightly less sensitivity to sun parameters

and environmental variables.
Analysis 3 – improved radiometric
repeatability of ARTM2+ classification

Curves in Figure 3B provided indication of spectral bands beyond

900 nm possibly adversely affecting radiometric repeatability.

Consequently, data derived from ARTM+ calibration were re-

classified with a subset of 115 spectral bands (excluding 16 spectral

bands from 900-970 nm from the classification function), and this

radiometric calibration was denoted ARTM2+ (Figure 6). Regarding

the seven color panels, we observed a small but significant

improvement of average radiometric repeatability (df = 6, t-stat =

2.447, P = 0.033).
Discussion

As a crucial prerequisite to successful and meaningful use of

airborne remote sensing data (Anderson and Peleg, 2007) and satellite

imagery (Biggar et al., 1994), radiometric calibration methods are

needed, so that data acquired multiple times from target objects and/

or landscape features are radiometrically repeatable and therefore can

be accurately detected and classified. Despite widespread

acknowledgement of radiometric calibration as critically important

and this topic being the main focus of a large body of research studies,

temporal aspects, and therefore temporal radiometric repeatability,

have been ignored. Virtually in all experimental research disciplines,

replication (both in space and time) is considered a fundamental

pillar, and it is required when statistical procedures are deployed.

Temporal replication of observations is particularly important when

response variables (such as optical signals) are known to be highly
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influenced by complex and non-linear interactions among abiotic and

environmental variables. Accordingly, we tested the hypothesis that

radiometric calibration, encompassing non-linear dynamics of sun

parameters and weather conditions, can significantly improve

temporal radiometric repeatability. For direct comparison of remote

sensing data acquired over time, all camera and imaging settings

(exposure time, frame rate, lens aperture, and drone speed) were

kept constant.

The following are considered main findings of this study:

1) Radiance data acquired from white Teflon showed consistently

lower radiometric repeatability than simultaneously acquired

irradiance data. Accordingly, irradiance data may only partially

account for optical noise in airborne remote sensing data. 2)

Spectral bands beyond 900 nm were found to be associated with

disproportionally lower radiometric repeatability than signal values in

spectral bands from 416-900 nm. This important result implies that

inclusion of spectral bands from 900-970 nm may adversely affect

accuracy and robustness of classification functions. Reviews of

spectral indices show that spectral bands from 900-970 nm are

frequently used (Bolin et al., 1989; Thenkabail et al., 2000; Thorp

and Tian, 2004; Zhu et al., 2008; Prabhakar et al., 2012; Luo et al.,

2013). 3) As expected, radiance data were highly sensitive to time of

flight missions (which is directly linked to sun parameters and

weather variables). However, we also demonstrated that ELM

calibration showed similar time sensitivity. This result raises some

concern, as it is probably the most commonly used method of

radiometric calibration in airborne remote sensing studies (Aasen

et al., 2018; Poncet et al., 2019). 4). We examined two methods of

ARTM calibration, in which irradiance data were acquired with a

drone mounted down-welling sensor by itself (ARTM), and in which

sun parameters and weather variables were modeled and integrated

into radiometric calibration (ARTM+). Both ARTM calibration

methods outperformed ELM calibration, especially ARTM+.

Importantly, ARTM+ calibration markedly attenuated loss of

radiometric repeatability in spectral bands beyond 900 nm,

and therefore improved possible contributions of these spectral

bands to classification functions. Nevertheless, we demonstrated

experimentally that exclusion of spectral bands beyond 900 nm

caused a significant increase in radiometric repeatability. However,

it is important to emphasize that the latter result is highly specific to

objects being classified (classes in classification function) and may

therefore not be broadly applicable and relevant. 5) A unique element

of this study was that the radiometric repeatability measurement

(Equation 1) was used to directly compare performances of different

radiometric calibration methods. Several studies have proposed other

but somewhat similar ways to calculate radiometric repeatability

(Kollenkark et al., 1982; Peleg et al., 2005; Anderson and Peleg,

2007; Poncet et al., 2019). Most of these radiometric repeatability

calculations are based on quantification of “true reflectance”, which is

typically determined by means of reflectance under highly controlled

laboratory conditions (inside optical sphere or hemisphere and with

controlled lighting). Once true reflectance is known for each spectral

band, band-specific RMSE-values (root-mean-square error) can be

calculated. It may not always be practically feasible to obtain “true

reflectance” values for all combinations of color panels and spectral

bands, so a different estimate of radiometric repeatability was used in

this study, and several features may be highlighted:
FIGURE 6

Direct comparison of average spectral repeatability of ARTM+ and
ARTM2+ calibrations for each of the seven color panels. ARTM+
calibration is based on data from 131 spectral bands from 406-970
nm, while ARTM2+ calibration is based on data from 115 spectral
bands from 406-900 nm.
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Fron
• Based on assumption of optical sensing data following a

normal distribution, and use of confidence interval provides

an intuitive interpretation of expected frequency distribution

of optical signal values.

• Is easy to calculate and can be used to calculate repeatability

of all types of optical sensing data

• Due to standardization (division with average signal), it is

possible to directly compare radiometric repeatability values

among spectral bands with different optical signal strength

• It is scaled so that maximum = 100, which is a convenient

presentation of radiometric repeatability.
The proposed radiometric repeatability measure was applied to

exact same optical sensing data cubes after being processed according

to four different radiometric calibrations. Moreover, slight stochastic

variations in flight path, and drone speed and altitude may partially

contribute to error in calculations of radiometric repeatability, but

these sources of error affected the raw optical sensing data, so

radiometric repeatability measures were directly comparable.
ELM calibration

Use of ELM calibration is probably the most commonly used

method of radiometric calibration of airborne remote sensing data

(Poncet et al., 2019), and it has been thoroughly reviewed (Smith and

Milton, 1999; Baugh and Groeneveld, 2008; Aasen et al., 2018).

Several studies have provided important insight into practical use

and repeatability of ELM calibration (Che and Price, 1992; Smith and

Milton, 1999; Karpouzli and Malthus, 2003; Wang and Myint, 2015;

Aasen et al., 2018; Iqbal et al., 2018; Mafanya et al., 2018; Agapiou,

2020; Zarzar et al., 2020). Experimental data from this study showed

its considerable sensitivity to time of day (sun parameters and

weather variables). Additionally, ELM calibration has the major

practical disadvantage that reference boards need to be placed

within acquired imaging scenes and sufficiently frequent to account

for temporal variations in atmospheric conditions and sun

parameters. Both placement and retrieval of calibration boards may

be time and labor consuming when large areas are being subjected to

airborne remote sensing. Furthermore, calibration boards need to be

placed in ways that minimize radiometric noise due to project angle

issues and/or shadows being cast by adjacent objects. Calibration

boards must be kept clean, stored properly, and undamaged, and they

are only of limited practical feasibility in remote sensing studies of tall

and dense vegetation or objects. High-quality calibration boards are

often costly, which may pose economic constraints to commercial

operations and/or large-scale research studies. Additionally, Assmann

et al. (2018) suggested that continuous use of commercially available

calibration boards (based on supplier and material) under field

conditions may lead to change in their optical characteristics over

time and therefore compromise their consistency. We are therefore

encouraging fellow researchers and commercial practitioners

acquiring and classifying airborne remote sensing data to consider

integration of ARTM calibration methods. Accurate ARTM

calibration may be hampered when based on theoretical calculation

of incident irradiance (Smith and Milton, 1999), but use of drone

systems with on-board down-welling sensor mitigates this challenge.
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Radiometric repeatability of living objects

In this study, color panels were visibly distinguishable, so virtually

any classification function would be able to provide high classification

accuracy of data from any of the 52 individual data sets and

irrespectively of radiometric calibration method. However in many

optical sensing studies, classes are less distinct, such as, studies

involving optical sensing of living plants. In addition to classes

being less distinct, physiological plant dynamics may influence

radiometric repeatability of optical sensing data. This is in itself a

considerable challenge, which is further exacerbated when airborne

remote sensing data are used to classify living objects, such as plants.

Moreover, it has been shown in a number of plants, including tomato

(Meyer et al., 1989), petunia (Stayton et al., 1989), tobacco (Paulsen

and Bogorad, 1990), and wheat (Nagy et al., 1987; Busheva et al.,

1991) that concentration of leaf pigments follow both diurnal and

circadian rhythms. Thus, light absorption should not be expected to

be constant over time, is influenced by plant ontology and phenology,

and may vary among leaves on the same plant as a function of leaf age,

cardinal direction, and canopy structure. Furthermore, it has been

demonstrated that in plant chloroplasts move and are near outer leaf

surface during the day, which results in high absorbance of

radiometric energy, while they are mainly located along leaf sides at

night (Britz and Briggs, 1976). Actual impact of such physiological

dynamics on leaf reflectance have, to the best of our knowledge not

been thoroughly examined, but they provide insight into possible

factors adversely affecting radiometric repeatability of optical sensing

data from plants.
Studies of radiometric repeatability

Some studies examining performance of different radiometric

calibration methods are based on remote sensing data acquired

during a single flight mission (Smith and Milton, 1999; Iqbal et al.,

2018; Shin et al., 2020). Some studies have examined radiometric

repeatability as a function of specific variables. As an example,

Daughtry et al. (1982) compared optical sensing data acquired at 10

altitudes ranging from 0.2 to 10 m above maize and soybean fields with

varying degree of soil cover. In both red (600-700 nm) and infrared

(800-1100 nm) portions of the radiometric spectrum, the authors found

a positive association between altitude and radiometric repeatability.

Flying at higher altitude also means that slight changes (i.e. due to

wind) in vertical position of flying drones has proportionally less

influence on spatial resolution of optical data then flying at lower

altitude. However, flying at higher altitudes means reduction in spatial

resolution and therefore increase in mixed pixels, and that may

adversely affect radiometric repeatability. Zarzar et al. (2020)

acquired drone-based remote sensing data from grey calibration

boards at nine altitudes ranging from 4 – 244 m, and they developed

an ELM calibration framework to maximize radiometric repeatability

based on atmospheric correction. The study by Zarzar et al. (2020) was

based on remote sensing data acquired during multiple flight missions

over the course of a full year, and goodness of fit values for three

spectral bands were: R2-green = 0.77, R2-red = 0.79, and R2-nir = 0.77).

Based on number of observations, the fact that the study was conducted

over water, and level of temporal replication, obtained goodness of fit
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values suggest strong performance of the proposed ELM calibration.

Using a Landsat radiometer, Kollenkark et al. (1982) examined soybean

canopy reflectance in 15-min intervals on three separate days. The

authors found that, in the red portion of the radiometric spectrum

(600-700 nm), diurnal crop reflectance varied as much as 140%.

Furthermore, they showed a clear unimodal diurnal crop reflectance

to time difference from azimuth, which was also found in the current

study regarding radiance and ELM calibration (Figures 5A, B). A

correction model was proposed based on row width, row direction,

and solar azimuth and zenith angle. Kollenkark et al. (1982) provided a

very comprehensive review of models to correct for solar angle in

remote sensing studies of vegetation, and most of the models hinge on

shadow effects.

Similar to the current study, Iqbal et al. (2018) acquired remote

sensing data from color panels, but no validation was included, nor

did they quantify or assess relative effects of weather variables and/or

sun parameters. Assmann et al. (2018) provided a comprehensive

description of sources of error and also specific recommendations to

optimize acquisition of airborne remote sensing data with a specific

multispectral camera. Interestingly, Assmann et al. (2018) mentioned

and briefly described a study with two arctic field sites, and from

which airborne remote sensing data were acquired four times on a

single day. Furthermore, they examined and quantified relative

contributions of five different sources of radiometric error and

concluded that cumulative error was approximately 10%–13% of

peak vegetational reflectance. Thus, although based on a

considerably smaller data set, a different sensor, and acquired under

very different environmental conditions, radiometric error estimates

by Assmann et al. (2018) are similar in magnitude as observed in this

study. Anderson and Peleg (2007) provided a comprehensive

description of variables contributing to loss of radiometric

repeatability, even between remote sensing data acquired a few

minutes apart. However, no statistical analyses were included to

quantify effects of time. The challenge associated with low

radiometric repeatability has also been demonstrated based on

consistency over time of optical data acquired from carefully

selected target objects (spectrally homogeneous, Lambertian and

horizontal, and at least 12×12 m (Karpouzli and Malthus, 2003).

Using ground truthing data from these target object over a period of

nine days, the authors found that optical data from calibration targets

ranged from 6% to 21% (based on coefficient of variation). In other

words, Karpouzli and Malthus (2003) obtained radiometric

repeatability levels, which are directly comparable with radiometric

repeatability values presented in this study. Additionally, they

demonstrated the worrisome issue that radiometric repeatability

may be sensitive to and vary among specific target objects. The

current study also highlighted an issue with regards to ELM

calibration. Poncet et al. (2019) compared five radiometric

calibrations, in which three involved a down-welling irradiance

sensor, and multispectral airborne remote sensing data were

acquired from grey panels with reflectance ranging from 5%-90%.

Additionally, this study included flight missions on seven separate

days, and they deployed a ground-based weather station to acquire

weather data during flight missions. Thus, in several important ways

the experimental design was similar to the current study. Poncet et al.

(2019) used their data to compare performance of radiometric

calibrations and to assess spectral repeatability in each of the four
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spectral bands (green, red, red-edge, and NIR). Although weather

data were acquired, Poncet et al. (2019) did not integrate weather data

into any of their five radiometric calibration methods, nor did the

authors perform statistical comparison of radiometric calibrations.

Very interestingly, Poncet et al. (2019) calculated, for all

combinations of multispectral band and radiometric calibration

method, percentages of pixels from validation targets which were

within validation ranges. They found that for green and red spectral

bands,<50% of pixels were within validation ranges, while for red-

edge and NIR spectral bands most pixels were within validation

ranges. The authors also concluded that “the distribution of

radiometric error changed from flight to flight, and the magnitude of

the differences observed between flights varied between multispectral

bands and radiometric calibration methods.”.
Atmospheric variables and
radiometric repeatability

Figure 3A provided strong support for the claim that variables

other than solar irradiance are likely contributing markedly to loss of

radiometric repeatability. Table 1 shows considerable variation in

relative humidity at ground level. We did not have access to vertical

atmospheric profile data of gas concentrations, but it is likely

variation in atmospheric composition contributed to loss of

radiometric repeatability. Importantly, atmospheric gasses, such as

04, 02, H2O, NO2, and 03, are known to both vary considerably within

short amounts of time (Fowler et al., 2009) and indirectly influence

optical sensing signals (Solomon et al., 1998). Importantly, access to

vertical atmospheric profile data of gas concentrations may be

considered a major practical, logistical, and financial obstacle and

therefore highly challenging to incorporate into most types of

atmospheric correction. Solomon et al. (1998) showed that

atmospheric concentration of these gasses is linked directly to

absorption peaks in wavelengths from 400-450 nm and 610-680

nm. However, we did not observe noticeable absorption peaks in

those spectral regions. Instead, an absorption peak at 762 nm was

noticeable in both solar irradiance data and in radiance data from

white Teflon. Importantly, absorption near 760 nm is associated with

molecular oxygen in the terrestrial atmosphere (Rascher et al., 2009).

Furthermore, ELM and ARTM calibrations retained this absorption

peak at 762 nm, but it was eliminated by ARTM+ calibration

(Figure 3B). The fact that ARTM+ calibration produced a

considerably smoother profile than any of the other radiometric

calibrations supports the claim that weather variables and

atmospheric gas composition are important explanatory variables in

efforts to maximize radiometric repeatability.
Final perspectives

It is indisputable that integration of advanced airborne remote

sensing, such as hyperspectral optical sensing, into monitoring and

management of crops in agriculture, environmental conservation, and

many commercial industry sectors, holds considerable potential

(Anderson and Gaston, 2013; Aasen et al., 2018; Assmann et al.,

2018; Zarzar et al., 2020). However, widespread adoption of remote
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sensing technologies is constrained by a critically important challenge –

non-linear dynamics of weather, solar light intensity, atmospheric

composition, scattering, and how effects of these variables are

integrated into radiometric calibrations. As we have highlighted and

reviewed, there are reasons to be concerned about use of ELM

calibration. Moreover, we have identified both logistical concerns as

well as performance concerns associated with ELM calibration. As an

alternative to ELM calibration, ARTM calibration with an on-board

down-welling sensor provided significantly higher radiometric

repeatability and is not accompanied by the same logistical concerns

as ELM calibration. ARTM calibration provided particularly high

radiometric repeatability when down-welling sensor data were

integrated with sun parameters and weather variables. In the present

study, we demonstrated that even though objects were visibly distinct

(color panels) and therefore very easy to classify, replication of image

acquisitions over time resulted in loss of radiometric repeatability with

all examined methods of radiometric calibration. Moreover, a

minimum of 5% radiometric error (radiometric repeatability<95%)

should be expected when airborne remote sensing data are acquired.

And as described above, other studies based on different remote sensing

systems corroborate this result, or they suggested lower levels of

radiometric repeatability. A direct implication is that objects being

classified should be in classes that are at least 5% different in terms of

average spectral traits for classification functions to perform with high

degree of accuracy and consistency.
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