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Introduction: Landraces represent a significant gene pool of African cultivated

white Guinea yam diversity. They could, therefore, serve as a potential donor of

important traits such as resilience to stresses as well as food quality attributes that

may be useful in modern yam breeding. This study assessed the pattern of

genetic variability, quantitative trait loci (QTLs), alleles, and genetic merits of

landraces, which could be exploited in breeding for more sustainable yam

production in Africa.

Methods: A total of 86 white Guinea yam landraces representing the popular

landraces in Nigeria alongside 16 elite clones were used for this study. The yam

landraces were genotyped using 4,819 DArTseq SNP markers and profiled using

key productivity and food quality traits.

Results and discussion: Genetic population structure through admixture and

hierarchical clustering methods revealed the presence of three major genetic

groups. Genome-wide association scan identified thirteen SNPmarkers associated

with five key traits, suggesting that landraces constitute a source of valuable genes

for productivity and food quality traits. Further dissection of their genetic merits in

yam breeding using the Genomic Prediction of Cross Performance (GPCP) allowed

identifying several landraces with high crossing merit for multiple traits. Thirteen

landraces were identified as potential genitors to develop segregating progenies to

improve multiple traits simultaneously for desired gains in yam breeding. Results of

this study provide valuable insights into the patterns and the merits of local genetic

diversity which can be utilized for identifying desirable genes and alleles of interest

in yam breeding for Africa.
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1 Introduction

Yam is a monocotyledonous vine crop cultivated for the

consumption of its starchy underground tubers and aerial bulbils. It

belongs to the genus Dioscorea, the major genus within the family of

Dioscoreaceae, which spreads throughout the tropics and subtropics,

with ~600 species (Wilkin et al., 2005; Darkwa et al., 2020a; Sugihara

et al., 2021). Of these, eleven species are mainly cultivated for food

and income, while many others of wild origins are known for their

bioactive compounds suitable for pharmaceutical applications

(Obidiegwu et al., 2020; Darkwa et al., 2020a; Price et al., 2020;

Lebot et al., 2022). Among the cultivated species, the white Guinea

yam (Dioscorea rotundata Poir.), water yam (Dioscorea alata L.), and

yellow yam (Dioscorea cayenensis Lam.) represent more than 95% of

the global yam production (Lebot, 2009).

Yam plants primarily propagate through vegetative means but

often flower and produce botanical seeds. Many of the flowering yam

genotypes are dioecious, with male (staminate) and female (pistillate)

flowers develop on separate plants, hence are highly heterozygous due

to their obligate outcrossing nature (Tamiru et al., 2017; Mondo et al.,

2021). Yam plants have varying ploidy levels (2n=40, 60, and 80)

within and between species with basic chromosomic number x = 20

(Sugihara et al., 2021).

The cultivated yam plays an essential role in ensuring food

security and improving the livelihoods of millions of people in

Africa (Sanginga and Mbabu, 2015). According to FAOSTAT

(2021), ~92% of global yam production came from the West

African yam belt, while Nigeria alone accounted for 65.5% of the

total production. In this region, yam is cash and preferred staple food

crop, providing carbohydrates, essential minerals, and vitamins

(Sanginga and Mbabu, 2015). It is also integral to people’s socio-

cultural and religious belief systems (Lebot, 2009; Obidiegwu and

Akpabio, 2017).

Landraces with different historical origins, distinct identities,

values, and adaptations constitute the dominant parts of the

cultivated variability exhibited by yam in West Africa (Akakpo

et al., 2017). Obidiegwu et al. (2009) reported a high genetic

diversity of yam across Nigeria compared to collections from Benin,

Congo, Côte d’Ivoire, Equatorial Guinea, Gabon, Ghana, Sierra

Leone, and Togo. Recent studies reported the presence of moderate

to high landrace diversity in Benin Republic (Agre et al., 2021a) and

Côte d’Ivoire (Bakayoko et al., 2021). The tradition of continued

domestication from the wild relatives by African farmers contributes

to the high level of varietal and genetic diversity (Mignouna and

Dansi, 2003; Dumont et al., 2006; Scarcelli et al., 2006; Agre et al.,

2021a; Adewumi et al., 2022). In the yam-producing areas, farmers

face many constraints (pest and disease infestation, poor soil fertility,

lack of access to productive varieties, underdeveloped agronomic

practices, etc.) that could potentially lead to severe yield losses and

rapid genetic erosion (Dansi et al., 2013; Darkwa et al., 2020a). It is,

therefore, wise to systematically collect and assess available yam

landrace diversity for proper maintenance and identify desirable

genes and alleles of interest.

Different techniques exist for genetic diversity assessment. Of

these techniques, morphological markers are routinely used to assess
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yam genetic diversity (Darkwa et al., 2020a). Diversity assessment

using morphological markers such as size, form, and number of

tubers; bulbil formation, presence of spines on the stem, twining

direction, leaf shape, etc., often led to misclassification (Girma et al.,

2014; Loko et al., 2017; Ude et al., 2019; Darkwa et al., 2020a). Besides,

morphological markers are relatively few, display a low degree of

polymorphism, and a can be influenced by the environment, hence

may not provide an accurate or conclusive genetic classification of the

crop (Schulman, 2007; Mulualem et al., 2018; Agre et al., 2021a).

The use of molecular markers is, an accurate method of

identifying genotypes at the species level and harnessing genetic

diversity in yam crop (Agre et al., 2021a; Pachakkil et al, 2021).

Different molecular markers, including restriction fragment length

polymorphism (RFLP) (Terauchi et al., 1992), random amplified

polymorphic DNA (RAPD) (Mignouna et al., 2003; Mignouna et al,

2005), simple sequence repeat (SSR) (Mignouna et al., 2003; Loko

et al., 2017; Pachakkil et al, 2021), inter-simple sequence repeat (ISSR)

(Zhou et al., 2008), amplified fragment length polymorphism (AFLP)

(Mignouna et al., 2003), based on the use of next-generation

sequencing (Sartie et al., 2012; Girma et al., 2014; Saski et al., 2015;

Akakpo et al., 2017; Agre et al., 2019; Bhattacharjee et al., 2020;

Darkwa et al., 2020b; Agre et al., 2021a; Bakayoko et al., 2021) and

DNA barcoding sequencing (Girma et al., 2015; Ude et al., 2019), have

been used successfully in characterizing yam diversity. The above-

mentioned studies assessed the genetic diversity and possible genetic

evolution of yam species; few linked the pattern of genetic diversity

with its genetic merit that facilitates the identification of desirable

genes/alleles addressing the current and future challenges in yam

cultivation in the region. Agre et al. (2019; 2021a) and Darkwa et al.

(2020b) employed genomic and phenomic data and identified

heterotic groups, which would facilitate parents’ choice in making

crosses and harnessing population heterosis in yam breeding

programs (Asfaw et al., 2021). However, and only a few genomic

and agronomic data exist for the popular landraces representing a

significant part of the cultivated yam variability in Africa, where the

predominant crop’s production occurs. Local landraces, however,

harbor potential sources of genes for stress resistance, adaptation,

and quality traits in many crops breeding programs (Villa et al., 2005;

Ceccarelli, 2012; Mondo et al., 2022). Therefore, proper

understanding of their genetic variability and merits is crucial for

the efficient use, management, and conservation of yam landraces

(Mignouna et al., 2005). Thus, the main objectives of this study were

to assess genetic variability, quantitative trait loci linked with key

agronomic and quality traits and the genetic merits of popular

landraces of white Guinea yam collected from Nigeria using

DArTseq SNP markers.
2 Materials and methods

2.1 Plant Materials

A panel of 86 white Guinea yam landraces collected from 10

major yam growing regions of Nigeria (Supplementary Table 1).

During the collection, local names and origins of the materials were
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documented. Landraces with the same name are differentiated by the

location or collection site. A total of 16 most frequently used elite

clones in the International Institute of Tropical Agriculture (IITA)

yam breeding program were included as controls. Details on these

control elite clones are presented in Supplementary Table 1.
2.2 Field establishment and phenotypic data
analysis

The collected landraces (86) alongside the elite clones (16) were

evaluated in two cropping seasons in 2018 and 2019 at IITA, Ibadan,

Nigeria (7°40’19.62” N, 3°91’73.13” E, 189 m above sea level). The

materials were planted using an alpha lattice design with two

replications and five plants per plot. A spacing of 1 m × 1 m was

used between ridges and plants on ridges. The study materials were

phenotyped for key traits such as tuber yield, dry matter, tuber

browning (tuber flesh oxidation), yam mosaic virus resistance, and

plant vigor as per procedures described in the yam crop ontology

(Asfaw, 2016). Phenotypic data were analyzed to estimate the Best

Linear Unbiased Estimations (BLUEs) as surrogates of genetic values

using the lme4 package (Bates et al., 2010), and mean comparisons

were made using the ggplot2 package (Wickham, 2016) in R statistical

computing environment (R Core Team, 2019). Phenotypic

correlation was conducted among the five evaluated traits using

PerformanceAnalytics R package (Brian and Carl, 2020). Genotypic,

environmental, and phenotypic variances, broad-sense heritability,

and the genotypic and phenotypic coefficients of variations were

calculated using the variability r package (Popat et al., 2020).
2.3 Genotypic data assessment

One gram of young, healthy, and fully expanded leaves was

sampled per genotype. Deoxyribonucleic acid (DNA) was extracted

from the leaf samples using the CTAB procedure with slight

modification (Dellaporta et al., 1983). DNA quality and

concentration were assessed through agarose gel separation (1%)

and spectrophotometry using NanoDrop 2000 (Thermo Scientific).

The DArTseqTM protocol for genome complexity reduction through

digestion of genomic DNA and ligation of barcoded adapters was

followed as described by Kilian et al. (2014). Single-read sequencing

runs for 94 bases were performed to sequence libraries.

Polymorphism identification, calling, and generation of quality

control parameters for selecting polymorphic markers was

performed in a secondary pipeline in KDCompute plug-in platform

using DArTSoft14. Obtained sequences were aligned to D. rotundata

reference genome v2 (Sugihara et al., 2020).
2.4 Analysis of molecular data

Hapmap file received from the DArT sequencing platform was

converted into a variant call format (VCF). A total of 22,140 SNP

markers were identified from the raw data. After filtering for 1%
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minor allele frequency (MAF), 10% missing values, and low sequence

depth (<5), 4,432 SNP markers were retained for further analyses.

Data were then imputed using beagle software v4.0 (Browning and

Browning, 2013). Expected and observed heterozygosity were

assessed for genotypes while the minor alleles frequency (MAF) was

determined for the entire markers using VCFtools and PLINK. SNP

distribution and density across 20 yam chromosomes were assessed

using CMplot package (Yin, 2019).

Population structure analysis was performed only using genotyping

data from landraces based on admixture (Alexander et al., 2009). The

optimal number of clusters was inferred using k-mean analysis after

varying the possible number of clusters from 2 to 10 by employing cross-

validation using the Bayesian InformationCriterion (BIC).Membership

probabilities (MP) of each landrace in each group was estimated by

implementing a 70% threshold. Landraces above that threshold were

assigned to a group, while those with low MP (<70%) were considered

admixed. A pairwise dissimilarity genetic distancematrix was calculated

using Jaccardmethod implemented in thephylentropyRpackage(Drost,

2018). A Ward’s minimum variance hierarchical cluster dendrogram

was then built from the Jaccard dissimilaritymatrix using the analyses of

phylogenetics and evolution (ape) package implemented in R (Paradis

et al., 2004; R Core Team, 2019). Analysis of molecular variance

(AMOVA) was conducted to estimate the genetic variability among

and within hierarchical clusters. To assess the level of genetic diversity

among and within the different state of collections, a fixation index (Fst)

was calculated usingWeir andCockerham (1984) formula implemented

in vcftools.
2.5 Genome-wide association study analysis
for target traits

The association between SNP genotypes and the phenotypes was

determined using two models: the K+Q and Naïve Mixed Linear

Model (MLM) implemented in GAPIT (Genome Association and

Prediction Integrated Tool) – R package (Lipka et al., 2012) and

visualized using CMPLOT r package (Yin, 2019). The K+Q method

analysis was conducted using the procedure from Yu et al. (2006) with

each SNP marker considered as a fixed effect and evaluated

individually through the following formular Y = Xb + Wa + Qv +

Zu + ϵ; where Y is the observed vector of means; b is the fixed effect

vector (p × 1) other than molecular marker effects and population

structure (from the principal component); a is the fixed effect vector

of the SNP markers; n is the fixed effect vector from the population

structure; u is the random effect vector from the polygenic

background effect; X, W, and Z are the incidence matrices from the

associated b, a, n, and u parameters; ϵ is the residual effect vector. To
detect reliable associations, a threshold (>4) was set calculated as

follows: -log10(0.05/np), where np is the number of the total SNP

markers. For the Naïve, only the markers were considered in the

model. The marker effect or SNP contribution was estimated for the

significant SNPs using multiple regression analysis using lme4

package (Bates et al., 2010), where the trait was considered a

response variable while the SNP markers above the Bonferroni

threshold for the trait were used as the independent variable.
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2.6 Estimation of genetic merit for
multi-traits

Each trait was analyzed using a mixed-effect model based on the

following equation as given in Butler et al., 2017: y = Xb +Zu + e,

where y is an n[=∑rj = 1 (gr)] × 1 vector of the response variable, i.e.,

the response of the ith genotype in the jth repetition; b is a 1 × r vector

of unknown and unobservable rep fixed effects; u is an m[= 1 × g]

vector of unknown and unobservable genotype random effects; X is an

n × r design matrix of 0s and 1s relating y to b; Z represents an n × r

design matrix generated from marker; e is an n × r vector of random.

The total genetic values were used to calculate a multi-trait index

based on the factor analysis and ideotype-design (FAI-BLUP) index

(Rocha et al., 2018; Olivoto and Nardino, 2021). FAI-BLUP index was

computed to identify the best genotypes based on multi-trait, free

from multicollinearity. Plant vigor, tuber yield, oxidative browning

index, tuber dry matter, and yam mosaic virus severity score were

used to identify the best genotypes. A radar chart was then generated

using the radarchart function implemented in metan r package

(Olivoto and Dal'Col Lúcio, 2020). Weakness and strength of the

analyzed landraces were visualized using a radar chart generated

using the radarchart function implemented in metan r package

(Olivoto and Dal'Col Lúcio, 2020).
2.7 Estimation of genomic prediction and
cross performance

We estimated the prediction of cross performance in ASReml-R

(Butler et al., 2017) using the following formula given by Falconer and

Mackay. (1996) MF1 = a(p - q – y) + d[2pq + y(q - p)]

Where MF1 is the predicted mean genotypic value of the cross

(F1), a and d are additive and dominance effect of the SNP marker, p

and q represent the allele dosage in one parent and y=pp'=q-q'

represents the gene frequency difference between two parents. The

total cross merit value was then estimated for all the landraces

considering them as parents. The sex of each parent was

determined to eliminate cross-combinations between landraces of

the same sex. It is noteworthy that D. rotundata is predominantly

dioecious, with male and female flowers borne on separate individuals

(Mondo et al., 2020).
3 Results

3.1 Phenotypic profiles of assessed
genotypes

The phenotypic performance of farmers’ landraces and IITA elite

breeding lines arepresented inFigures 1A–EandSupplementaryTable 2.

Fresh tuber yield varied from 8.83 to 19.16 t ha-1 for elite clones and 4.57

to 36.88 t ha-1 for farmers’ landraces (Figure 1A). The area under the

disease progression curve (AUDPC) for yam mosaic virus (YMV)

severity ranged from 221.99 to 295.06 for elite clones and 144.08 to

381.00 for farmers’ landraces (Figure 1B). Plant vigor varied from2.44 to

3.00 for elite clones and 1.80 to 3.02 for landraces (Figure 1C). Tuber
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was 0.00 to 2.00 for landraces (Figure 1D).Drymatter ranged from25.56

to 33.75% for elite clones and 27.71 to 47.22% for farmers’ landraces

(Figure 1E). The farmers’ landraces had higher mean performance for

dry matter and fresh tuber yield with less tendency of tuber flesh

oxidation. Elite clones from the breeding pipeline were generally more

vigorous and displayed lower AUDPC values for YMV severity scores.

Phenotypic correlation analysis revealed the presence of a high and

positive correlation between the fresh tuber yield and plant vigor (R =

0.69, p<0.001). The yam mosaic virus severity score displayed negative

correlation with plant vigor, tuber dry matter and with the tuber

oxidative browning index (Supplementary Figure 1).

High phenotypic variations were observed for most of the

assessed traits. Broad-sense heritability ranged from 0.33 for YMV

severity to 0.47 for dry matter. The narrow-sense heritability ranged

from 0.29 for YMV severity to 0.41 for fresh tuber yield and dry

matter (Table 1). The estimated breeding values of the genotypes for

traits assessed are presented in Supplementary Table 3. For traits like

dry matter, the breeding value ranged from -5.23 (Iphara) to +5.44

(Iki), while the highest breeding value for the fresh tuber yield (12.35)

was observed for Miyamiyo.
3.2 Genetic variability and population
structure of the landraces

Results from the SNP genotyping analysis on landraces are

presented in Table 2. A total of 4,432 filtered SNP markers

distributed across the 20 yam chromosomes were identified.

Chromosome 13 had the least SNP markers (88), while

chromosome 5 had the highest number (473) (Supplementary

Figure 2). SNP density plot revealed the presence of a relatively

high SNP density in the telomeric region across the 20 chromosomes.

Observed heterozygosity (Ho) varied from 0.113 (on chromosome 17)

to 0.173 (on chromosome 3), with an average of 0.141. The expected

heterozygosity (He) ranged between 0.210 (on chromosome 1) and

0.257 (on chromosome 8), with a mean of 0.234. The minor allele

frequency (MAF) ranged between 0.134 (on chromosome 1) and

0.170 (on chromosome 8), with an average of 0.151. Polymorphic

information content (PIC) varied from 0.232 (on chromosome 1) to

0.265 (on chromosome 16), with a mean value of 0.247. Gene

diversity ranged from 0.259 (on chromosome 1) to 0.297 (on

chromosome 16), with an average of 0.275 (Table 2).

Population structure-based Bayesian Information Criteria (BIC)

showed a rapid elbow at k = 3 and was used as the optimum number

of clusters (Supplementary Figure 3). The cluster 3 (green) had the

highest proportion of accessions (71%) followed by cluster 2 (red)

(14%) and 1(blue) (8%) (Figure 2). Six of the characterized landraces

were admixtures as they had assignment probabilities below 0.7 and

could not, therefore, be assigned to any specific group

(Supplementary Table 4). In the cluster 3, members were

represented by landraces collected from different parts of Nigeria,

while those in cluster 1 were mainly from eastern Nigeria.

The genetic distance between the landraces was computed as 1 - IBS

(identity by state), with IBS defined as the probability that alleles drawn at

random from two individuals at the same locus are the same. The
frontiersin.org

https://doi.org/10.3389/fpls.2023.1051840
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Agre et al. 10.3389/fpls.2023.1051840
grouping pattern based on the IBS clustered the 86 white yam farmers’

landraces into three clusters (Figure 3). The cluster size varied among

identified groups: cluster 1 contained 7 landraces (8%), cluster 2 had 14

landraces (16%) while cluster 3 was the largest with 65 landraces (76%).

The clustering pattern of the landrace exhibited non-parallel patterns of

geographic variations. Furthermore, the Fst values among the different

locations showed lack of genetic subdivision between landraces from

different locations (Supplementary Table 5).

A pairwise dissimilarity genetic distance matrix revealed that the

genetic distance for the entire landraces ranged from 0.0073 to 0.4015.

The two landraces that displayed the lowest genetic distance had the
Frontiers in Plant Science 05
same name (Punch) but were collected from different locations and

hence considered as the same genetic material. In cluster 1, the lowest

genetic distance was 0.0225, while the highest distance was 0.053.

Landraces in this cluster had relatively higher fresh tuber yield, lower

AUDPC values for YMV disease severity scores, and rough tubers

(Table 3). Landraces in cluster 2 were characterized by higher

AUDPC values for YMV disease severity scores and smooth tuber

texture (Table 3). In cluster 3, the lowest genetic distance (0.0073) was

recorded between several landraces (Figure 3). Landraces in cluster 3

were characterized by lower yield but higher tuber dry matter content

and slightly rough tubers (Table 3).
TABLE 1 Genetic parameter estimates in white Guinea yam farmer landraces.

Traits H2 h2 Vg Ve Vp CVg(%) CVp(%) Mean

Yield 0.43 0.41 31.32 19.80 51.11 53.05 67.78 10.54

YMV 0.33 0.29 1549.69 2113.47 3669.15 11.80 18.14 333.50

Vigor 0.39 0.33 0.05 0.16 0.21 7.70 16.40 2.79

Oxid 0.44 0.24 0.01 0.02 0.03 551.93 829.50 0.02

DM 0.47 0.41 7.00 2.63 9.63 8.73 10.24 30.30
fronti
Vg, genotypic variance; Ve, environmental variance; Vp, phenotypic variance; H2, broad-sense heritability; h2, narrow-sense heritability; CVg(%), genotypic coefficient of variation; CVp(%),
phenotypic coefficient of variation; mean: overall experiment mean for the considered trait. Yield, tuber yield per ha; YMV, yammosaic virus severity; Vigor, plant vigor; DM, dry matter; Oxid, tuber
flesh oxidation.
B C

D E

A

FIGURE 1

Boxplot comparing trait profile of the farmers’ landraces and elite clones from IITA yam breeding pipelines assessed: (A) tuber yield (t ha-1), (B) yam mosaic
virus severity (AUDPC value), (C) plant vigor (scale), (D) tuber flesh oxidation (scale), (E) DM – tuber dry matter (%), YMV – yam mosaic virus, OXID – tuber
flesh oxidation.
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Classification based on admixture and hierarchical clustering

(HC) methods agreed in assigning most of the landraces

(Supplementary Table 4). The six landraces considered as admixed

(by the admixture clustering method) were fully assigned by the
FIGURE 2

Population structure with K = 3 for 86 yam farmers’ landraces from Nigeria
using 4,432 high-quality SNPs. The landraces represented by vertical bars
along the horizontal axis were classified into K color segments based on
their estimated membership fraction in each K cluster. Clusters (1, 2, and 3)
are represented by blue, red, and green colors, respectively.
Frontiers in Plant Science 06
FIGURE 3

Hierarchical clustering analysis based on 4,432 DArT-SNP markers
showing the genetic relationship among 86 Nigerian white Guinea
yam landraces. The landraces collected from different locations of
Nigeria are presented in different color.
TABLE 2 Summary statistics of SNP markers across 20 white Guinea yam chromosomes.

Chromosome No. of SNPs Ho He MAF PIC Gene diversity

Chr1 133 0.147 0.210 0.134 0.232 0.259

Chr2 141 0.129 0.236 0.148 0.245 0.275

Chr3 144 0.173 0.230 0.149 0.254 0.284

Chr4 352 0.119 0.248 0.161 0.241 0.268

Chr5 473 0.131 0.245 0.158 0.253 0.282

Chr6 177 0.139 0.221 0.139 0.237 0.265

Chr7 267 0.134 0.221 0.140 0.239 0.264

Chr8 287 0.129 0.257 0.170 0.253 0.282

Chr9 127 0.143 0.229 0.147 0.238 0.265

Chr10 180 0.152 0.224 0.143 0.255 0.286

Chr11 177 0.146 0.220 0.140 0.234 0.260

Chr12 179 0.146 0.214 0.136 0.234 0.260

Chr13 88 0.156 0.245 0.161 0.239 0.268

Chr14 253 0.154 0.228 0.149 0.260 0.290

Chr15 227 0.127 0.256 0.167 0.253 0.283

Chr16 176 0.162 0.235 0.153 0.265 0.297

Chr17 225 0.113 0.243 0.156 0.248 0.276

Chr18 224 0.133 0.240 0.155 0.260 0.290

Chr19 441 0.124 0.246 0.160 0.245 0.272

Chr20 161 0.165 0.227 0.149 0.247 0.275

Total 4432

Average 221.6 0.141 0.234 0.151 0.247 0.275
Chr, chromosome; Ho, observed heterozygosity; He, expected heterozygosity; MAF, minor allele frequency; PIC, polymorphic information contest.
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hierarchical clustering method to clusters 2 and 3, with three

landraces each. The AMOVA revealed high genetic variability

(71%) among hierarchical clusters, while the genetic variability was

low within clusters (Table 4).
3.3 Genome-wide association results for key
traits

Thirteen SNP markers were tightly associated with the five studied

traits (Table 5, Figure 4). Three SNP markers on three chromosomes

were identified as associated with the tuber dry matter content. The

associated SNP markers displayed high total phenotypic variance >21%

with a LOD score above 4. Four SNP markers were associated with the

tuber browning index (tuber flesh oxidation). The four markers

explained high total phenotypic variance with positive SNP marker

effect except the marker located on chromosome 5. A single SNP

marker on chromosome 19 was linked with the plant vigor. The

marker explained a high phenotypic variance of 28.53% with a positive

marker effect and LOD score above 4. For the fresh tuber yield, three SNP

markers were identified on two chromosomes, 1 & 19. Two SNPmarkers

on chromosome 19 displayed a positive value as marker effect with a total

explained phenotypic variance of 8.38 and 11.82%. The SNP marker

located on chromosome 1 showed a negative marker effect with the

highest LOD score. For the YMV severity score, three SNP markers were

identified on chromosomes 7, 9 & 15. The three markers linked with the

YMV displayed high R2 and LOD scores above 4. Notably, the region of

chromosome 19 was identified as linked with four of the traits analyzed.
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Also, the SNP marker “chr19_5210667” was associated with yield and

plant vigor. Using the naïve analysis, no significant QTL was detected

above the suggestive threshold(Supplementary Figure 4).
3.4 Genetic merits and cross performance
of the landraces

The exploratory factor analysis identified the first three factors

(FA) (Eigenvalue >1) that explained 74.2% of the total variation

among the traits as most discriminative. The communality after the

varimax rotation of each trait’s variance explained by the three factors

ranged from 0.518 for vigor to 0.843 for tuber oxidative browning.

The five traits were grouped into three based on their highest genetic

correlations for the first three factors (Supplementary Table 6). The

high genetic correlation for the FA1 was observed with plant vigor,

fresh tuber yield and yam mosaic virus severity score while for the

FA2 with dry matter content and for the FA3 with tuber browning

index (tuber flesh oxidation).

The analysis of the FAI-BLUP index ranged from 2.76 to 8.11

(Supplementary Figure 5). From the 86 landraces evaluated, 13

landraces with < 3.5 FAI-BLUP index values were selected as top-

ranking for their high multi-trait performance (Supplementary

Figure 6). However, the predicted selection gain was in desired

direction for three traits out the five. The strengths and weaknesses

of the selected 13 yam landraces were presented in a radar plot which

accounted by the proportion of each factor to the FAI-BLUP index of

the landraces (Figure 5). The first factor (FA1) had the smallest
TABLE 3 Agronomic performance of farmers’ landraces and genetic characteristics of clusters generated using SNP markers.

Variables Cluster 1 (7) Cluster 2 (14) Cluster 3 (65)

Tuber yield (t ha-1) 19.21 18.41 17.60

YMV severity (AUDPC value) 218.48 272.12 258.77

Dry matter (%) 34.22 34.32 35.00

Tuber oxidation Non-oxidation Non-oxidation Non-oxidation

Plant vigor High Medium Medium

Tuber texture Slightly rough Smooth Slightly rough

Flesh color White White White

Average GD 0.23 0.18 0.36

Average He 0.29 0.39 0.33

Average Ho 0.32 0.40 0.36
The numbers in the brackets represent the number of members in a cluster; YMV, yam mosaic virus; He, expected heterozygosity; Ho, observed heterozygosity; GD, genetic distance.
TABLE 4 Analysis of molecular variance (AMOVA) among and within white Guinea yam farmers’ landraces from Nigeria.

Sources of variation df SS MS Est. Var. % variation

Among clusters 2 31997.92 15998.96 918.68 71

Within clusters 83 30766.93 370.69 370.69 29

Total 85 62764.85 16369.65 1289.37 100
df, Degrees of freedom; SS, sum of squares; MS, mean squares; Est.Var, estimated variance; % variation, percentage contribution to the total variability.
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contribution for eight genotypes (Ewusu, Ekpe2, Ehuru,

Anyamayowa1, Amola, Aloshie, Iphara and Iledu) and highest

contribution to the FAI-BLUP index of landrace Iki. Of these eight

landraces, Ehuru, Aloshie and Anyamayowa1 had the most desired

breeding values for plant vigor, tuber yield and YMV resistance

(Supplementary Table 3). On other hand, Ike had undesirable

breeding value for tuber yield and vigor but good for YMV

resistance. Likewise, FA2 had the smallest contribution for FAI-

BLUP index values of Amola, Aru, Ekpe2, Iki and Yamgbede which

expressed desirable breeding values for tuber dry matter content. The

third factor (FA3) had the smallest contribution for five landraces

(Iki, Iledu, Yamgbede, Aloshie and Anyamayowa2) suggesting these

landraces expressing low tuber browning index.

Further analysis for the genomic prediction of cross-performance

of the 61 landraces that produced flowers (25 females and 36 males)

generated net crossing merit for 937 cross combinations that ranged

from -2.04 to 2.4 (Supplementary Figure 7). The 15 genotypes that

didn’t flower were excluded from the crossing merit prediction.

Among the 25 female flowering landraces predicted for cross

performance, Bokipepa, Yandu, Meccakusa and Pepa1 showed

highest crossing compatibility with 31, 31, 27, and 26 male

flowering landraces, respectively (Supplementary Table 7). Among

the male flowering landraces, Iledu, Didiya, Amola, Ekummodu, and

Kioyo expressed highest cross-compatibility. The highest average

crossing merit (1.68) was predicted for Pepa3 a female flowering

landrace and the lowest average crossing merit -1.32 was for Ehuru, a

male flowering landrace
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Of the thirteen landraces identified as top ranking based on FAI-

BLUP index, eight had positive net crossing merit while five had

negative net crossing merit (Supplementary Table 7). The specific

crossing merit among these 13 landraces presented in Table 6. The

female flowering genotype Aloshie has positive specific crossing merit

with Amola, Aro and Ehuru. The other female landrace

Anyamayowa1 has positive specific crossing merit with Ehuru,

Ewusu, Iledu and Yamgbeda while Anyamayowa2 has positive

predicted crossing merit with Anthony, Aro, Ehuru, Ewusu and

Yamgbede. Likewise, Ekep2 has a positive predicted specific

crossing merit with Anthony, Ehuru, Iki and Yamgbede. Iphara has

positive specific crossing merit with Anthony and Aro only.
4 Discussion

In this study, we used DArT-SNP markers to assess the genetic

diversity of yam landraces in Nigeria to identify potential sources of

genes for broadening the genetic variation in yam breeding. The

DArTseq genotyping detected 4,432 informative SNPs, which were

unequally distributed among and within the 20 yam chromosomes.

The SNP density was relatively high in the telomeric regions

compared to the peri-centromeric areas. Distal euchromatin regions

(telomeric regions) were more densely covered with genes and had

higher recombination rates than peri-centromeric heterochromatin

regions. These results in line with those of Sugihara et al. (2020).

Through structure and phylogenetic tree analyses, the results
FIGURE 4

Manhattan and QQ plots displaying regions of genome significantly associated with natural variation for five traits targeted in this study using the K+Q model.
DM, dry matter (%); Oxid, tuber flesh oxidation (scale); Vigor, plant vigor (scale); Yield, tuber yield (t ha-1); ymv, yam mosaic virus severity (AUDPC value).
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displayed a non-random distribution of alleles and genotypes. The 86

yam landraces were classified into three groups through the

population structure and hierarchical clustering methods. There

was high correspondence in clustering patterns between the two

grouping methods. Agre et al. (2019) reported a similar trend in a

genetic diversity study involving 100 genotypes of D. alata.
TABLE 5 SNP markers associated with target traits.

Trait SNP Chr Pos (bp)

YMV chr7_26854456 7 26854456

chr9_3326055 9 3326055

chr15_22775177 15 22775177

Yield chr19_5210667 19 5210667

chr1_2096240 1 2096240

chr19_30713072 19 30713072

Vigor chr19_5210667 19 5210667

Oxid chr16_21103453 16 21103453

chr9_28870658 9 28870658

chr19_30315263 19 30315263

chr5_18430863 5 18430863

DM chr9_30457800 9 30457800

chr14_5786575 14 5786575

chr19_30758641 19 30758641

Chr, chromosome; bp, base pair; LOD, logarithm of odd score; R2(%), total explained phenotypic va
mosaic virus.
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Results of the AMOVA revealed high genetic variation among the

three clusters and lower genetic variation among landraces within

clusters. Similarly, Bakayoko et al. (2021) reported low molecular

variability within groups and high between groups of D. alata

accessions from Côte d’Ivoire using SNP markers. High levels of

genetic variation among clusters of yam landraces in Nigeria indicated

a lack of gene flow, possibly due to low seed-yam (mini or small whole

tubers or portion of tubers used for propagation) exchange among

farmers in geographically distant areas. In contrast, the low variation

within cluster revealed a low degree of genetic differentiation, which may

be attributed to regional preferences for some dominant varieties

(Bakayoko et al., 2021). As stated by Stuart et al. (2021), sharing (small

amounts) of seed-yam tubers as a gift is a common practice among

farmers of the same and or different communities.

Yam breeding programs usually focus on developing and

deploying superior varieties, which combine traits preferred for

production and consumption (Darkwa et al., 2020a). Breeding

efforts for the past five decades have resulted in breeding for

superior yam varieties with high tuber yield, tolerant to pests and

diseases with high tuber quality attribute which has translated into the

release of several improved varieties (Darkwa et al., 2020a; Agre et al.,

2022). However, genetic improvement of traits such as dry matter

content and tuber browning is still a challenge in yam breeding. These

traits are essential quality attributes that determine acceptability in

newly developed yam varieties (Gatarira et al., 2020). Through traits

profiling, we have identified landraces with high tuber yield, dry

matter content, and slow rate of tuber flesh oxidation in the Nigerian

farmers’ landraces. Hence, landraces with high crossing merit values

for multiple traits identified in this study could be used for trait

introgression by breeding programs to complement the superior

characteristics (e.g., resistance to viruses and high vigor) of elite
FIGURE 5

Radar chart displaying the strengths and weaknesses of selected
Nigerian white Guinea yam landraces based on the FAI‐BLUP index.
The dashed line shows the theoretical value if all three factors had
contributed equally.
P-value MAF Effect LOD R2(%)

3.4727E-06 0.15 113.15 5.46 26.50

2.3473E-05 0.15 113.15 4.63 26.50

1.5449E-05 0.06 -27.92 4.81 21.01

7.27E-05 0.19 6.19 4.14 11.82

1.43E-05 0.15 -8.43 4.84 10.43

3.04E-05 0.14 8.09 4.52 8.38

4.04E-05 0.19 0.37 4.39 28.53

1.06E-05 0.07 1.36 4.97 21.52

1.2548E-05 0.08 1.06 4.90 15.37

1.3358E-05 0.05 0.89 4.87 15.27

1.9022E-05 0.13 -0.46 4.72 7.82

1.1828E-05 0.06 12.09 4.93 14.47

2.7739E-05 0.42 -2.43 4.56 14.30

9.1471E-05 0.07 3.61 4.04 13.76

riance; MAF, minor allele frequency; DM, dry matter; Oxid, tuber flesh oxidation; YMV, yam
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clones and to broaden the genetic variation in breeding materials for

increased genetic gain.

Moreover, the SNP markers associated with natural variation for

the studied traits identified herewith would be valuable resources to

enhance genetic gain in yam breeding. Using a mixed linear model,

we identified thirteen SNP markers linked with the five key traits in

yam breeding. The same QTL region previously reported by Gatarira

et al. (2020) on chromosomes 19 and 5 were identified for the DM and

tuber flesh oxidation index. Likewise, many SNPmarkers significantly

associated with variation for the tuber yield and yam mosaic virus

resistance were detected. Among flanking regions in the genome for

tuber yield and YMV resistance, Agre et al. (2021b) reported

chromosomes 19 and 15 as the potential regions controlling tuber

yield per plant and yam mosaic virus resistance, respectively, in D.

rotundata. On chromosome 19, the same SNP location was found to

control tuber yield and plant vigor (Table 5 and Figure 4). Plant vigor

and tuber yield displayed a positive and highly significant correlation

(0.69, p<0.001). Gao et al. (2016) reported that such region should be

investigated to elucidate the potentiality of developing a single SNP

marker for multiple trait prediction.

In additional to the previous QTL reported by Agre et al. (2021b);

Gatarira et al. (2020); Bredeson et al. (2022); Ehounou et al. (2022) the

QTL identified in this study provided information on the

chromosomal regions controlling yam productivity and food

quality, which can be useful genomic resource information to the

yam breeding community. However, these QTLs have not yet been

fully utilized in the yam breeding for molecular assisted selection due

to many factors, such as limited marker-trait association, small

phenotypic variance explained, differences in the genetic

backgrounds, and environmental effects. Previous results from traits

association including linkage mapping should be investigated through

meta-QTL analysis to refine the number and position of the QTLs to

identify stable QTLs for marker assisted selection.
5 Conclusions

Population structure and hierarchical clustering methods

classified the yam landraces from Nigeria into three distinct genetic

groups. The AMOVA revealed higher variability among clusters than

within clusters. The wide genetic variability among the Nigerian yam

landraces implied that these could serve as valuable sources of novel
Frontiers in Plant Science 10
genes for yam breeding and variety development. The promising

farmers’ landraces identified with good attributes and high crossing

merit values could be exploited for genetic improvement in yam

breeding programs, particularly for the introgression of genes

controlling high tuber yield and dry matter content and reduced

tuber flesh oxidation into IITA yam breeding lines. This

will translate into new, improved yam varieties with huge food

security implications.
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