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on multispectral imagery and
machine learning methods
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Introduction: Canopy stomatal conductance (Sc) indicates the strength of

photosynthesis and transpiration of plants. In addition, Sc is a physiological

indicator that is widely employed to detect crop water stress. Unfortunately,

existing methods for measuring canopy Sc are time-consuming, laborious, and

poorly representative.

Methods: To solve these problems, in this study, we combined multispectral

vegetation index (VI) and texture features to predict the Sc values and used

citrus trees in the fruit growth period as the research object. To achieve this, VI

and texture feature data of the experimental area were obtained using a

multispectral camera. The H (Hue), S (Saturation) and V (Value) segmentation

algorithm and the determined threshold of VI were used to obtain the canopy area

images, and the accuracy of the extraction results was evaluated. Subsequently,

the gray level co-occurrence matrix (GLCM) was used to calculate the eight

texture features of the image, and then the full subset filter was used to obtain

the sensitive image texture features and VI. Support vector regression, random

forest regression, and k-nearest neighbor regression (KNR) Sc prediction models

were constructed, which were based on single and combined variables.

Results: The analysis revealed the following: 1) the accuracy of the HSV

segmentation algorithm was the highest, achieving more than 80%. The

accuracy of the VI threshold algorithm using excess green was approximately

80%, which achieved accurate segmentation. 2) The citrus tree photosynthetic

parameters were all affected by different water supply treatments. The greater the

degree of water stress, the lower the net photosynthetic rate (Pn), transpiration rate

(Tr), and Sc of the leaves. 3) In the three Sc prediction models, The KNR model,

which was constructed by combining image texture features and VI had the

optimum prediction effect (training set: R2 = 0.91076, RMSE = 0.00070;

validation set; R2 = 0.77937, RMSE = 0.00165). Compared with the KNR model,

which was only based on VI or image texture features, the R2 of the validation set of

the KNR model based on combined variables was improved respectively by 6.97%

and 28.42%.
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Discussion: This study provides a reference for large-scale remote sensing

monitoring of citrus Sc by multispectral technology. Moreover, it can be used to

monitor the dynamic changes of Sc and provide a new technique for gaining a

better understanding of the growth status and water stress of citrus crops.
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1 Introduction

Citrus fruits are some of the most important fruits in the world and

are mainly distributed between the latitudes of approximately 30° N

and 30° S (Liu et al., 2022). Citrus fruits are mainly grown in China, the

United States, and India (Zhang et al., 2021b). Since 2007, China’s

citrus planting area and output have been ranked first in the world.

According to the National Bureau of Statistics of China, the area of

citrus cultivation in China increased from 1,061,200 hm2 in 1990 to

2,617,300 hm2 in 2019. Moreover, the total output has increased almost

tenfold, from 4,854,900 T in 1990 to 45,845,400 T in 2019 (Wan et al.,

2021). However, problems such as uneven quality and the unstable

yield of citrus fruits are becoming increasingly serious, which affects the

sustainable development and export levels of the Chinese citrus

industry (Tu et al., 2021). Therefore, how to judge and improve the

quality of citrus fruits is the key to industrial development. Climate

change, desertification, and the overexploitation of water resources due

to overpopulation and agricultural intensification will challenge the

survival, growth, and yield of agricultural commodities. Especially in

citrus crops, water scarcity can negatively affect cell metabolism, overall

tree growth, and fruit quality. Moreover, drought stress can affect the

postharvest treatment of citrus fruits, rendering them more vulnerable

to damage during handling and transportation (Carr, 2012). The leaves

of citrus fruits are the most sensitive organ to water stress. After more

than 4 hours of water stress, leaf rolling is evident. In addition, when the

root is short of water, the outer epidermis is damaged and the cell shape

changes. Other effects of a lack of water are a cessation of shoot growth

and early maturity. Severe water shortages can produce irreversible

damage to growth and development, even death (Miranda et al., 2022;

Xie et al., 2022). Traditionally, crop water stress has been determined by

in situ plant measurements, soil water content, and meteorological

variables (Brewer et al., 2022).

Ahumada-Orellana et al. (Ahumada-Orellana et al., 2019) revealed

that when the water supply to the soil of olive trees decreased, the leaves

would gradually close their stomata to reduce water loss caused by

transpiration. Simultaneously, this stomatal closure would also reduce

carbon dioxide diffusion into the leaves, affecting the photosynthesis of

crops. Zhou et al. (Zhou et al., 2021a) revealed that the stomatal

conductance (Sc) of winter wheat changed under different water

treatments and the magnitude of stomatal conductance was negatively

correlated with the degree of water stress. However, traditional methods

for measuring the Sc of citrus are time-consuming, laborious, and poorly

representative. Moreover, the results of fixed-point determination do not

always reflect the actual situation of citrus crops in the whole region

(Huang et al., 2021; Weng et al., 2021). The use of unmanned aerial
02
vehicle (UAV) has proved to be an effective method for detecting crop

water stress and remote sensing to retrieve crop Sc measurements, which

can avoid the problems of low efficiency, high costs, and difficult field

operation (Ezenne et al., 2019).

Currently, the research and application of multi-spectral imaging

for monitoring crop growth information are gradually increasing

(Gallardo-Salazar and Pompa-Garcıá, 2020; Landi et al., 2020;

Rossiter et al., 2020). Zhou et al. (Zhou et al., 2021a) used the

vegetation index(VI) and image texture features to analyze the

water stress of winter wheat and constructed an Sc prediction

model of winter wheat under such stress. Singhal et al. (Singhal

et al., 2019) combined spectral data and true surface chlorophyll to

simulate chlorophyll estimation and used different machine learning

algorithms for comparative analyses. Chea et al. (Chea et al., 2020)

used multispectral images to calculate sugarcane canopy reflectance

and constructed a sugarcane growth prediction model. Reisi Gahrouei

et al. (Reisi Gahrouei et al., 2020) used multispectral data and

machine learning methods to estimate the biomass and leaf area

index (LAI) of cash crops. Hussain et al. (Hussain et al., 2020) used

spectral VI at different resolutions to conduct quantitative analyses of

rapeseed in different periods and constructed a non-destructive

testing model for rapeseed canopy variables. Qi et al. (Qi et al.,

2020; Qi et al., 2021) retrieved the LAI and chlorophyll content of

peanuts by using the multispectral VI of peanuts with different

planting densities. The results indicated that UAV multispectral VI

could quickly obtain field information by relying on high-precision

prediction models.

Although the accuracy of the results from these studies was

acceptable, an increase in variety of input of variables could

improve the accuracy of the models further (Khaliq et al., 2018; Fu

et al., 2020; Zhou et al., 2020). Cheng et al. (Cheng et al., 2020)

determined the LAI of maize based on VI, crop models, and data

assimilation methods, achieving improved accuracy compared to any

single method. Shu et al. (Meiyan et al., 2022) constructed a

prediction model for the aboveground biomass of maize in multiple

growth periods by combining multispectral and UAV digital images

with maize LAI and plant height. To realize the prediction of soil

water content, Gu et al. (Gu et al., 2021) used multispectral and

thermal infrared images to determine soil water content and then

constructed a temperature vegetation dryness index by combining the

obtained canopy temperature and VI. Liu et al. (Liu et al., 2019)

combined VI and texture features to determine the aboveground

biomass of winter rape, allowing the analysis of which input features

were the most important and successful predictions of the

aboveground biomass for the next year.
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The reliability and popularity of using spectral imaging

technology for crop nutrition diagnosis are limited because the

spectral reflection features of the plant canopy are affected by many

factors, such as canopy geometry, soil cover, and weather conditions.

Therefore, eliminating such disturbances as soil and weeds is key to

establishing a universal and high-precision plant nutrition diagnosis

method (Mo et al., 2021; Zhou et al., 2021b). Tang et al. (Tang et al.,

2022) proposed a dark channel filtering method for 25 channels of the

developed equipment to effectively eliminate the scattered light

interference of the wheat canopy in spectral images. The results

indicated that background segmentation could effectively eliminate

background interference. Cao et al. (Cao et al., 2021) proposed a

wheat lodging extraction method based on the watershed algorithm

combined with the adaptive threshold segmentation hybrid

algorithm. This method reduced the influence of noise and

achieved an extraction accuracy of 93.58%, providing a new

concept for the efficient acquisition of crop lodging resistance data.

The previously mentioned methods were mainly focused on field

crops (such as wheat and corn), and there are few studies on

mountain orchard crops (such as citrus fruits) in southern China.

Therefore, based on previous studies, we further explore the

relationship between citrus fruit leaf growth information and

spectral features and establish an prediction model in this paper.

In this study, citrus crops (during the rapid fruit expansion period

and fructescence) under different water treatments in South China

were selected as the research objects. The main research content was

as follows: 1. use UAV multispectral images to judge the water stress

of citrus crops; 2. determine citrus leaf image segmentation and

conduct comparisons; 3. evaluate the role of VI and texture features

for monitoring the Sc of citrus crops; 4. use machine learning

methods, including support vector regression (SVR), random forest

(RF), and k-nearest neighbor regression (KNR), to establish the citrus

Sc prediction model.

The remainder of the paper comprises four sections. In Section 2,

we describe the materials and methods, followed by a presentation of
Frontiers in Plant Science 03
the results of each experiment in Section 3. In Section 4, we discuss

the advantages and shortcomings of the study, followed by the

conclusions and prospects in Section 5.
2 Materials and methods

2.1 Experimental location and conditions

The experiment was carried out in the Citrus Experimental

Garden (113° 35’ E, 23° 16’ N) of the College of Engineering, South

China Agricultural University, Guangzhou, Guangdong Province

from October to December 2021. As shown in Figure 1, this region

is located in the south of China with a subtropical monsoon climate,

adequate solar conditions, and hot resources. The average annual

sunshine is 1668.4 h and the average annual precipitation is

1793.8 mm. The experimental citrus variety was eight-year-old

Citrus oleocarpa Tanaka, which was planted in pots with good

growing conditions. Specimens with a similar growth status were

selected as the experimental objects, and their average height was

1.73 m. The soil in the basin is sandy loam, which contains 74% sand,

19% silt, and 7% clay. The upper diameter of the basin is 0.66 m and

its height is 0.36 m.

The experimental samples were divided into 4 groups labeled T1,

T2, T3 and T4, with each group representing a specific water

treatment. The citrus tree in T1 was supplied with sufficient water

to maintain a moisture content close to field capacity (FC). While

Groups T2, T3, and T4 accounted for 80%, 65%, and 50% of FC,

respectively. Irrigation was performed every 2–3 days, and the

amount of irrigation was 3 l, 2 l, 1 l, and 0.5 l for Groups T1–T4,

respectively. The pH value of the soil layer was 6.0. To ensure

uniformity of the irrigation water, regular quantitative sprinkler

irrigation was used. In addition, each pot was fitted with a soil

moisture sensor (JXBS-J001-EC-RS, JINGXUN, China) for real-

time measurements.
A B

FIGURE 1

Study area: (A) location of South China Agricultural University in Guangzhou; (B) top view of the study area taken from DJI Air 2S.
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2.2 Data collection and processing

2.2.1 Multispectral camera
The multispectral camera used in the experiment was a K4

Airborne multispectral imager (hereafter, K4), which could be

combined freely and was triggered remotely. This camera can be

used by various small- and medium-sized multi-rotor or fixed-wing

UAVs to achieve the purpose of photographing target objects on the

ground. Moreover, K4 has 26 kinds of spectral filters (including 450,

560, 650, 725, 808, and 940 nm), although only 560, 650, 725, and 808

nm were used in this test. A grayscale plate was used for radiometric

calibration prior to data collection.

2.2.2 Multispectral data acquisition and processing
The acquisition period for the multispectral image data was from

October to December 2021, which included two periods of rapid fruit

expansion and fructescence. The images were collected between 11:00

and 13:00 on windless clear days when the solar irradiance was strong.

The K4 camera was placed 4–5 m above the crop canopy using a

support, and images were taken perpendicular to the ground to obtain

an orthophoto map.

The reference plates of the experimental crops were arranged to

calibrate the obtained multispectral images. The multispectral

remote sensing images were then extracted, registered, and

synthesized using MAPIR software, which is compatible with the

K4 camera. Finally, TIFF format 4-band remote sensing images were

derived, which were then imported into ENVI5.3 software for

interpretation. To eliminate soil interference and shadow

background values, the gray values of the citrus canopy and

reference plate were extracted to calculate the 4-band reflectance

of the citrus canopy. The digital quantization value (DN) of the

image part 1/3 decimeter away from the outer edge of the gray plate

was taken, and the formula for converting the multispectral DN

value of the citrus canopy into reflectivity was as follows:

R1 =
DN1

DN2
R2 (1)

where 6 R1 is the reflectance of the target ground object, DN1 is

the digital quantization value of the target ground object, DN2 is the

digital quantization value of the grayscale plate, and R2 is the

reflectance of the grayscale plate.
2.2.3 Determination of photosynthetic parameters
of the citrus canopy

The photosynthetic parameters of the citrus canopy were

measured immediately after collection of the multispectral images.

Three areas were selected for each citrus tree, and five healthy canopy

leaves with good growth and no insect pests were selected for each

area. The photosynthetic parameters of the citrus canopy leaves

(including net photosynthetic rate (Pn), transpiration rate (Tr), Sc,

and so on) were measured using an SYS-GH30D photosynthesis

analyzer. The measurement range was 0–3000 µmol·m−2·s−1 with an

accuracy level of 3 µmol·m−2·s−1. The average value of five leaves was

used as the final determination result. Figure 2 displays the data

acquisition system. The meteorological station collected

meteorological data every 30 min, 48 times a day, and the average
Frontiers in Plant Science 04
was the average of the meteorological data during that day. The

meteorological conditions during the test are displayed in Table 1.

Table 2 presents the sample sizes of the modeling and validation

sets used to construct the machine learning model and lists the

statistical characteristics of the sample Sc.
2.2.4 Image segmentation algorithm of citrus
canopy leaves

To realize the segmentation of citrus canopy leaves with a

background of soil and pots, the effects of a global threshold

segmentation algorithm and a HSV variable threshold segmentation

algorithm on citrus canopy leaf image segmentation were compared.

The global threshold adaptive segmentation algorithm based on

maximum between-class variance (Otsu) (Xu et al., 2011) was

applied to determine the gray level of the segmentation threshold

by calculating the between-class variance of the background and crop

objects. Subsequently, corresponding binary images were obtained.

The original images were processed by different vegetation indices

and compared the effect of Otsu’s algorithm on visible light VI images

processed by different vegetation indices. The HSV variable

threshold segmentation method was then used to segment the

whole target citrus group. The values of H (Hue), S (Saturation)

and V (Value) were adjusted respectively and the segmentation effect

changed accordingly.

To verify the segmentation effectiveness of the algorithm, the

evaluation method was based on pixels. By calculating the number of

pixels of the leaf region in the manually segmented images and the

number of pixels of the leaf region of the image obtained by the two

segmentation algorithms, the accuracy (ACC) and Matthews’s

correlation coefficient (MCC) were used to verify the segmentation

accuracy of the segmentation algorithm (Al-antari et al., 2018). Here,

ACC is defined as

ACC =
f0
f
� 100%, (2)

where f0 represents the intersection between the leaf pixel region

obtained by the segmentation algorithm and the leaf pixel reference

region obtained by manual segmentation, and f represents the leaf

pixel reference region obtained by manual segmentation. In addition,

MCC is defined as

MCC =
TP · TN − FP · FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
p , (3)

where TP represents the true positive, which is the number of

overlapping pixels in the reference area of the blade obtained by

manual segmentation and the foreground area of the blade obtained

by the algorithm. Term TN represents the true negative, which is the

number of overlapping pixels in the background reference area of the

image obtained by manual segmentation and the background area of

the image obtained by the proposed algorithm. Term FN represents

the false negative, which is the reference area of the leaf foreground

marked by manual segmentation. However, the number of pixels in

the background area of the image is marked by the algorithm in this

paper. Term FP represents the false positive, which is the reference

area of the image background marked by manual segmentation.

However, the number of pixels in the foreground area of the leaf is
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marked by the algorithm in this paper. The value of MCC was in the

range {−1,1}, and the larger the value, the more accurate

the segmentation.

2.2.5 Vegetation index selection
The VI is a dimensionless index parameter formed by a linear or

nonlinear combination of the reflectance of different bands of spectral

images according to the spectral absorption characteristics of

vegetation (Pei et al., 2021). The VI can reflect the difference

between the reflection of vegetation in visible and near-infrared

bands and the soil background, which is a relatively simple and

effective empirical measure of the surface vegetation condition. Seven
Frontiers in Plant Science 05
vegetation indices were used in this study, and different spectral

indices were selected to evaluate the effect of bands on the retrieval of

photosynthetic parameters. Combined with previous research results,

the VI selected in this study is shown in Table 3.
2.2.6 Texture feature extraction
According to the gray level co-occurrence matrix (GLCM)

(Gadelmawla, 2004), eight image texture features were selected to

evaluate the correlation between texture features and the

photosynthetic parameters of citrus canopy leaves: mean (MEA),

variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity
FIGURE 2

Data acquisition system.
TABLE 1 Meteorological data of the test area during the test.

Meteorological data Max Min Average Standard deviation

air temperature (°C) 34.60 14.00 24.12 3.45

air humidity (%) 70.00 11.00 42.56 8.56

wind speed (km/h) 15.80 0.00 2.50 3.81

precipitation (mm) 19.85 0.00 220.5(total) /
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(DIS), entropy (ENT), second moment (SEC), and correlation (COR).

The calculation formulae are as follows:

MEA =o
i
o
j
i� p(i, j), (4)

VAR =o
i
o
j
(i − u)2p(i, j), (5)

HOM =o
i
o
j

1

1 + (i, j)2
p(i, j), (6)

CON = o
Ng

n=0
n2 o

Ng

i=1
o
Ng

j=1
p(i, j)

i − jj j = n

8>><
>>:

9>>=
>>;
, (7)

DIS = o
Ng−1

n=1
n o

Ng

i=1
o
Ng

j=1
p(i, j)

i − jj j = n

8>><
>>:

9>>=
>>;
, (8)

ENT = −o
i
o
j
p(i, j) log (p(i, j)), (9)

SEC =o
i
o
j

p(i, j)f g2, (10)

COR =
o
i
o
j
(i, j)p(i, j) − mxmy

sxsy
: (11)

Here, p (i, j) is the value of the (i, j)th entry in the gray level

cooccurrence matrix; Ng is the number of distinct gray levels in the

quantized image; mx and sx are the mean and standard deviation of x

rows in the matrix calculation, respectively; and my and sy are the mean

and standard deviation of y rows in the matrix calculation, respectively.
Frontiers in Plant Science 06
2.2.7 Selection of image texture features and
vegetation index

The subset screening method used the whole subset regression

analysis to fit and model all possible combinations of different

independent variables with the least square method, and ultimately,

to select an optimal monitoring model (Love, 2005). Specifically, m is

the number of independent variables, and least squares fitting was

performed on the x variables (x = 1, 2,…, m) in m and the dependent

variables. Among all the fitting models, the best model was selected

based on the full subset screening results. The evaluation criteria for

selecting the optimal model were as follows: ① maximize the

likelihood function; and ② minimize the unknown parameters of

the model, meaning search for the best balance between model fit

accuracy and model complexity. Similar to the Akaike information

criterion (AIC), the Bayesian information criterion (BIC) is often

used as an evaluation criterion in model selection. However, the BIC

is more effective at avoiding the problem of over-complex models

caused by high model accuracy. When the dimensionality is too large

and the number of samples is relatively small, the BIC can also

effectively avoid too many selected variables. Therefore, the principle

of the smallest BIC value was observed in the selection of variables,

and the leaps package of R3.5.1 software was used to conduct the full

subset selection analysis. The calculation formula of BIC is as follows:

BIC = k ln (n) − 2 ln (L), (12)

where k is the number of model parameters, n is the number of

samples, and L is the likelihood function. The results of the variable

screening are displayed in Table 4.
2.3 Prediction model

2.3.1 Experimental flow
A multispectral camera was used to collect data in different

growth and development stages (fruit rapid expansion and fruit
TABLE 2 Stomatal conductance Sc sample data.

Dataset Sample size Min Max Average Standard deviation

Modeling set 84 0.0080 0.0240 0.0151 0.0036

Validation set 36 0.0089 0.0245 0.0160 0.0040

Total 120 0.0080 0.0245 0.0154 0.0037
TABLE 3 Calculation formula for the vegetation index.

Vegetation index Formula Reference

Normalized difference VI (NDVI) (B808-B650)/(B808+B650) (Pei et al., 2021)

Chlorophyll VI (CVI) B808/B560/B650/B560 (Vincini et al., 2008)

Red-edge chlorophyll index (CIRE) B808/B725 - 1 (Ye et al., 2021)

Green normalized difference VI (GNDVI) (B808-B560)/(B808+B560) (Lee et al., 2021)

Normalized Difference Greenness VI (NDGI) (B560-B650)/(B560+B650) (Cogato et al., 2021)

Normalized difference red edge (NDRE) (B808-B725)/(B808+B725) (Tavares et al., 2022)

Ratio VI (RVI) B808/B650 (Wang et al., 2021)
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ripening) of the citrus trees, after which the images were processed.

The experimental data were collected by relevant sensors and

meteorological stations, mainly including citrus photosynthetic

parameters, chlorophyll values, and meteorological data. In this

study, mathematical statistics were used to conduct the statistical

modeling, including machine learning methods (SVR, RF, and KNR).

Finally, multispectral data were used to predict the photosynthetic

parameters in the growing period of the citrus trees. The research flow

chart is presented in Figure 3.

2.3.2 Machine learning methods
Machine learning methods include SVR, RF and KNR, which are

implemented through sklearn package in python3.7. When running

regressions, the penalty factor C of SVR is 1, the radial basis function
Frontiers in Plant Science 07
(RBF) is selected for the kernel function, and gamma is 2. The

n_estimators for the number of trees in RF is 50. Other parameters

are default. The KNR parameter is the default value.

2.3.3 Model evaluation metrics
To evaluate the accuracy of the prediction model, the

coefficient of determination (R2) and root mean square error

(RMSE) were used to evaluate the model, where R2 reflects the

fitting degree of the model to the measured values. The closer R2 is

to 1, the better the fit. The RMSE is a commonly used evaluation

index for regression models and reflects the dispersion degree of

measured values near the regression line. The smaller the value of

RMSE, the higher the model accuracy. The calculation formula is

as follows:
FIGURE 3

Experimental study flow chart.
TABLE 4 Variable screening statistics based on full subset selection.

Type Parameter Number Screening result BIC

VIs B560, B650, B725, B808, NDVI, CVI, CIRE, GNDVI, NDGI, NDRE, RVI 11 B808, CVI, NDGI, NDRE -17

Texture MEA, VAR, HOM, CON, DIS, ENT, SEC, COR 8 VAR, CON, SEC, COR -17

Texture and VIs Total VIs and Texture 19 NDRE, RVI, VAR, SEC, COR -30
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R2 = 1�o
m
1 (yi� f (xi))2
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1 (yi� yi)2

, (13)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m
i=1(yi − f (xi))2

r
, (14)

where yi represents the measured value of the sample, yi

represents the mean value, and m represents the number of samples.
3 Results
3.1 Segmentation algorithm results

The test results are listed in Table 5. For the complex citrus

canopy leaf images in this study, the ACC and MCC levels of the HSV

variable threshold segmentation method reached more than 80.0%,

achieving accurate and effective segmentation. For the canopy images

segmented by Otsu’s algorithm after visible light VI preprocessing,

the segmentation effect varied with the VI. Although the ACC of VI

IPCA was 96.27%, MCC was only 52.2%, which indicated that the

segmentation effect of VI IPCA needed to be improved and that there

was over-segmentation. Among the seven selected visible light VIs,

EXG VI had the best segmentation effect, with ACC and MCC

reaching nearly 80%. This is because the citrus canopy reflected the

green band strongly, while the soil weakly reflected the green band.

Moreover, EXG VI could distinguish the canopy and soil information

more effectively, meaning that the segmentation effect of EXG VI was

optimum in visible light VI (Senthilnath et al., 2017). It can be

observed from Table 5 that VIs with greater correlation with the green

band exhibited relatively good segmentation effects, such as BGRI and

EXGR. The partial segmentation results after VI treatment and HSV

threshold calculation results are shown in Figure 4. The intersection

over union (IOU) score is a standard performance measure for object

class segmentation problems.

It can be seen from Figure 4 that the four segmentation

algorithms managed to divide the citrus canopy and soil

background. According to the evaluation indicators of ACC and

MCC, we adopted the HSV variable threshold segmentation method

in this paper to segment the citrus canopy leaves, generate a vector file

containing the pixel contour features of the citrus canopy, and then

mask the multispectral images to obtain the canopy spectral data.

About 100 multispectral images were used for analysis.
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3.2 Effects of water stress on photosynthetic
parameters of citrus trees

Relevant studies (Garcıá-Tejero et al., 2012) suggested that T2 water

treatment was the most suitable water gradient for citrus fruit growth,

while T3 and T4 would produce water stress. The error bars in Figure 5

represents the mean +/- standard deviation. It can be seen from Figure 5

that water stress would affect the spectral reflectance of the citrus canopy,

although it had almost no effect on the reflectance of the green (560 nm)

and red (650 nm) bands. However, it had a significant effect on the

reflectance of the red-edge (725 nm) and near-infrared (808 nm) bands.

In the red-edge band (725 nm), the reflectance of T1 and T2 was low and

the reflectance of T3 and T4 was high. In the near-infrared band (808

nm), the reflectance of T4 was significantly higher than that of T1, T2,

and T3. Therefore, it is possible to identify whether citrus trees are in the

water stress stage by judging the difference between the red-edge and

near-infrared bands in the spectral reflectance of citrus canopy leaves.

Figure 6 displays the distribution characteristics of Pn, Tr, and Sc

under different water treatments. It can be seen from Figure 6 that the

Pn of leaves treated with T1 and T2 was higher than that of leaves

treated with T3 and T4, indicating that water stress will have an

impact on the Pn of citrus canopy leaves. This effect was positively

correlated, with the higher the water stress degree, the lower the Pn.

The Pn of the T1 treatment was not significantly different from that of

the T2 treatment, indicating that the Pn of citrus canopy leaves would

not change significantly under irrigation with sufficient water. The

changes in transpiration rate and stomatal conductance of citrus

canopy leaves under water stress were consistent. The Tr and Sc of

leaves treated with T1 and T2 were higher than those treated with T3

and T4, which was consistent with the rule that water stress would

affect the Tr and Sc of leaves. The higher the water stress, the lower the

Tr and Sc.
3.3 Prediction model of citrus Sc based on
vegetation index

Figure 7A displays the Pearson correlation coefficients between

band reflectance and Sc, and between VIs and Sc. The VIs were

positively correlated with Sc, while most citrus canopy reflectances

were weakly and negatively correlated with Sc. Because most VIs and

the band reflectance were correlated with Sc, full subset selection was
TABLE 5 ACC and MCC results of the segmentation algorithm.

Type IOU ACC MCC

Principal Component Analysis Index (IPCA) 0.6757 0.9627 0.5220

HSV 0.8279 0.8426 0.8195

Excess Green (EXG) 0.7867 0.7912 0.7841

Blue-Green Ratio Index (BGRI) 0.5135 0.5851 0.4232

Green Minus Excess Red Index (EXGR) 0.4541 0.5062 0.3856

Blue-Red Ratio Index (BRRI) 0.3909 0.4450 0.2955

Normalized Green-Blue Difference Index (NGBDI) 0.2565 0.4359 -0.4229

Excess Red (EXR) 0.1361 0.1882 -0.2969
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used to screen all spectral band reflectance and VIs. The optimal

index combination was selected as the independent variable (B808,

CVI, NDGI, and NDRE), and Sc was taken as the dependent variable

to construct the citrus Sc prediction model based on SVR, RF, and

KNR. The modeling and validation sets of the Sc prediction model

established by the SVR, RF, and KNR methods are depicted in

Figure 8. Simultaneously, the prediction accuracy of the model (R2,

RMSE) was verified by comparing the correlation between the

predicted and measured Sc values of the model. The results indicate

that the RF model achieved the lowest prediction accuracy (modeling

set R2 = 0.62764, validation set R2 = 0.59274), and the KNR model has

the highest prediction accuracy (modeling set R2 = 0.92867, validation

set R2 = 0.72859). However, the RF model modeling set was closest to

the validation set R2, meaning it had the highest stability. In the model

based on SVR, RF, and KNR, the predicted Sc was high if the

measured Sc was low, suggesting that when the measured Sc was

low, the model accuracy would be correspondingly low.

3.4 Prediction model of citrus Sc based on
texture features

Figure 7B displays the Pearson correlation coefficient between

multispectral image texture features and Sc. Different colors and

lengths in the histogram represent the different types of image texture

features of the different bands (MEA, VAR, HOM, CON, DIS, ENT,

SEM, and COR). The results indicate that the texture features of the

four bands were correlated with Sc. Although the correlation between

Sc and texture features of most bands was weak, the correlation
Frontiers in Plant Science 09
between Sc and 808 nm texture features was high. Figure 7B shows

that Sc was positively correlated with the 808 nm image texture

feature (COR) and negatively correlated with other texture features in

the four bands of the multispectral camera. Through the correlation

analysis of image textures and Sc in different bands, it was evident that

the image texture feature at 808 nm had the most significant

correlation with Sc, while the image texture feature at other bands

had a low correlation with Sc. The use of non-obvious image texture

features would result in an increase in the RMSE of the model, which

would reduce the prediction ability of the model.

In this study, full subset selection was employed to screen the

texture features of the 808 nm images. The optimal index

combination was selected as the independent variable (VAR, CON,

SEC, and COR), and Sc was taken as the dependent variable to

construct the citrus Sc prediction model based on SVR, RF, and KNR.

The predicted value was then compared with the measured value. The

modeling and validation sets of the Sc prediction model established by

the SVR, RF, and KNR methods are depicted in Figure 9. The results

indicate that the Sc prediction model based on SVR, RF, and KNR

methods and texture features was feasible. Succinctly, the accuracy of

the three models was similar, and the Sc prediction model of the RF

model achieved the highest accuracy (modeling set R2 = 0.61539,

validation set R2 = 0.61424). However, the modeling set R2 (0.90042)

of the KNR model was significantly larger than the validation set R2

(0.60689), indicating serious overfitting between the predicted and

measured Sc. When the Sc of the citrus canopy was low, the Sc of the

RF model was relatively high, which was similar to the results of the Sc

prediction model based on VI and band reflectance. The accuracy of
A B

D E F

C

FIGURE 4

Partial segmentation effect diagrams (A is the original image; B is manually segmented image; C is HSV threshold segmentation image; D is EXG index
OTSU segmentation; E is BGRI index OTSU segmentation; F is EXGR index OTSU segmentation).
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the Sc prediction model based only on texture features was lower than

that based only on VI and band reflectance. This could either be

because the accuracy of texture features is positively correlated with

image resolution (affecting the extraction of texture features), or

because the leaves of the citrus trees are relatively dense and the

extraction of texture features is not obvious. Therefore, it is necessary

to further study the combination of image texture features, VI, and

band reflectance to construct the citrus Sc prediction model.
3.5 Prediction model of citrus Sc based on
vegetation index and texture features

In this study, the full subset selection method was used to screen the

image texture features at 808 nm, the band reflectance, and VI to

generate the best combination of image texture features, band

reflectance, and VI. The optimum combination was selected as the

independent variables (NDRE, RVI, VAR, SEC, and COR), and Sc was

taken as the dependent variable to construct the citrus Sc prediction

model based on SVR, RF, and KNR. Figure 10 shows the relationship
Frontiers in Plant Science 10
between the predicted and measured Sc values. The results suggest that

KNR model achieved the highest accuracy in Sc prediction (modeling

set R2 = 0.91076, RMSE = 0.00070, validation set R2 = 0.77937, RMSE =

0.00165). In addition, the Sc prediction model based on image texture

features, VI, and band reflectance could solve the problem of large data

prediction values when the Sc measurement values are small. It is

evident from Figure 10 that the R2 of the prediction models based on

the SVR and KNR methods were both >0.7, and the accuracy was

higher than that of the models based on VI or texture features. This

suggests that the combination of VI and texture features can effectively

improve the accuracy of prediction models. Therefore, the machine

learning model based on image texture features, VI, and band

reflectance can achieve higher accuracy than the machine learning

model based on VI or texture features, and the Sc value of prediction is

more accurate. The Sc of citrus decreases under water stress, and the Sc

is different under different water treatments. However, the accuracy of

multispectral prediction of Sc could reach 0.78, which can better predict

Sc value. Therefore, whether crops are in a state of water stress could be

judged by the value of Sc, so as to carry out corresponding

irrigation treatment.
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Reflectance curve of citrus canopy leaves.
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4 Discussion and conclusions

In this study, different water stress treatments were set for citrus

trees, and Sc was measured during fruit growth and fruit maturity.

Simultaneously, citrus Sc was predicted based on multispectral and

machine learning methods. To reduce errors caused by the soil

background, the threshold segmentation method was used to

segment the citrus canopy leaves. In addition, differences between

the SVR, RF, and KNR regression models were compared. The main

conclusions are as follows:
Fron
1) In this study, the threshold segmentation method was used to

process the citrus canopy, which could realize segmentation

between the citrus canopy and the soil background. The ACC

and MCC levels of the HSV variable threshold segmentation

method were >80.0%. Moreover, the ACC and MCC of the

canopy image segmented by Otsu’s algorithm after EXG

preprocessing reached approximately 80%. Both methods

achieved accurate and effective segmentation.
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2) The citrus photosynthetic parameters (including Pn, Tr, and

Sc) were all affected by different water supply treatments. The

greater the degree of water stress, the lower the Pn, Tr, and Sc

of the leaves (Figure 6). This result is consistent with the

results of previous studies(Ballester et al., 2013).

3) Among the three machine learning models based on image texture

features, VI, and band reflectance, the KNR model (NDRE, RVI,

VAR, SEC, and COR) achieved the highest prediction accuracy.

Compared with the KNR model based only on VI or image

texture features, the validation set R2 of the KNR model based on

combined variables was improved by 6.97% and 28.42%,

respectively. Therefore, the multispectral visible light spectrum

and texture features were combined to retrieve Sc, which provided

a reference value for the judgment of citrus water stress.
Crop water stress is directly related to soil moisture. However, when

the leaf coverage of the crop canopy is high, the information obtained by

a multispectral camera is mainly about the crop canopy, which contains

less soil information. Hence, the accuracy of using the canopy spectral
FIGURE 6

Distribution characteristics of Pn, Tr, and Sc under different water treatments.
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information to estimate soil water content is low. This is because there is

an indirect conversion process to diagnose crop water stress by retrieving

soil moisture from crop canopy spectral information. Crop water status is

associated with various indirect parameters that can be assessed by

remote sensing, close observation, and spectral analysis techniques.

Studies (Yang et al., 2021) have demonstrated that short-term water

deficiency affects the growth process and results in stomatal closure,
Frontiers in Plant Science 12
which ultimately leads to higher leaf temperature. Determining Sc is one

of the methods used to quantify stomatal closure, and Sc is a

physiological index that is widely used to detect crop water stress.

Moreover, estimating Sc using canopy spectral information can directly

diagnose crop water stress status. Currently, sensors are mainly used to

measure Sc. Yang et al. (Yang et al., 2021) used photosynthetic apparatus

to measure the Sc of the Chinese cabbage heart to judge its water stress
A B

FIGURE 7

Pearson correlation coefficients.(A) Pearson correlation coefficient between vegatation index and Sc (B) Pearson correlation coefficient between image
texture feature and Sc.
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C

FIGURE 8

Comparison of Sc models for SVR, RF, and KNR prediction based on VI (A, C, E are modeling set; B, D, F are validation set).
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degree. However, the measurements were time-consuming and laborious

and were not widely applicable. Kandylakis et al. (Kandylakis et al., 2020)

used aerial short-wave infrared and multispectral data to measure grape

water stress, and they achieved high levels of accuracy. Their conclusions

were similar to the results of this study, which showed that the Sc

prediction accuracy could reach more than 0. 8 by combining texture

characteristics and vegetation index.

There aremore than 100 types ofmultispectral VIs, and how to select a

suitable one for research purposes remains a significant problem.

Currently, most studies select some VIs and take them all as model

inputs. Although this can improve the accuracy of some predictionmodels,

it can significantly improve the dimension of the model data, and the

computation time is increased. In this study, the full subset selection

method was used to combine variables and select the optimal combination

of variables. This ensured that the R2 value of the model was the highest or

the BIC value was the lowest, achieving the purpose of reducing the input

variables of themodel. Zhang et al. (Zhang et al., 2021a) used the full subset

selection method to screen the multispectral VI and determined the

optimal variable combination of VIs to realize remote sensing estimation

of soil salinity. Their conclusion was similar to the result of this study,

which achieves the purpose of variable combination optimization.

Many studies have only used VI to retrieve canopy information of

crops. While this can achieve the effect of basic prediction, the method
Frontiers in Plant Science 13
has limitations. When crops are subjected to water stress, the canopy

structure will change, such as mild leaf wilting. Furthermore, this model

only uses VI as the input, which can only be reflected when the leaf

color changes significantly. Some studies(Dube and Mutanga, 2015;

Schumacher et al., 2016) have shown that image texture features can

retrieve crop biomass and achieve a better prediction effect than VIs,

althoughmost studies have focused on forests. Compared with previous

studies (Liu et al., 2019), this study did not find that single texture

features could retrieve Sc more accurately than VIs, which may be

because citrus leaves are relatively dense and the extracted texture

features are regional features of multiple leaves. Furthermore, the image

texture features of leaves are related to image resolution, where the

higher the resolution, the clearer the extracted image texture features.

This study has revealed that the addition of texture features can

improve the accuracy of prediction and provide more accurate Sc

estimation compared with models based only on VIs. Therefore, the Sc

prediction model using the combination of VIs and texture features as

input has a better prediction effect than the single variable input model.

The VI can easily be influenced by the soil background when

obtaining crop canopy information. When the crop coverage is low,

the VI is prone to light saturation. In this study, a threshold

segmentation method was used to segment multispectral images

and extract citrus canopy leaf data, and the segmentation effect
A B
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C

FIGURE 9

Comparison of Sc models for SVR, RF, and KNR prediction based on texture features (A, C, E are modeling set; B, D, F are validation set).
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could reach approximately 80%. Long et al. (Long et al., 2020) used

Otsu’s method to segment multispectral images of a maize plant

canopy and achieved the effect of preliminary segmentation of

flowerpots and standard plates, which was similar to the results of

this study. The results suggest that the segmentation method used in

this study can reduce the influence of soil background and reduce

experimental error. However, we only used the color threshold

segmentation method and did not employ neural networks for

segmentation. On the one hand, because the color difference

between the citrus canopy and soil background is large, the

segmentation effect can be achieved by threshold segmentation. On

the other hand, the leaves of the citrus canopy are small and the edges

of the leaves are complex, which is not conducive to segmentation by

neural networks. Moreover, there are problems such as complex

data annotation.

While the machine learning method used in this study was effective

in estimating citrus Sc, there were some limitations. First, there is a

correlation between texture features and image resolution, whereby the

higher the resolution, the clearer the texture features. However, in this

study, we did not consider the effect of different resolutions on texture

features, which requires further study. Second, when collecting spectral

data, we did not consider whether factors such as the solar height and the

citrus leaf angles would affect the scale of reflectance. Finally, we only
Frontiers in Plant Science 14
studied the water stress in the growth stage of citrus fruits, not in the

whole growth stage. To determine whether the model is applicable to

other stages would require further study.

Considering the data characteristics of citrus multi-spectral

image, such as small amount of data and strong nonlinear, it was

unable to meet the requirements of convolutional neural network for

large-scale data sets. Therefore, the traditional machine learning

method with advantages of classification and inversion in small

sample data was selected and the algorithms were compared at the

same time. In the future, more advanced machine learning methods

will be considered to improve the accuracy of inversion.

In this study, we through the two aspects to solve the fitting

problem. First, the full subset screening method assumes that there

are N independent variables in the regression analysis, and any M

(1≤M≤N) independent variables in N establish regression equations

with dependent variable Y respectively. A model fitting 1 ~ N

prediction variables was obtained. Among the 1 ~ N models, N

optimal models are selected according to the maximum criterion of

the adjusted coefficient of determination. The adjusted coefficient of

determination considers the influence of the number of independent

variables and the number of samples. With the increase of the model’s

independent variables, its value will not increase, which reduces the

overfitting phenomenon. Second, the method of cross validation was
A B
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FIGURE 10

Comparison of Sc models for SVR, RF, and KNR prediction based on VI and texture features (A, C, E are modeling set; B, D, F are validation set).
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added to the algorithm in this paper, and the data set was divided into

7:3, including two training sets and one test set. All data will be

involved in training and prediction, effectively avoiding overfitting

and fully reflecting the idea of crossover. In addition to the above two

methods, we could suppress overfitting problems by increasing data

or thinking about Regularization in the future.

This study proved that multispectral VI and texture features can

be used to judge the water stress in citrus trees. However, the

relationship between texture features and image resolution can be

further studied to determine the influence of different resolutions on

the research results. Although spectral data can effectively predict Sc,

it is necessary to further consider the influence of solar height angle,

citrus leaf angle, and other factors during data collection to enhance

the reliability of this study. Finally, it is recommended that future

research studies the whole growth cycle of citrus trees to realize the

determination of water stress in the whole cycle.
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