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Susceptibility of pruning wounds
to grapevine trunk diseases:
A quantitative analysis of
literature data
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2HORTA S.r.l., Piacenza, Italy
Introduction: Pruning wounds are the main entry points for fungi causing

grapevine trunk diseases (GTDs). Several studies identified factors influencing the

temporal dynamics of wound susceptibility, which include the fungal species and

inoculum dose, weather conditions, grape variety, pruning date, and so forth. Here,

we conducted a quantitative analysis of literature data to synthesise outcomes

across studies and to identify the factors that most affect the length of pruning

wound susceptibility.

Methods: We extracted data on the frequency at which the inoculated wounds

showed GTD symptoms or an inoculated pathogen was reisolated following

artificial inoculation at the time of pruning or in the following days. A negative

exponential model was fit to these data to describe changes in wound

susceptibility as a function of time since pruning, in which the rate parameter

changed depending on specific factors.

Results and Discussion: The results show that wound susceptibility is high at the

time of pruning, and they remain susceptible to invasion by GTD fungi for months

after pruning. Infection incidence on wounds was higher for fungi associated with

Botryosphaeria dieback than those associated with Eutypa dieback or Esca

complex, and wound susceptibility decreased faster for Eutypa dieback than for

other GTD agents. Grapevine variety and pruning season also affected the wound

susceptibility period. Sauvignon Blanc remains susceptible to GTDs longer than

other varieties. We also found that the time of pruning can affect infection

dynamics, especially for more susceptible varieties. The results increase our

understanding of GTD epidemiology and should help growers control infections.

KEYWORDS

artificial inoculation, Botryosphaeria dieback, Esca complex, Eutypa dieback,
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1 Introduction

Grapevine trunk diseases (GTDs) cause serious economic losses

to the grape industry worldwide (Fontaine et al., 2016b; Mondello

et al., 2018a). The casual agents include a wide range of taxonomically

distant fungi (Gramaje et al., 2018; Mondello et al., 2018b) that can

affect the plant alone or together. In addition to causing external

symptoms on foliage and clusters, these pathogens can cause internal

wood discoloration. An unpredictable discontinuity in the expression

of symptoms is a characteristic of these diseases (Mugnai et al., 1999).

GTDs include a range of diseases that affect adult and young vines.

Esca complex, Botryosphaeria dieback, and Eutypa dieback are

considered major GTDs of adult vines (Claverie et al., 2020).

The Esca complex has been associated with a number of

phylogenetically diverse fungi (Mugnai et al., 1999), including both

Ascomycota and Basidiomycota. Esca-associated ascomycetes include

the vascular pathogens Phaeomoniella chlamydospora and

Phaeoacremonium minimum (syn. Pm. aleophilum) (Úrbez-Torres

et al., 2014), and other species of Phaeoacremonium. Wood-decay

basidiomycetes include Fomitiporia mediterranea in Europe (Moretti

et al., 2021), and other pathogens belonging to the genera

Fomitiporella, Fomitiporia, Inocutis, Inonotus, Stereum, and

Phellinus in non-European countries (Cloete et al., 2011; White

et al., 2011); these fungi have been isolated from infected vine

trunks, but their role in the disease aetiology has not been

completely understood (Surico et al., 2006; Bertsch et al., 2013;

Gramaje et al., 2018), and is being reconsidered in recent years.

Botryosphaeria dieback is caused by more than 20 species in the

Botryosphaeriaceae family, including Botryosphaeria dothidea,

Lasiodiplodia theobromae, Dothoriella viticola, Neofusicoccum

parvum, N. australe, N. luteum, N. ribis, Diplodia seriata, and D.

mutila (Van Niekerk et al., 2004; Taylor et al., 2005; Úrbez-Torres and

Gubler, 2009; Amponsah et al., 2012b; Bertsch et al., 2013). Eutypa

dieback is caused by Eutypa lata and other Diatrypaceae species

(Trouillas and Gubler, 2010; Luque et al., 2012). These pathogens can

be recovered from the affected wood alone or in combination with

other fungi, such as Pa. chlamydospora, Pm. aleophilum, Sphaeropsis

malorum, and Diaporthe ampelina (Péros et al., 1999).

GTD symptoms are multifaced and include dieback of spurs and

arms, discoloration or internal streaking of wood, sectorial wood

necrosis and white rot; since plants can be affected by multiple fungi

at the same time, some symptoms can overlap among GTDs (Gramaje

et al., 2018). Wood discoloration and decay result from a number of

structural and physiological changes caused by cellulolytic and

ligninolytic enzymes produced by the fungi, vascular occlusion due

to gels and gums secreted by the affected xylem parenchyma cells, or

necrosis of xylem parenchyma cells as the result of fungal toxins

(Bertsch et al., 2013; Claverie et al., 2020). All of these changes lead to

an alteration of xylem vessel functions, which results in reduced water

and nutrient movement (Mugnai et al., 1999; Sparapano et al., 2000;

Andolfi et al., 2011). A detailed description of symptoms in relation to

the different GTDs has been recently reported by (Mondello et al.,

2018b). Leaves, from which the GTD fungi have never been isolated

(Bertsch et al., 2013), also show a variety of symptoms, which have

been also described (Mugnai et al., 1999; Amborabé et al., 2001;

Mondello et al., 2018b); wood and xylem vessel alteration, fungal

toxins and deposition of secondary metabolites all contribute to the
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expression of disease symptoms (Tabacchi et al., 2000; Bruno et al.,

2007). The epidemiology of GTDs is not fully understood. The fungi

are known to spread via airborne spores (Billones-baaijens et al.,

2017), splashing rain (Larignon and Dubos, 2000), or arthropods

(Moyo et al., 2014; Kalvelage et al., 2021), even though details on the

spread of inoculum in the vineyard are not wholly explained. Spores

germinate, and germ tubes enter vine tissues through any type of

wound (Graniti et al., 2000; Makatini, 2014) that exposes the xylem;

fungi then colonise the wood tissue by growing in and around xylem

vessels and parenchyma cells. Pruning wounds are considered a

relevant entry point for GTD fungi (Gramaje et al., 2018), and

protection of pruning wounds in the period of susceptibility is

considered important for reducing fungal penetration into the

wood (Halleen et al., 2010; Di Marco et al., 2022).

A number of studies have investigated the dynamics of pruning

wound susceptibility to fungal invasion (Petzoldt et al., 1981;

Munkvold and Marois, 1995; Eskalen et al., 2007; Serra et al., 2008;

Amponsah, 2010; Úrbez-Torres and Gubler, 2011; Amponsah et al.,

2014; Luque et al., 2014; Ayres et al., 2016; Elena and Luque, 2016).

All of these studies indicate that pruning wounds are highly

susceptible to fungal invasion at the time of pruning and that

susceptibility declines over the following weeks. These studies were

conducted for ascomycetes but not for basidiomycetes, probably

because the role of the latter fungi in GTDs has been reconsidered

only recently.

These studies collectively show that the wound susceptibility and

its decrease over time are influenced by the fungal species, weather

conditions, geographical region, grape variety, trellis system,

endophytic bacterial microbiome, pruning date, the total surface

area of pruning wounds, and vineyard management practices

(Larignon and Dubos, 2000; Gu et al., 2005; Borgo et al., 2008;

Úrbez-Torres and Gubler, 2011; Bertsch et al., 2013; Billones-

Baaijens et al., 2013a; Andreini et al., 2014; Luque et al., 2014; Shafi,

2016; Lecomte et al., 2018; Martıńez-Diz et al., 2020; Bekris et al.,

2021; Henderson et al., 2021). Wound susceptibility is also influenced

by plant response to pruning (Gubler et al., 2005). When a plant is cut

or mechanically damaged, a response takes place at both cellular and

tissue levels, which include biochemical changes like phenol

accumulation, phytoalexin production, synthesis of hydrolytic

enzymes, and cell wall reinforcement with suberin and/or lignin

(Mundy and Manning, 2011); for example, high lignin production

in cell walls has been reported to reduce susceptibility to E. lata

(Rolshausen et al., 2008). The wound-inducible polyphenol oxidase

(PPO) is also related to plant resistance and the production of the

above compounds, as reviewed by Fontaine et al. (2016a). In addition

to the biochemical changes, the xylem responds to wounding with gel

closures in winter and tyloses in summer (Mundy and Manning,

2011). Because of this complexity, synthesizing the knowledge on the

susceptibility of pruning wounds to fungal invasion is difficult.

Claverie et al. (2020) recently conducted a literature analysis and

provided qualitative information on factors affecting pruning wound

susceptibility to GTD fungi. To date, however, a quantitative analysis

of the literature data has not been performed. Quantitative analysis of

the results coming from different studies is becoming important to

increase the statistical power of single studies and for summarising

the available scientific knowledge on a topic (Noordzij et al., 2009).

This is also true for plant pathology, where “formal” meta-analysis
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and other quantitative analyses of literature data are increasingly

being used (Madden and Paul, 2011; Ngugi et al., 2011; Philibert et al.,

2012; Scherm et al., 2014; Ji et al., 2022).

In this study, we performed a systematic literature search and

extracted quantitative data from published papers with the following

goals: (i) to quantitatively appraise and synthetise outcomes across

studies on the dynamics of wound susceptibility to GTD fungi; (ii) to

determine whether wound susceptibility depends on the pruning

season, grapevine variety, the pathogen that is involved, or by the

interaction of these factors; and (iii) to identify knowledge gaps that

require further research.
2 Materials and methods

2.1 Systematic literature search

A systematic literature search was conducted in the Web of

Science (WoS) Databases (which include the Web of Science Core

Collection, BIOSIS, Derwert, KCI-Korean, Russian Science, SciELO,

Data Citation index, and MEDLINE®)(Clarivate Analytics, 2020)

using the following search string: Grapevine AND Trunk AND

Disease$ AND Wound$ AND (susceptibility OR age). The operator

AND indicates that the words must occur simultaneously in the

search results, while OR indicates that the selected study must contain

any of the terms separated by the operator; the dollar sign ($)

represents zero or one character (e.g., “wound” or “wounds”). No

restrictions on language or publication date were used. The search

detected a total of 79 papers that were exported to EndNote™ online

(Clarivate Analytics, online) and that were first screened based on the

title and abstract. To be selected, papers had to first satisfy the

following criteria: (i) the papers were published in peer-reviewed

scientific journals, conference proceedings, scientific reports, or peer-

reviewed theses; (ii) they describe experiments in which pruning

wounds were artificially inoculated with GTD pathogens at different

times after pruning; (iii) they contain quantitative information in the

main text, tables, or figures on the percentage of inoculated wounds

that were infected (e.g., by observing internal symptoms, or by

reisolating the fungal pathogen after artificial inoculation); and (iv)

the studies had an experimental design with replicates and were

conducted with potted plants or field plants. The papers fulfilling

these eligibility criteria were considered to be of potential interest, and

the full-text manuscripts were retrieved and reviewed. Additionally, a

cross reference-based search of relevant studies was performed to

include reports of other studies that might have been eligible for the

review and to reduce the risk of missing relevant information due to

the choice of search terms. This procedure is shown in Figure 1 as a

PRISMA flow diagram (Koricheva and Gurevitch, 2014).

The cut-off date for publications to be considered for inclusion in

this quantitative analysis was 25 July 2022.
2.2 Data extraction

Data on the percentage of pruning wounds that showed internal

disease symptoms or from which the pathogen was re-isolated

following artificial inoculation (hereafter referred to as “disease
Frontiers in Plant Science 03
incidence”) at different times after pruning were extracted from the

original papers. All the inoculations were done by depositing a spore

suspension (concentration provided as conidia/mL, or ascospores/

spores per wound) on the pruning wound surface. Additional details

can be found in Supplementary Material S3.

Data in the main text or tables were extracted directly, while data

in graphs were extracted with WebPlotDigitalizer version 4.3

(Rohatgi, 2020), an online tool that supports the extraction of

numerical data from different types of graphs in a PNG or JPEG

format. Unfortunately, it was not possible to extract data concerning

the within-study variance because only five original articles contained

information on the residual error component and the number of

replicates (González-Domıńguez et al., 2018). To retrieve missing

information, we contacted the corresponding authors of the papers

were contacted via email, but we received only a few replies, in which

the authors declared they are not able to provide us with the original

data or missing information, with only one exception.

Extracted data were organised in a database containing the

selected studies (i.e., articles), cases within a study (i.e., single

location or year or variety inoculated with a single pathogen), age

of the pruning wounds (the time between pruning and pathogen

inoculation, as defined before), and the disease incidence (as defined

before). The time at which the pathogens were artificially inoculated

on pruning woods was expressed as days after pruning (DAP); the day

of pruning was considered as time zero (t0). For instance, in an

experiment in which pruning wounds were inoculated with a

pathogen immediately after pruning and then 7, 14, 21, and 28

days later, the times were referred to as t0, t7, t14, t21, and t28.

Relevant information on each case was also included in the database

in order to extract subsets of data for considering the following main

factors that could potentially affect the relationship between disease

incidence and DAP were the pruning period (season), identity of the

GTD, identity of the inoculated pathogen, and grapevine variety. The

pruning period included three “categories”: early-season pruning (i.e.,

November for the Northern Hemisphere, no data for the Southern

Hemisphere were found), mid-season pruning, (i.e., December and

January for the Northern Hemisphere and June for the Southern

Hemisphere), and late-season pruning (i.e., February and March for

the Northern Hemisphere and July and August for the Southern

Hemisphere). Identity of GTD included three categories: the Esca

complex (EC, cases in which pruning wounds were inoculated with

Pm. minimum or Pa. chlamydospora), Botryosphaeria dieback (BD, cases

in which pruning wounds were inoculated withD. seriata, L. theobromae,

N. parvum, or N. luteum), and Eutypa dieback (ED, cases in which

pruning wounds were inoculated with E. lata (previously named E.

armeniacae). There are eight identities for the inoculated pathogens: Pa.

chlamydospora, Pm. minimum, D. seriata, L. theobromae, N. parvum, N.

luteum and E. lata. Ten grapevine varieties: Cabernet Sauvignon,

Chardonnay, Chenin Blanc, Merlot, Sauvignon Blanc, Thompson

Seedless, Grenache, Pinot Noir, Shiraz, or Tempranillo.
2.3 Data analysis

Since it was not possible to extract data on the within-study

variance of the different studies, it was impossible to fit a multivariate

random effects model via linear (mixed-effects) models, and perform
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a formal meta-analysis. Therefore, we made a quantitative analysis of

pooled data coming from the different studies considering the among-

study variability only. The weaknesses of this approach are discussed

in the next paragraphs.

We first used boxplots (Williamson et al., 1989) to study the

effects of the main factors on the disease incidence at the time of

pruning (t0). To assess the differences between the main factors at t0,

we used generalised linear models (GLMs). GLMs provide regression

analysis and analysis of variance for one dependent variable by one or

more factors, allowing the test of the null hypotheses about the effects

of other factors on the means of various groupings of a single

dependent variable (Neal and Allgar, 2005). Because there was

under-dispersion of data (i.e., lower variability than expected by the

binomial model), a quasibinomial family distribution was used. The

function glht (general linear hypotheses) was used for post hoc

comparisons to compute contrasts between each combination of the

factors by using Tukey’s method. The raw data used are available as

Supplementary Material S1.

To study the temporal dynamics of pruning wound susceptibility,

the disease incidence at t0 was set at 1, and the disease incidences at

the following inoculation times were rescaled to 1 and expressed on a
Frontiers in Plant Science 04
0 to 1 scale. For instance, if the disease incidence was 85% for wounds

inoculated at t0, and was 55%, 32%, 10%, and 3% for wounds

inoculated at 7, 14, 21, and 28 DAP, then t0 = 1.00, t7 = 0.65 (i.e.,

55/85), t14 = 0.38 (i.e., 32/85), t21 = 0.12 (i.e., 10/85), and t28 = 0.04 (i.e.,

3/85).

Average (and standard error) of the rescaled disease incidence in

the different cases was then calculated for each timing after pruning

(DAP) and fit to a negative exponential equation in the following

form:
Yt = e−at ½1�

where Yt is the rescaled disease incidence (dependent variable,

from 0 to 1) at time t; t is the time of fungal inoculation after pruning

(independent variable, in days: DAP); parameter a is the rate at which

Y decreases as t increases, which was estimated for all data, main

factors, and interactions (for a total of 71 estimates) by using

nonlinear regression procedures (nls); standard errors of the

parameter a given by the nls function were used to calculate the

confidence interval of the predicted Y values.

Goodness-of-fit of equations [1] were calculated as follows: NSE

(Nash-Sutcliffe efficiency), i.e., the ratio of the mean square error to

the variance in the observed data, subtracted from unity (when the
FIGURE 1

PRISMA flow diagram showing the procedure used for selection of studies for the quantitative analysis.
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error is zero, NSE = 1, and the equation provides a perfect fit); W

index of agreement, i.e., the ratio between mean square error to total

potential error (W = 1 represents a perfect fit); root mean square error

(RMSE), i.e., the fit standard error of the regression, which is

calculated as the square root of the mean square error (RMSE

represents the average distance of real data from the fitted line);

coefficient of residual mass (CRM), which is a measure the tendency

of the model to over- or underestimate the observed data (a negative

CRM indicates a tendency of the model toward overestimation); R2,

which represents the proportion of experimental variability explained

by the selected model (R2 = 1 represents a perfect fit); and the

concordance correlation coefficient (CCC), which is calculated as a

measure of model accuracy (the CCC is the product of the Pearson

product-moment correlation coefficient between observed and

predicted values, and the coefficient Cb indicates the difference

between the best-fitting line and the perfect agreement line; CCC

ranges from -1 to 1, with perfect agreement at 1 (Nash and Sutcliffe,

1970; Loague and Green, 1991; Madden et al., 2007).

To determine whether the temporal dynamics of pruning wound

susceptibility were significantly affected by the categories of the main

factors and their two-way interactions (three-way interactions were

not considered because the number of studies would have been too

low), the following null hypothesis was tested: the slope a of equation

[1] estimated for a category of a main factor (e.g., category EC for the

main factor GTD) was not significantly different from that of another

category of the same factor (e.g., EC vs. BD). The latter null

hypothesis was tested as follows. Equation [1] was expressed in its

linear form through data transformation through the natural

logarithm function (ln), and the intercept of the linearised equation

was set at ln(1 + 1) shifting the y-values by ln(2). Significant

differences between slopes of the linearised, shifted functions were

finally tested using the lsmeans package; slopes were extracted using

the function lstrends and then compared through the function pairs,

which returns a matrix consisting of t-tests for each comparison.

There were 529 comparisons in total, and these are shown in

Supplementary Material S2.

All statistical analyses were conducted with R studio Version

1.4.1717 (RStudio Team, 2021).
3 Results

3.1 Literature search and database overview

The literature search provided 79 studies, of which 41 were selected

for full text analysis. The others were disregarded because they were not

considered relevant to this study as they failed to meet the above-

mentioned criteria. Two additional papers were selected via cross-

referencing. After full text analysis, 16 papers were used for quantitative

data extraction. The selected papers were published between 1980 and

2022, and were conducted in Australia, New Zealand, California, the

USA, South Africa, Italy, Spain, and France; most were performed in

the Northern Hemisphere. The key information of these 16 studies is

summarised in Table 1; further information is available as

Supplementary Material S3. Since each study considered multiple

fungi, years, or vineyards, there were 154 cases in our dataset, for a

total of 1110 single data values for disease incidence.
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In the selected studies, wounds were inoculated at various times

after pruning with a maximum of 10 months (Eskalen et al., 2007)

on different grapevine varieties and in experiments conducted either

in the field or with potted plants located outdoors, for 1 to 4

consecutive years. Three major GTDs were considered, including

six studies for the Esca complex (in which the artificial inoculation

was conducted with Pm. minimum or Pa. chlamydospora, nine for

Botryosphaeria dieback (with D. seriata, L. theobromae, N. parvum,

or N. luteum), and nine for Eutypa dieback (with E. lata) (Table 1).

Pruning dates varied between November and March for the

Northern Hemisphere, and between June and August for the

Southern Hemisphere. In only two studies (Amponsah et al.,

2014; Shafi, 2016), vines were pruned during the vegetative

period; the data from these two studies were used in the whole

dataset but not in the analysis of the pruning period.
3.2 Susceptibility of wounds at the time
of pruning

In the whole dataset, the median value of disease incidence

(wounds being infected or showing GTDs symptoms following

artificial inoculation with GTDs fungi) at the time of pruning (t0)

was 64.0%; the variability, however, was very high with extremes

ranging from 0 to 100%, and with 50% of the data ranging from 40.3

to 80.0% (Figure 2). When the whole dataset was split based on the

pruning period, the disease incidence for wounds inoculated at t0 was

significantly higher for wounds inoculated at mid-pruning than at late

pruning (P< 0.001), with early pruning showing intermediate values

(Figure 2). When the whole dataset was split based on the GTD, the

incidence of successful infections was significantly lower for Eutypa

dieback than for Botryosphaeria dieback (P = 0.032), with

intermediate values for Esca complex agents. When the whole

dataset was split based on grape variety (Figure 3), disease

incidence was lower for Chenin Blanc and Merlot than for other

varieties; for Chenin Blanc and Merlot,< 40% of inoculated wounds

became infected (Figure 3). Because of high variability among

experiments and fewer data availability for Grenache, Pinot noir,

Tempranillo, and Shiraz, no significant differences were found in the

pairwise comparisons between these varieties (P > 0.058).
3.3 Changes in wound susceptibility
over time

In the whole dataset, the disease incidence declined over time

after pruning (DAP) when the GTD fungi were inoculated (Figure 4).

Equation [1] fit the data with a = 0.019 ± 0.002, R2 = 0.74, CCC = 0.85,

NSE = 0.68, W = 0.92, RMSE = 0.16, and CRM = -0.031. The analysis

of data distribution with respect to the fit and its confidence interval

showed that > 50% of the observed data overlapped with the predicted

interval, with some overestimation between 20 and 30 DAP, and

underestimation between 90 and 120 DAP (Figure 4).

When the whole dataset was divided according to the main factors

(pruning period, GTD, grape variety, and fungal species) and their

interactions, for a total of 70 combinations, equation [1] fit the

observed data rather well with the following ranges of values: R2
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(0.25 to 1); NSE (0.1 to 0.99); W (0.46 to 1); RMSE (0.02 to 0.72);

CRM (-0.08 to 0.12); and CCC (0.3 to 1) (Tables 2–5).

The pruning period (as a main factor) was not significantly related

to the dynamics of wound susceptibility, because the slope parameters

calculated for early (a = 0.018), mid (a = 0.020), and late (a = 0.021)

pruning were not significantly different from a based on the whole

dataset (P > 0.243; Table 2) or from each other, with P > 0.485

(Figure 5). Disease as a main factor, on the contrary, showed a

significant effect. Wound susceptibility decreased over a shorter

period after pruning for Eutypa dieback (a = 0.049) than for the

Esca complex (a = 0.016) or Botryosphaeria dieback (a = 0.015), with
Frontiers in Plant Science 06
P< 0.001 (Table 2 and Figure 6). For Botryosphaeria dieback, a

significant interaction between pruning period x GTD (Table 3)

showed that the susceptibility decreased faster for late pruning

(a=0.024) and early pruning (a = 0.019), which were not

significantly different from each other (P = 0.999), than for mid-

pruning (a = 0.010; P = 0.021 and 0.029, respectively) (Supplementary

Material S2).

Wound susceptibility decreased faster when pruning wounds

were inoculated with E. lata (a = 0.049) than with other fungal

species (a ranged from a minimum of 0.011 for D. seriata to a

maximum of 0.023 for N. parvum, Table 2; with P< 0.001,
TABLE 1 Main characteristics of the studies selected for the analysis (further information is available in Supplementary Material – S3).

Fungal
species

Pruning
months Years Scale Inoculation time

(DAP, days after pruning)
Country or
Region Reference

Pm. minimum
Pa.
chlamydospora

February
2000
2001

Field 0, 30, 60, 90, 120, 150, 180 California Eskalen et al., 2007

Pm. minimum
Pa.
chlamydospora
D. seriata

January to
March

2005 to
2007

Field 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105 Italy Serra et al., 2008

L. theobromae
N. parvum

November to
January

2007
2008

Field 0, 12, 24, 36, 48, 60, 72, 84 California
Úrbez-Torres and Gubler,
2011

D. seriata
Pa.
chlamydospora

November
February

2012
2013

Pots 1, 7, 14, 28, 56, 84 Spain Elena and Luque, 2016

Pm. minimum
Pa.
chlamydospora

December to
March

1996 to
1999

Field
0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105,
112, 119, 126, 133

France Larignon and Dubos, 2000

E. lata
December to
February

1991to
1994

Field 0, 7, 14, 21, 28, 35, 42, 49 France Chapuis et al., 1998

E. lata
November to
March

1989 to
1991

Field 1, 7, 14, 20 and 28 California Munkvold and Marois, 1995

N. luteum
N. parvum

February 2014 Pots 0, 7, 14, 28, 42, 56,70 New Zealand Shafi, 2016

E. lata
December to
March

1978
1979

Field 0, 7, 14, 21 California Petzoldt et al., 1981

E. lata
Pa.
chlamydospora
N. australe

July and August
2004
2005

Field 0, 1, 2, 3, 7, 10, 14, 17,21 South Africa Van Niekerk et al., 2011

E. lata
D. seriata
N. luteum

June to August
2013 to
2015

Field 1, 7, 14, 28, 42, 56, 84, 112 Australia Ayres et al., 2016

E. lata August
2000 to
2002

Field 0, 1, 14 Australia Sosnowski et al., 2008

E. lata February 1977 Field 0, 8, 14, 22 California Moller and Kasimatis, 1980

N. luteum
October-
December

2008 Pots 0, 1, 2, 7, 14, 30 New Zealand
Amponsah, 2010; Amponsah
et al., 2014

L. theobromae
E. lata
P. minimum
Pa.
chlamydospora

December
2008-
2009

Field 0, 7, 14, 21 California Herche, 2009

E. lata
N. luteum

July
2013 to
2015

Field 1, 6, 14 Australia Ayres et al., 2022
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Supplementary Material S2), with the exception of N. luteum (a =

0.083; P = 0.019). The latter species was also different from the two

main species involved in the Esca complex, Pa. chlamydospora and

Pm. minimum (a = 0.016 for both species; P = 0.001 and 0.002,

respectively), and from D. seriata (a = 0.011; P< 0.001), which is part

of the same GTD (i.e., Botryosphaeria dieback).

Wounds were susceptible for a shorter period for Shiraz,

Grenache, Pinot noir, and Merlot (in decreasing order, with a

ranging from 0.095 to 0.040) than for Cabernet Sauvignon,

Chardonnay, Chenin Blanc, Tempranillo, and Thompson seedless

(in decreasing order, with a ranging from 0.026 to 0.022); the pairwise

comparisons between varieties in the first and second of these groups

were in most cases significant groups (Table 2 and Supplementary

Material S2). Sauvignon Blanc had the longest period of wound

susceptibility (a = 0.010), and was different from the first group of

varieties but not from the second. No significant differences were

found for the pruning period within each variety (P > 0.593), with the

exception of Thompson Seedless, in which the susceptibility of

pruning wound declined slower with late pruning (a = 0.019) than

with early or mid-pruning (a = 0.036 and 0.060, respectively; P =

0.001) (Table 3 and Supplementary Material S2). Nevertheless,

differences were detected between varieties within the same pruning

seasons. Wounds of Sauvignon Blanc pruned in mid-season (a = 0.01)
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were susceptible for a longer time than wounds of Cabernet

Sauvignon (a = 0.028; P = 0.02) or Thomson seedless (a = 0.06; P<

0.001) pruned in the same season. Differences among varieties were

not significant with late-season pruning (Supplementary Material S2).

No data were available for early-pruned Sauvignon Blanc.

Differences were also found for some varieties or pruning seasons

among GTDs. For Cabernet Sauvignon, the decrease in wound

susceptibility over time after pruning was faster for Eutypa dieback

(a = 0.060) than for Botryosphaeria dieback or the Esca complex (a =

0.022 and 0.026, respectively; P< 0.001) (Table 4 and Supplementary

Material S2). Similarly, decline in wound susceptibility for Thompson

seedless was faster for Eutypa dieback (a = 0.057) than for Esca

complex (a = 0.011; P< 0.001) (no data available for Botryosphaeria

dieback). For Chardonnay, on the contrary, the decline in wound

susceptibility was faster for the Esca complex (a = 0.073) than for

Botryosphaeria dieback (a = 0.023; P = 0.003) (Supplementary

Material S2). Among the GTDs, the decline in wound susceptibility

was faster for Botryosphaeria dieback with late-season pruning (a =

0.024) than with mid-season pruning (a = 0.01; P = 0.002) (Table 5

and Supplementary Material S2).

When the estimates of a for main factors and interactions were

compared with the estimate of a for the whole dataset (a = 0.019),

significant differences were found as indicated in Tables 2–5.
FIGURE 2

Susceptibility of the pruning wounds at the time of pruning (t0) (expressed as the % of the wounds that became infected after being artificially inoculated
with fungi associated with grape trunk diseases [GTDs] for the whole dataset (the white box), and for subsets of data concerning pruning periods (the
dark-grey boxes) and GTDs (the light-grey boxes). The values in brackets indicate the number of observations available for each subset. Whiskers indicate
the lowest and highest values (excluding outliers, represented by black dots); 25% of the data fall below the lower quartile value, and 75% of the data fall
below the upper quartile value. The median marks the mid-point of the data and is shown by the line that divides the box into two parts.
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4 Discussion

Since the 1970s, researchers have investigated the susceptibility of

pruning wounds to GTD fungi as a function of DAP (number of days

after pruning when the wounds were inoculated) and other factors. It

is commonly accepted that the age of pruning wounds has a

considerable effect on the susceptibility of wounds to GTD fungi,

i.e., wound susceptibility decreases as the time increases between

pruning and inoculation. The decline in susceptibility over time has

been related to changes in environmental conditions affecting

biological and physiological wound responses (Petzoldt et al., 1981;

Eskalen et al., 2007; Úrbez-Torres and Gubler, 2011; Ayres et al.,

2016). Many other factors affect wound susceptibility to infection,

including grapevine variety, the pathogen that has been inoculated,

pruning season, and other environmental conditions (Van Niekerk

et al., 2011). As a consequence, the available information on the

changes in wound susceptibility over time is inconsistent.

In this work, we conducted a quantitative analysis of the

published data in order to synthesise the available information

(Ferrer, 1998; Harrison, 2011; Ji et al., 2022). The studies analysed

in this work included a wide variety of data: several grape varieties

inoculated with different fungi, in different seasons, at different times

after pruning, and in different countries around the world (including
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both the Northern and Southern Hemispheres). This variability well

represents the complexity of the topic and highlights the need for

synthesis. Because the studies included in our analysis involved

artificial inoculation of wounds with fungi, disease incidence of

wounds was probably higher than would occur with natural

inoculation given that the inoculum dose is likely to be much

higher with artificial than with natural inoculation (Elena and

Luque, 2016). In support of this inference, pathogen recovery

following artificial inoculation was lower with 10 ascospores per

wound than with 100 or 1000 ascospores per wound (Elena et al.,

2015; Ayres et al., 2022). The effect of inoculum dose and inoculation

method used in different studies was not considered as a separate

factor in this analysis because of the considerable variability among

studies (see Supplementary Material S3 for information on the

inoculum of each study); therefore, possible effects of inoculum

dose and inoculation method on parameter a estimation was

not considered.

Our quantitative analysis showed a significant influence of the

considered influencing factors on the infection incidence of GTD

fungi inoculated at the time of pruning and on the rate of decline in

infection incidence over time. Changes in wound susceptibility to

fungal invasion after pruning followed a negative exponential

distribution, a probability distribution that describes the time
FIGURE 3

Susceptibility of the pruning wounds at the time of pruning (t0) (expressed as the % of the wounds that became infected after being artificially inoculated
with fungi associated with grape trunk diseases [GTDs] for the whole data set (the white box) and for subsets of data concerning grapevine varieties. The
values in brackets indicate the number of observations available for each subset. Whiskers indicate the lowest and highest values (excluding outliers,
represented by black dots); 25% of the data fall below the lower quartile value, and 75% of the data fall below the upper quartile value. The median marks
the mid-point of the data and is shown by the line that divides the box into two parts.
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between events in a Poisson process, i.e., a process in which events

occur continuously and independently at a constant average rate. In

our case, the events consisted of the number of times wounds became

infected over the total number of cases that wounds were inoculated

at different times after pruning (i.e., disease incidence), and the

constant average rate was the equation parameter a in equation [1].

We estimated a for the whole data set and for sub-sets referring to

specific influencing factors (e.g., pruning period, identity of the GTD,

etc.). In equation [1], a is related to the time required for the disease

incidence to halve, so that the higher the estimate of a, the shorter the

time required for disease incidence to decline from 1.0 to 0.5. To our

knowledge, this is the first time an equation was fit to experimental

data describing the temporal changes in wound susceptibility

after pruning.

Equation [1] fit the whole dataset with R2 = 0.74; based on this

equation, wounds remained susceptible to invasion by GTD fungi for

months after pruning, and< 50% of the wounds remained susceptible

at 6 weeks after pruning (Figure 4). We retrieved only one study in

which data were collected for more than 5 months after pruning

(Eskalen et al., 2007); in the latter study, no infection resulted from

inoculations of 5-month-old or older pruning wounds.

The fit of equation [1] showed that the different factors (i.e.,

GTDs, pruning periods, grape varieties), and their interactions had a
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significant effect on the estimates of parameter a, so that the different

curves showed a different pattern in the wound susceptibility over

time. Therefore, the data dispersion around the fit of equation [1] for

the whole dataset (Figure 4) was determined by specific factors that

our quantitative analysis was able to identify. These factors are

discussed in the following sections, as well as their possible

implications for the practical management of GTDs.

Some data dispersion around the fitted line, however, remained

unexplained by our quantitative analysis. Indeed, other factors may

influence wound infection by GTD fungi and contribute to the

imperfect fit of equation [1] to the observed data, which were not

considered in our study because of a lack of information in the

literature; they include the age of the wood that was pruned, the size of

the cut surface, the extent of wound healing, the trellis system, the

rootstock, plant vigor. Because most of the studies included in our

analysis were conducted in vineyards, natural colonisation of pruning

wounds by GTD fungi may have occurred in the period between two

artificial inoculations. It follows that the incidence of GTD in the

vineyard and weather conditions that may lead to infection and

expression of disease symptoms, may also be a source of variability

in the data that we used (Van Niekerk et al., 2011). Further studies

aimed at clarifying the effect of all the above sources of variability in

the response to fungal infection through pruning wounds should be
FIGURE 4

Proportion of pruning wounds that became infected as a function of DAP (number of days after pruning when the wounds were inoculated with fungi
associated with grape trunk diseases [GTDs]) for the whole dataset shown in Table 1. Dots are averages of the observed values for each day, and
whiskers represent the standard error. The full line shows the fit of the observed data with equation [1] (see text and Table 2), and the dashed lines show
the upper and lower intervals of the distribution (i.e., a ± standard error).
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carried out under controlled environmental conditions, in which the

factor of interest can be evaluated by maintaining the others constant.
4.1 Effect of the GTDs

Our analysis showed that, at the time of pruning, disease

incidence of wounds was higher for the fungi associated with

Botryosphaeria dieback than for those associated with Esca complex

or Eutypa dieback, which generally agrees with previous reports

(Rolshausen et al., 2010; Amponsah et al., 2014; Ayres et al., 2016).

In addition, pruning wounds remained susceptible to infection longer

when inoculated with Botryosphaeria dieback fungi or Esca fungi

than with Eutypa dieback fungi, except in the case of Neofusicoccum

luteum, for which wound susceptibility decreased faster than for other

Botryosphaeriaceae and E. lata. A shorter susceptibility of wounds to

E. lata infection than to infection by other GTDs was observed by
Frontiers in Plant Science 10
Ayres et al. (2016) and Herche (2006), but not by Elena and Luque

(2016), who observed a similar decrease in wound susceptibility for

Esca and Botryosphaeria dieback. Our result overall confirmed the

potential threat of Botryosphaeriaceae species once they have

established in a vineyard (Rolshausen et al., 2010) as well as the

increasing prevalence of these species among the GTDs (Guerin-

Dubrana et al., 2019).

An important limitation of our study is that no studies were found

for the basidiomycetes involved in the EC. A possible reason is that

these fungi have been isolated from infected vine trunks, but often

with an incomplete understanding of their role in the disease

aetiology (Surico et al., 2006; Bertsch et al., 2013; Gramaje et al.,

2018). With the advent of metagenomics, reports on basidiomycetes

are increasing (Del Frari et al., 2019; Bruez et al., 2020) as well as the

studies on their role in symptom development (Cholet et al., 2021;

Moretti et al., 2021; Pacetti et al., 2021); recently Brown et al. (2020)

suggested that basidiomycetes may not require infection by P.
TABLE 2 Parameters and statistics of goodness-of-fit for equation [1] (see text), which predicts pruning wound susceptibility as a function of time after
pruning when wounds were inoculated, for the whole dataset obtained from the studies in Table 1, and for subsets of data concerning different categories
of the following main factors: pruning period, disease, species inoculated to wounds, and grape variety.

Datasets n
Parameter estimate

P1
Goodness-of-fit

a SE R2 NSE W RMSE CRM CCC

Whole dataset 39 0.019 0.002 NA 0.736 0.682 0.925 0.158 -0.031 0.854

Early pruning 14 0.018 0.003 0.243 0.703 0.703 0.908 0.163 -0.010 0.825

Mid pruning 28 0.020 0.002 0.859 0.697 0.602 0.910 0.154 -0.020 0.827

Late pruning 32 0.021 0.003 0.999 0.50 0.417 0.844 0.23 -0.03 0.710

Esca complex 31 0.016 0.002 0.985 0.796 0.792 0.942 0.149 -0.024 0.890

Botryosphaeria dieback 30 0.015 0.002 0.995 0.666 0.587 0.900 0.157 -0.023 0.812

Eutypa dieback 17 0.049 0.006 <0.001 0.846 0.843 0.954 0.138 0.023 0.911

Phaeomoniella chlamydospora 31 0.016 0.001 0.999 0.835 0.832 0.955 0.130 -0.022 0.912

Phaeoacremonium minimum 26 0.016 0.002 0.999 0.670 0.666 0.896 0.183 -0.030 0.810

Diplodia seriata 19 0.011 0.001 0.633 0.616 0.552 0.885 0.152 -0.028 0.783

Lasiodiplodia theobromae 12 0.020 0.004 0.752 0.588 0.543 0.875 0.191 -0.036 0.765

Neofusicoccum parvum 9 0.023 0.004 0.418 0.727 0.695 0.923 0.142 -0.007 0.852

Neofusicoccum luteum 12 0.083 0.008 0.003 0.983 0.981 0.995 0.055 0.019 0.990

Eutypa lata 17 0.049 0.006 <0.001 0.846 0.843 0.954 0.138 0.023 0.911

Cabernet Sauvignon 32 0.024 0.003 0.966 0.642 0.629 0.890 0.189 -0.011 0.798

Chardonnay 12 0.024 0.005 0.753 0.598 0.540 0.878 0.197 -0.019 0.773

Chenin Blanc 10 0.026 0.004 0.591 0.806 0.788 0.930 0.103 0.016 0.869

Grenache 8 0.091 0.018 0.016 0.917 0.898 0.976 0.096 0.019 0.954

Merlot 4 0.040 0.010 0.015 0.554 0.507 0.858 0.205 -0.004 0.744

Pinot noir 6 0.079 0.010 0.036 0.965 0.961 0.990 0.066 0.031 0.981

Sauvignon Blanc 6 0.010 0.001 0.651 0.641 0.587 0.895 0.132 -0.019 0.800

Shiraz 6 0.095 0.020 <0.001 0.919 0.912 0.977 0.101 0.085 0.955

Tempranillo 18 0.026 0.003 0.794 0.949 0.943 0.986 0.071 -0.014 0.973

Thompson seedless 13 0.022 0.008 0.999 0.474 0.398 0.836 0.276 -0.036 0.687
frontier
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TABLE 3 Parameters and statistics of goodness-of-fit for equation [1] (see text), which predicts pruning wound susceptibility as a function of time after
pruning when wounds were inoculated for subsets of the data in Table 1 that concern the interaction between pruning period and grape trunk disease.

Pruning period
Grape trunk disease n

Parameter estimate
P1

Goodness-of-fit

a SE R2 NSE W RMSE CRM CCC

Early pruning

Esca complex 6 0.020 0.003 0.785 0.930 0.929 0.981 0.079 0.071 0.963

Botryosphaeria dieback 13 0.019 0.004 0.336 0.606 0.603 0.871 0.206 -0.022 0.759

Eutypa dieback 5 0.036 0.007 0.084 0.908 0.852 0.950 0.112 0.039 0.905

Mid pruning

Esca complex 21 0.021 0.002 0.987 0.858 0.821 0.959 0.113 -0.012 0.921

Botryosphaeria dieback 25 0.010 0.002 0.527 0.388 0.365 0.771 0.216 -0.022 0.600

Eutypa dieback 11 0.057 0.008 <0.001 0.881 0.871 0.968 0.115 0.035 0.938

Late pruning

Esca complex 25 0.015 0.002 0.999 0.730 0.723 0.921 0.163 -0.028 0.851

Botryosphaeria dieback 23 0.024 0.003 0.469 0.767 0.728 0.933 0.148 0.012 0.873

Eutypa dieback 17 0.053 0.008 <0.001 0.843 0.828 0.945 0.162 0.008 0.894
F
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1P value for the difference between estimates of a for the subsets and the whole dataset.
TABLE 4 Parameters and statistics of goodness-of-fit for equation [1] (see text), which predicts pruning wound susceptibility as a function of time after
pruning when wounds were inoculated for subsets of the data that concern the interaction between grape variety and grape trunk disease.

Grape variety
Grape trunk disease n

Parameter estimate
P1

Goodness-of-fit

a SE R2 NSE W RMSE CRM CCC

Cabernet Sauvignon

Esca complex 27 0.026 0.005 0.995 0.540 0.519 0.848 0.231 -0.002 0.729

Botryosphaeria dieback 15 0.022 0.003 0.987 0.689 0.633 0.910 0.163 -0.021 0.828

Eutypa dieback 9 0.060 0.009 <0.001 0.904 0.901 0.975 0.109 -0.016 0.950

Chardonnay

Esca complex 4 0.073 0.022 <0.001 0.912 0.842 0.944 0.155 0.033 0.894

Botryosphaeria dieback 12 0.023 0.005 0.886 0.658 0.613 0.898 0.176 -0.020 0.810

Eutypa dieback 4 0.059 0.013 0.028 0.938 0.890 0.964 0.108 0.032 0.931

Chenin Blanc

Esca complex 9 0.024 0.006 <0.001 0.522 0.511 0.834 0.117 -0.012 0.706

Botryosphaeria dieback 9 0.021 0.004 0.999 0.738 0.723 0.904 0.085 0.015 0.826

Eutypa dieback 10 0.030 0.005 0.413 0.830 0.807 0.938 0.107 0.023 0.881

Sauvignon Blanc

Esca complex 18 0.010 0.001 0.903 0.805 0.793 0.946 0.098 -0.008 0.897

Botryosphaeria dieback 18 0.010 0.002 0.697 0.254 0.098 0.723 0.227 -0.045 0.497

Tempranillo

Esca complex 6 0.020 0.003 0.987 0.915 0.915 0.977 0.087 -0.015 0.955

Botryosphaeria dieback 6 0.035 0.004 0.580 0.960 0.949 0.988 0.069 0.010 0.976

Thompson seedless

Esca complex 7 0.011 0.003 0.987 0.862 0.820 0.937 0.170 0.002 0.882

Eutypa dieback 7 0.057 0.008 0.001 0.902 0.899 0.972 0.103 0.022 0.945
1P value for the difference between estimates of a for the subsets and the whole dataset.
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chlamydospora in order to extensively colonize the wood. Studies on

the susceptibility of pruning wounds to infection by basidiomycetes

are then needed.
4.2 Effect of pruning season

Reports on the effect of pruning season on the susceptibility of

pruning wounds to infection by GTD fungi are inconsistent. In

California, USA, for instance, Petzoldt et al. (1981) found that

pruning wounds made in December remained susceptible to

infection by E. lata for a longer time than pruning wounds made in

March. Similarly, Úrbez-Torres and Gubler (2011) showed that

wounds were susceptible to L. theobromae and N. parvum for a

longer time when pruning was done in early winter (with

susceptibility lasting up to 84 days) than in early spring (with

susceptibility lasting up to 12 days). Furthermore, Munkvold and

Marois (1995) found that the percentage of wounds infected

decreased faster with time when pruning was done in January or

March than in previous months. Studies conducted in Spain, in

contrast, documented a faster decrease in wound susceptibility when

pruning was done in autumn compared to late pruning, but only when

wounds were inoculated with D. seriata (Luque et al., 2014; Elena and

Luque, 2016). Some studies reported that fresh pruning wounds are

susceptible to infection regardless of the pruning season (Eskalen et al.,

2007), and that adjustment of pruning season is ineffective in
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controlling wood diseases (Serra et al., 2008). Based on the

differences among findings from experiments carried out under

different conditions, Van Niekerk et al. (2011) concluded that the

susceptibility of pruning wounds to infection may be less related to the

time of year when pruning is done than to other factors, such as the

disease investigated or more specifically the fungi implicated.

In our analysis, however, infection incidence for wounds

inoculated at the time of pruning was overall lower when vines

were pruned later in the season, and the reduction in the infection

incidence over time after pruning for fungi causing Botryosphaeria

dieback was faster when pruning was done in the late season than in

earlier pruning periods. Úrbez-Torres et al. (2010) found that there

was less spore dispersal by the Botryosphaeriaceae in the late dormant

season than in winter, and this may contribute to the result of a lower

incidence of wound infection with late versus early pruning.

We, therefore, confirm that the time of pruning is relevant for

reducing infection of susceptible varieties and by fungi causing

Botryosphaeria dieback, with late pruning being preferred, aware

that seasonal variation might occur between regions caused mainly by

climatic differences (Gramaje et al., 2018). Advantages of late pruning

have been associated with “vine bleeding” in early spring, which can

temporarily inhibit fungal penetration into the xylem vessels

(Larignon and Dubos, 2000; Serra et al., 2008; Martıńez-Diz et al.,

2020) and can flush away fungal spores from the wound surface

(Martıńez-Diz et al., 2020). In addition, the low temperatures of

winter may reduce the rate at which wounded tissues heal, increasing
FIGURE 5

Effect of pruning period on the relationship between the proportion of pruning wounds that became infected (Y axis) and the time after pruning (DAP)
when the wounds were artificially inoculated with GTD fungi (X axis). Early pruning period (EP - full line), mid pruning period (MP - dashed line), and late
pruning period (LP - dotted line). Lines were predicted by equation [1] (see text). The table shows the P values for the differences between the estimates
of parameter a in equation [1] (see Table 2 for estimates of a for pruning periods).
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the time that they remain susceptible to infection (Petzoldt et al.,

1981; Munkvold and Marois, 1995; Rolshausen et al., 2010). In

contrast to our overall results, our analysis indicated that wounds

of Thompson Seedless remained susceptible for a longer time when

pruned later than earlier in the season (mid-season pruning), and this

deserves further study.
4.3 Effect of the grape variety

In our quantitative analysis, differences were found among grape

varieties for infection incidence of wounds inoculated at pruning (t0)

and after pruning. For the t0 data, however, data variability and

unbalanced replications caused some under-dispersion in the GLM

model (Sellers and Morris, 2017). Additional data are needed to

determine whether the degree to which the probability of a pruning

wound becoming infected is influenced by grape variety, and to

which extent.

Our analysis showed that pruning wounds remained susceptible

to GTDs for a longer time on Sauvignon Blanc than on other varieties.

Sauvignon Blanc was previously reported to be especially susceptible

to GTDs (Borgo et al., 2008; Bertsch et al., 2013; Murolo and

Romanazzi, 2014; Sosnowski et al., 2022). Similarly, wounds of

Cabernet Sauvignon remained susceptible to infection for a longer

time than wounds of other red varieties, such as Grenache, Pinot noir,
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Merlot, or Shiraz. Differences in the susceptibility of grapevines to

GTDs may be related to a variety of factors such as differences in

sensitivity to fungal toxins, the rate of toxin degradation in wood

tissue, and the time required for recognition of the fungal invasion

and consequent activation of defense mechanisms (Wagschal et al.,

2008), which involve stilbenes, other polyphenols, and proteins

involved in primary metabolism (Borgo et al., 2016; Fontaine et al.,

2016a; Fontaine et al., 2016b). Xylem morphology, and especially

xylem vessel size may also contribute to differences in susceptibility

among varieties (Pouzoulet et al., 2014; Fischer and Peighami

Ashnaei, 2019; Claverie et al., 2020). It is also important to notice

that a higher number of data was available for Cabernet Sauvignon

than for Grenache, Pinot noir, Merlot and Shiraz so that our

estimation of parameter a would be more accurate for Cabernet

Sauvignon than for other varieties. Additional work is then needed to

add robustness to our interpretations.
5 Limitations

Following the general objectives of systematic literature search and

quantitative analysis of literature data, our work makes a synthesis of

published information and projects some relevant aspects that need

further research. The number of studies we found and used is limited

and most of them did not include complete information on the
frontiersin.org
FIGURE 6

Effect of GTDs on the relationship between the proportion of pruning wounds that became infected (Y axis) and the time after pruning (DAP) when the
wounds were artificially inoculated with GTD fungi (X axis). Esca complex (EC - dotted line), Botryosphaeria dieback (BD - dashed line), and Eutypa
dieback (ED - full line). Lines were predicted by equation [1] (see text). The table shows the P values for the differences between estimates of parameter a
of equation [1] (see Table 2 for estimates of a for the GTDs).
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experimental variability, thus not permitting the calculation of the effect

sizes and the execution of a formal meta-analysis. Unfortunately, this

limitation has been frequently faced by other authors (Koricheva and

Gurevitch, 2014; Nakagawa et al., 2017). Meta-analysis is used to

combine common effect sizes across studies and accounts for

statistical non-independence, which occurs when data points (or

effect sizes) are related to each other (for example when multiple

points or effect sizes come from a single study). Failing to account for

non-independence is generally considered a limitation that can lead to a

loss of information or erroneous conclusions (Nakagawa et al., 2017).

Even though the execution of a formal meta-analysis would lead to

more robust conclusions about the susceptibility of pruning wounds to

infection by GTD fungi, our manuscript represents a useful assessment

of the information published so far.
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Our work also suffers from the incomplete knowledge about

GTDs we discussed before. Systematic literature review, however,

does not have the ambition of elucidating all the aspects related to a

topic, but it is useful for identifying knowledge gaps and orientating

further research. Complex interactions between cultivar,

biogeography, wood healing, the wood fungal pathobiome, pruning

time, and environmental conditions, need further investigations.

Furthermore, our work does not claim that pruning wounds are

the sole or most important infection pathway for GTD fungi. Other

wood injuries caused by frost, hail, and mechanical harvesting can

also act as points of entry. Soil is also considered a possible reservoir

of inoculum, and roots an entry point for Phaeoacremonium spp., Pa.

chlamydospore (Whiteman et al., 2002; Whiteman et al., 2005; Agustì-

Brisach et al., 2013), and D. seriata (Whitelaw-Weckert et al., 2006;
TABLE 5 Parameters and statistics of goodness-of-fit for equation [1] (see text), which predicts pruning wound susceptibility as a function of time after
pruning when wounds were inoculated for subsets of the data that concern the interaction between grape variety and pruning period.

Grape variety
Pruning period n

Parameter estimate
P1

Goodness-of-fit

a SE R2 NSE W RMSE CRM CCC

Cabernet Sauvignon

Early pruning 8 0.011 0.004 0.999 0.732 0.620 0.832 0.228 0.059 0.710

Mid pruning 27 0.028 0.002 0.564 0.843 0.834 0.958 0.117 0.002 0.918

Late pruning 24 0.036 0.008 0.999 0.396 0.332 0.783 0.277 0.064 0.623

Chardonnay

Early pruning 8 0.017 0.002 0.999 0.940 0.929 0.979 0.077 0.007 0.959

Mid pruning 12 0.021 0.005 0.999 0.530 0.491 0.851 0.214 -0.026 0.725

Late pruning 4 0.056 0.003 0.234 0.996 0.994 0.999 0.024 0.016 0.997

Chenin Blanc

Mid pruning 5 0.033 0.009 0.936 0.624 0.609 0.888 0.144 -0.020 0.784

Late pruning 10 0.028 0.006 0.792 0.732 0.703 0.891 0.178 0.022 0.801

Merlot

Mid pruning 8 0.048 0.015 0.144 0.445 0.237 0.818 0.230 0.019 0.662

Late pruning 7 0.034 0.033 <0.001 0.284 0.234 0.464 0.715 0.053 0.302

Sauvignon Blanc

Mid pruning 18 0.010 0.001 0.932 0.439 0.307 0.820 0.172 -0.040 0.659

Late pruning 14 0.012 0.001 0.999 0.911 0.911 0.976 0.066 0.005 0.953

Shiraz

Mid pruning 6 0.145 0.036 <0.001 0.914 0.903 0.973 0.108 0.121 0.947

Late pruning 6 0.079 0.023 0.005 0.837 0.833 0.953 0.147 0.064 0.909

Tempranillo

Early pruning 6 0.028 0.005 0.966 0.905 0.898 0.975 0.098 -0.019 0.950

Late pruning 6 0.023 0.002 0.999 0.980 0.977 0.994 0.044 -0.010 0.989

Thompson seedless

Early pruning 5 0.036 0.007 0.745 0.908 0.852 0.950 0.112 0.039 0.905

Mid pruning 7 0.060 0.011 0.002 0.901 0.884 0.965 0.127 0.010 0.930

Late pruning 13 0.019 0.008 0.999 0.359 0.278 0.783 0.331 -0.084 0.589
frontier
1P value for the difference between estimates of a for the subsets and the whole dataset.
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Whitelaw-Weckert et al., 2013), but for other Botryosphaeriaceae has

not been observed (Amponsah et al., 2012a; Billones-Baaijens et al.,

2013b; Billones-Baaijens and Savocchia, 2019). Soil is also a source of

inoculum for black-foot pathogens (Halleen et al., 2006; Agustı-́

Brisach and Armengol, 2013; Agustì-Brisach et al., 2013; Agustı-́

Brisach et al., 2014) but as most GTD fungi utilize air-borne

inoculum, its role as a reservoir of inoculum needs to be further

investigated (Billones-Baaijens and Savocchia, 2019; Claverie

et al., 2020).
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S.r.l., and Dr Simona Giosuè, HORTA S.r.l., for their valuable

suggestions regarding statistical analysis. The authors also wish to

thank Dr Laura Mugnai, Professor at the University of Florence, for

critically reading the manuscript and Dr Serra Salvatorica, Professor

at the University of Sassari, for sharing the original data of her work.

Maria Chiara Rosace conducted this study as a part of her PhD

project, supported by the Doctoral School on the Agro-Food System

(Agrisystem) of Università Cattolica del Sacro Cuore (Italy).
Conflict of interest

Author Sara E. Legler is employed by HORTA. S.r.l.

The remaining authors declare that the research was conducted in

the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1063932/

full#supplementary-material
References
Agustı-́Brisach, C., and Armengol, J. (2013). Black-foot disease of grapevine: An update
on taxonomy, epidemiology andmanagement strategies. Phytopathol. Mediterr. 52, 245–261.

Agustì-Brisach, C., Gramaje, D., Garcìa-Jiménez, J., and Armengol, J. (2013). Detection
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