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Improving in-season wheat yield
prediction using remote sensing
and additional agronomic traits
as predictors
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José Miguel Soriano1, Joaquim Bellvert2,
Venkata Rami Reddy Yannam1, Davide Gulino1

and Marta S. Lopes1*

1Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA),
Lleida, Spain, 2Efficient Use of Water in Agriculture Program, Institute for Food and Agricultural
Research and Technology (IRTA), Lleida, Spain
The development of accurate grain yield (GY) multivariate models using

normalized difference vegetation index (NDVI) assessments obtained from

aerial vehicles and additional agronomic traits is a promising option to assist,

or even substitute, laborious agronomic in-field evaluations for wheat variety

trials. This study proposed improved GY prediction models for wheat

experimental trials. Calibration models were developed using all possible

combinations of aerial NDVI, plant height, phenology, and ear density from

experimental trials of three crop seasons. First, models were developed using 20,

50 and 100 plots in training sets and GY predictions were only moderately

improved by increasing the size of the training set. Then, the best models

predicting GY were defined in terms of the lowest Bayesian information

criterion (BIC) and the inclusion of days to heading, ear density or plant height

together with NDVI in most cases were better (lower BIC) than NDVI alone. This

was particularly evident when NDVI saturates (with yields above 8 t ha-1) with

models including NDVI and days to heading providing a 50% increase in the

prediction accuracy and a 10% decrease in the root mean square error. These

results showed an improvement of NDVI prediction models by the addition of

other agronomic traits. Moreover, NDVI and additional agronomic traits were

unreliable predictors of grain yield in wheat landraces and conventional yield

quantification methods must be used in this case. Saturation and

underestimation of productivity may be explained by differences in other yield

components that NDVI alone cannot detect (e.g. differences in grain size

and number).
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1 Introduction

Wheat yield progress has been achieved at more than 1% p. a. in

Europe and other parts of the world (Fischer et al., 2022; Lopes,

2022). Yield progress depends on direct experimental testing of

novel agronomic practices and improved germplasm. Moreover,

efficient research and innovation require modern, fast, accurate, and

cost-effective tools to identify the most productive and sustainable

wheat production strategies using large sets of experimental trials

(several thousand plots) that can be readily transferred and adopted

by producers as quickly as possible. For field evaluations, it is

prevalent to find applications of high-throughput methodologies

based on remote sensing; in particular, the use of unmanned aerial

vehicles has become a popular topic for supporting crop breeding

(Yang et al., 2017) owing to its high capacity for screening large

populations rapidly and the moderate costs in comparison to

traditional phenotyping procedures (Araus and Cairns, 2014).

Among all the indices used, the versatility and simplicity of the

normalized difference vegetation index (NDVI) across crop species

(Gao et al., 2020; Tenreiro et al., 2021) and the possibility of

measurement across a variety of platforms (Araus et al., 2021)

have prompted the widespread use of NDVI for phenotyping

purposes. However, even if a close relationship between grain

yield and vegetation indices has been demonstrated under a wide

range of growing conditions, these approximations are not

considered universal solutions, as some limitations have been

reported. Challenges are mainly attributed to the saturation effect

during dense canopy assessment (Duan et al., 2017). In contrast to

NDVI, LiDAR is not affected by saturation at high ground cover

and might be an alternative for biomass (Jimenez-Berni et al., 2018);

however, these models still have limitations in predicting grain

yield, and alternatives are necessary to increase the accuracy and

precision of vegetation indices.

Alternative models have been explored and reported in the

literature using plant height (PH) together with NDVI in

herbaceous crops, such as perennial ryegrass, to estimate biomass

(Gebremedhin et al., 2019). Other candidate traits, such as

phenology, may provide important information regarding how

wheat genotypes perform in a given environment (Lafitte et al.,

2003) and can assist in-season selection. The measurement of wheat

PH (Rebetzke and Richards, 2000) and phenology (Lopes et al.,

2018) helps in understanding the sensitivity of crop production to

fluctuating seasonal conditions, as the duration of developmental

phases is a key determinant of genetic adaptation to the

environment. Among the wheat yield components, ear density

per unit of ground area has been considered an important

agronomic trait (Pask et al., 2012) that can be easily measured

with image analysis (Fernandez-Gallego et al., 2018) and may

improve the accuracy of yield prediction models. The

development of new grain yield (GY) prediction models,

including NDVI together with additional easy-to-measure

agronomic traits, has the potential to address the NDVI

saturation issues described, and eventually improve yield

predictions. To explore this hypothesis, two case studies were

used and carefully selected to demonstrate and investigate the
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mechanisms associated with NDVI saturation. The first case

study consisted of a set of data obtained from landraces and

modern varieties, whereas the second case study was

characterized by trials under various agronomic testing conditions

and a wide range of GY variation. For these two case studies,

calibration curves or training sets were developed using various

model combinations of GY, NDVI, and other easy-to-measure

traits, including phenology, PH, and ear density (EARS), using a

reduced number of plots. These calibrations were then used to

predict the yield of the remaining plots (validation sets) and the

correlations between the predicted and observed yields obtained for

the various sets to select the best and most universal model.
2 Materials and methods

2.1 Site description, plant material, and
experimental design

2.1.1 Case study 1
Field experiments were conducted at an experimental station in

Gimenells, Lleida, Spain 41°38′N, 00°22′E, 260 m a.s.l) in 2017 and

2018 under rainfed conditions. The environmental conditions of

the study area are characterized by a temperate semi-arid climate

with cool, wet winters, and dry and hot spring to summer seasons.

The average annual precipitation is approximately 370 mm. The

month with the lowest precipitation on average is July, with an

average of 12.7 mm. The trials were sown on 21/11/2016 and 15/11/

2017. In 2017 trial, after soil analysis, N, P and K were applied (pre-

planting) to reach 50 kg of N/ha, 98 kg P/ha and 108 kg K/ha in the

form of Calcium nitrate (NAC 27%), KCl and Ca(H2PO4)2. At

tillering, 150 kg N/ha in the form of Calcium nitrate (NAC 27%)

were additionally applied. In 2018 trial, N content in the soil was

more than 200 kg/ha and only P and K were applied at the same

rates used in 2017. The experiments followed a non-replicated

augmented design with two replicated checks (‘Anza’ and

‘Soissons’) and plots of 3.6 m2 (1.2 m wide and 3 m long) with

eight rows spaced 0.15 m apart. The seed rate was adjusted to 250

seeds per m2 and the plots were kept free of weeds and diseases. The

germplasm assessed in Case Study 1 comprised 365 bread wheat

(Triticum aestivum L.) genotypes from a diverse panel of landraces

and modern wheat varieties (Rufo et al., 2019). This dataset

obtained from landraces was of particular interest in this study to

determine the limitations and challenges in predicting yield using

the NDVI; Wheat landraces have high biomass (similar or even

higher than that of modern wheat varieties), and consequently, high

NDVI; however, this type of plant material has low GY and low

harvest index, creating a bias towards yield predictions when using

NDVI and additional agronomic traits (see Supplementary

Figure 1). The GY ranges for each germplasm and the growing

season are listed in Table 1.
2.1.2 Case study 2
Field experiments were conducted at the experimental stations

in Sucs, Lleida, Spain (41°38′N 00°22′E, 260 m a.s.l) in 2021, which
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is very close to the experimental station where Case Study 1 was

conducted. A set of seven wheat experimental trials (with a total of

300 plots) conducted under rainfed and well-irrigated conditions

with variable sowing dates and a diverse set of 39 modern wheat

varieties were used to determine yield predictions. In all trials, after

soil analysis, nitrogen contents in the soil were above 200 kg N/ha

with no additional N requirements for optimal crop growth.

Moreover, P and K were applied (pre-planting) to reach 98 kg P/

ha and 108 kg K/ha with the same formulations used in case study 1.

The experiments followed a replicated alpha-lattice design and plots

of 9.6 m2 with eight rows spaced 0.15 m apart. The seed rate was

adjusted to 250 seeds per m2, and the plots were kept free of weeds

and diseases, as appropriate. This dataset is characterized by a wide

range of GY variations retrieved from plots grown under various

agronomic test conditions and sets of germplasm (all containing

modern cultivated wheat varieties). This helped explore one of the

limiting factors to NDVI prediction ability due to saturation. The

GY ranges for each germplasm set and the growing season aspects

are listed in Table 1.
2.2 Data acquisition and processing

In 2017 and 2018, remote sensing image acquisition was

performed using a Parrot Sequoia multispectral camera onboard a

hexacopter unmanned aerial vehicle. The Parrot Sequoia (Parrot,

Paris, France) has a 1.2 mega-pixel sensor, yielding a resolution of

1280 × 960 pixels. The camera included four individual image

sensors with filters centered at wavelengths and full-width half-
Frontiers in Plant Science 03
maximum bandwidths (FWHM) of 550 ± 40 (green), 660 ± 40

(red), 735 ± 10 (red edge), and 790 ± 40 nm (near infrared). A

Micasense RedEdge-M multispectral camera (Micasense, Seattle,

Washington, USA) was used in 2021. This camera captured images

at five spectral bands located at wavelengths of 475 ± 20 nm (blue),

560 ± 20 nm (green), 668 ± 10 nm (red), 717 ± 10 nm (red edge),

and 840 ± 40 nm (near-infrared), and a field of view (FOV) of 47.2°.

Image acquisition for all years was performed coinciding with the

crop developmental stages of anthesis the 21/04/2017, 17/04/2018

and the 19/04/2021 (when more than 90% of the varieties reached

anthesis). All flights were conducted at ~12:00 h solar time and at

40–50 m above ground level (agl), capturing images ground

sampling distance of 50 m. The flight plan had an 80/60 frontal

and side overlap. During image acquisition, in situ measurements

were conducted for different targets to correct for atmospheric

contributions to the signal. Radiometric calibration of the

multispectral sensor was conducted using an external incident

light sensor that measured the irradiance levels of light at the

same bands as those of the camera. In addition to the radiometric

corrections made by the internal solar irradiance sensor, corrections

were conducted through in situ spectral measurements with black-

and-white ground calibration targets, bare soil, and wheat plots

using a JAZ-3 Ocean Optics STS VIS spectrometer (Ocean Optics,

Inc., Dunedin, FL) with a wavelength response from 350 to 800 nm

and an optical resolution of 0.3 to 10.0 nm. During spectral data

collection, spectrometer calibration measurements were recorded

with a reference panel (white color Spectralon™) and dark current

before and after taking readings from the radiometric calibration

targets. Geometric correction was conducted using ground control
TABLE 1 Grain yield (GY, t ha-1) means and standard deviation, number of plots, the minimum and maximum GY, and heritability (calculated only in
replicated trials, H2) evaluated for each germplasm set, group of varieties, and growing conditions.

Case Study Year Exp. Water treat-
ment Date of sowing Gen. N Mean GY Lowest GY Highest GY H2

1

2017 1 Rainfed 21/11/2016 354

Landrace,
170

5.10 ± 0.91 2.97 8.48

Modern, 184 9.48 ± 1.01 6.54 11.80

2018 1 Rainfed 15/11/2017 354

Landrace,
170

5.63 ± 0.82 3.65 8.99

Modern, 184 9.94 ± 0.98 6.93 12.40

2 2021

1 Rainfed 27/12/2020 10 30 5.33 ± 1.61 1.87 9.00 0.688

2 Irrigated 27/12/2020 10 30 8.87 ± 1.77 5.41 12.70 0.885

3 Rainfed 03/12/2020 10 30 7.86 ± 2.17 3.77 11.83 0.776

4 Irrigated 03/12/2020 10 30
10.32 ±
1.90

6.20 13.44 0.903

5 Irrigated 03/12/2020 22 66
11.87 ±
1.54

8.05 14.64 0.678

6 Irrigated 03/12/2020 22 66
10.55 ±
1.02

7.62 12.83 0.664

7 Rainfed 03/12/2020 16 96 4.14 ± 1.09 2.17 7.18 0.697
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points. The position of each ground control point was acquired

using a handheld global positioning system (Geo7x, Trimble

GeoExplorer series, Sunnyvale, CA). All images were mosaicked

using Agisoft Photoscan Professional version 1.6.2 (Agisoft LLC., St.

Petersburg, Russia) software and geometric and radiometric terrain

correction was performed using QGIS 3.4.15 (QGIS Development

Team, Gossau, Switzerland). The NDVI values from each plot were

calculated according to the equation shown below [1]:

NDVI =
(R790 − R660)
(R790 + R660)

½1�

The following agronomic traits were measured: phenology

(days to heading, DH), plant height (PH), ear density (EARS),

and GY (t ha−1). Days to heading was measured as the number of

days between sowing and the day when 50% of spikes emerged in a

plot (Zadoks Stage 59, Zadoks et al., 1974). Plant height was

measured near maturity in 10 main stems per plot from the

tillering node to the top of the spike, excluding the awns. The

EARS was measured by counting the number of ears in one linear

meter in the middle of each plot and calculating the number of ears

per unit area (1 m2). Plots were mechanically harvested at ripening,

and grain yield was calculated at 12% moisture.
2.3 Statistical analysis

Statistical analysis was performed using the open-source

software R and RStudio 1.0.44 (R Foundation for Statistical

Computing, Vienna, Austria), and all statistical analyses were
Frontiers in Plant Science 04
equally applied in case studies 1 and 2. The strength of the

relationships between the individual parameters DH, PH, EARS,

NDVI and GY was examined using the Pearson correlation test.

Broad sense heritability (H2) was estimated for each trait

individually in each environment (only for replicated trials) as:

H2 =
s 2
g

s 2
g + s 2

r

� �� �

where r=number of repetitions, s2=error variance and

s2g =genotypic variance.

A multivariate approach was used to develop yield predicting

models and procedures are illustrated in the flowchart shown in

Figure 1. Multivariate ridge regression was selected as a model-

tuning method to overcome multicollinearity among traits (Hoerl

and Kennard, 2000). More complex models as Artificial Neural

Networks were also considered, reporting very similar prediction

accuracies (data not shown). However, we decided to perform the

data analysis with Ridge Regression as is less likely to overfit the

data and it provides a direct interpretation of feature importance.

To perform the Ridge Regression, we used the functions from the

glmnet package (Friedman et al., 2010). First, the lambda value that

produces the lowest test mean squared error (MSE) was identified

by k-fold cross validation using k = 10 folds.
2.4 Calibration of the yield
prediction models

In order to find the best parameter combination, all possible 15

different models were developed to predict yield, including: (i)

NDVI, PH, DH and EARS, (ii) NDVI, PH and DH, (iii) NDVI,

PH and EARS, (iv) NDVI, DH and EARS, (v) NDVI and PH, (vi)

NDVI and DH, (vii) NDVI and EARS, (viii) PH, DH and EARS, (ix)

PH and DH, (x) PH and EARS, (xi) DH and EARS, (xii) NDVI,

(xiii) PH, (xiv) DH and (xv) EARS.

First, data was split into training data sets, used to build the

models, and validation data sets, not included in the training data

set to evaluate model accuracy. In Case Study 1, for each of the two

growing seasons evaluated, a total of 40 plots (20 landraces and 20

modern varieties) were randomly selected for the validation set. In

Case Study 2, the validation data sets were comprised by the

experimental conditions 2, 3 and 4 (Table 1); and the other two

were used as two independent validations set: the experimental

condition 1 (rainfed and late-planting) as low yielding plots and the

experimental condition 5 (irrigation and normal planting) as high

yielding plots (Table 1). For Case Study 1, multiple and simple

regression models were constructed using 50 randomly selected

plots from the training data sets, whereas for Case Study 2, models

were constructed using 20, 50 and 100 randomly selected plots from

the training data sets. For each model, 100 iterations were

performed and, in each iteration, random plots were used to

develop models. The best performing models were selected based

on the lowest Bayesian information criterion (BIC) in each

calibration subset. The best multiple regression model together

with the best simple NDVI regression was used to directly predict

yield of the validation data sets. The coefficients of determination
FIGURE 1

Flowchart of data acquisition and model elaboration. DH, days to
heading; PH, plant height; NDVI, normalized difference vegetation
index; EARS, ear density; UAV, unmanned aerial vehicle.
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(R2), equation parameters, and associated probabilities were

calculated for each yield multiple and simple regression models.
3 Results
3.1 Grain yield correlations with NDVI, PH,
DH, and EARS

To assess the correlation between NDVI and grain yield (GY),

Pearson correlation coefficients were calculated (Figure 2).

Significant correlations were reported across the complete set of

plots (R2 = 0.259, R2 = 0.239, and R2 = 0.795; p< 0.0001), for the

2017, 2018 and 2021 growing seasons, respectively. For Case Study

1, significant correlations were only reported for modern varieties

(R2 = 0.116, and R2 = 0.212; p< 0.0001) but not in landraces. For

Case Study 2, these correlations were also significant, however,

NDVI saturated and did not change when plots showed yields

above 8 t ha-1 (Figure 2C). When NDVI-GY correlation was tested

for the two groups (below and above 8 t ha-1), regressions using data

from plots with yields below 8 t ha-1 showed higher R2 (R2 = 0.548;

p< 0.0001) than regression obtained from plots with yields above 8 t

ha-1 (R2 = 0.152; p< 0.0001). To determine if yield prediction

models would improve with the inclusion of additional agronomic

traits when NDVI saturates, modelling and validations were

calculated in the two groups of plots separately (below and above

8 t ha-1).

Likewise, correlations between plant height (PH), phenology (DH),

and ear density (EARS) and grain yield (GY) were calculated (Figure 3).

Significant correlations were reported between DH–GY (R2 = 0.228, R2

= 0.261, and R2 = 0.356; p< 0.0001), and PH–GY (R2 = 0.719, R2 =
Frontiers in Plant Science 05
0.600, and R2 = 0.510; p< 0.0001) across the complete set of plots for

the 2017, 2018, and 2021 growing seasons, respectively. The correlation

between EARS and GY was also significant in 2017 (R2 = 0.055, p<

0.0001) and in 2021 (R2 = 0.49, p< 0.0001) (Figure 3).
3.2 Development and validation of simple
and multiple regression models to predict
grain yield

The objective of this step was to determine the minimum number

of plots required for accurate grain-yield predictions. Data from Case

Study 2 was used in this step and models were built within the groups

set in the Results section 3.1 of plots yielding over and below 8 t ha-1

(threshold yield for NDVI saturation). For the models developed using

plots with yields over 8 t ha-1, the best combination with the lowest

Bayesian information criterion (BIC) was NDVI+DH (Supplementary

Table 1). When models were trained using yields below 8 t ha-1, the

best model was the combination of NDVI+PH+DH+EARS when 20

data points were used as training sets and the combination of NDVI

+DH+EARS with the 50 data point training sets. In that case, R2 was

improved and the RMSE reduced as the training sets were increased

(Supplementary Table 1).
3.3 Development and validation of models
to predict grain yield in various wheat
genetic resources (landraces and modern
varieties): Case study 1

Prediction models using all possible trait combinations were

constructed with data from Case Study 1 within landraces, within
FIGURE 2

Linear relationships between grain yield (GY, t ha-1) with the normalized difference vegetation index (NDVI) measured at anthesis in Case Study 1
(A, 2017; B, 2018) and 2 (C, 2021). In case study 1 correlations were calculated separately in modern wheat varieties and landraces. In case study 2,
correlations were also calculated separately in plots with yields below and above 8 t ha-1. Coefficients of determination (R2) and associated
probabilities are shown. Dashed line represents the GY after which NDVI saturates. R2 within experimental conditions from case study 2 were 0.581
for Exp.1, 0.563 for Exp.2, 0.493 for Exp.3, 0.030 for Exp.4, 0.076 for Exp.5, 0.226 for Exp.6 and 0.549 for Exp.7.
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modern varieties and across the combination of both

(Supplementary table 2). Yield prediction models obtained from

modern varieties were significant, however in Landraces neither

multiple nor single regressions were significant (Supplementary

Table 2). The best yield prediction models obtained from modern

wheat varieties with the lowest BIC included NDVI+DH (R2 =0.24

and RMSE=0.86) in 2017 and NDVI in 2018 (R2 =0.20 and

RMSE=0.88). When GY predictions were modeled using both

landraces and modern varieties, best model with the lowest BIC

included single regression with PH (R2 =0.71) in 2017 and multiple
Frontiers in Plant Science 06
regression of NDVI+PH+EARS (R2 =0.69) in 2018, reporting the

highest model accuracies in terms of R2 but the highest RMSE

(RMSE=1.29 and RMSE=1.31, respectively).

Given the challenge of predicting landrace yields with the

proposed parameters (with non- significant regressions), only

models developed using modern varieties were validated. For the

validation, the best model with the lowest BIC (using 50 data

points) was selected and its accuracy to predict yield was

compared with the accuracy of the NDVI simple regression

(Figure 4), considered herein the benchmark model. For each
FIGURE 3

Linear relationships between grain yield (GY, t ha-1) and the number of days to heading (DH) (A, 2017; B, 2018; C, 2021), plant height (PH, cm)
(D, 2017; E, 2018; F, 2021), and ear density (EARS, ears m-2) (G, 2017; H, 2018; I, 2021). Coefficients of determination (R2) and associated
probabilities are shown.
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validation, one model from all the 100 runs calculated was selected

by sorting all the BIC values and selecting a model with the median

BIC. For both growing seasons, the addition of agronomic

parameters together with NDVI, to predict yield improved the

prediction accuracies in comparison to simple NDVI models

(Figures 4A, B).
3.4 Development and validation of models
to predict grain yield of wheat variety
testing trials with yield below and above 8
t ha-1: Case study 2

Following the same procedure as in Case Study 1, best

parameter combination was assessed to predict GY in the

validation sets while comparing its accuracy with simple NDVI

models (Figure 5). When plots with yields over 8 t ha-1 were

evaluated, the model combining NDVI with DH significantly

improved the yield prediction (R2 =0.595, p<0.05) compared to

the model using solely NDVI (R2 =0.150, ns). For the selection of

plots with yields under 8 t ha-1, even if the NDVI model reported a

significant yield prediction (R2 =0.536), the addition of DH and

EARS improved yield predictions to R2 =0.651 (Figure 5).
Frontiers in Plant Science 07
4 Discussion

4.1 Contributions of additional agronomic
traits to improve remote sensing-based
yield prediction models

Originally, NDVI was found to be an adequate indicator of

plant biomass, chlorophyll content and N content (Stone et al.,

1996; Babar et al., 2006; Tremblay et al., 2009; Hassan et al., 2019).

Moreover, dynamic monitoring of NDVI in wheat trials to predict

yield was later confirmed by direct correlations between NDVI and

yield particularly at anthesis (Duan et al., 2017; Goodwin et al.,

2018). Biomass, chlorophyll and Nitrogen content are physiological

components of yield, however, biomass partition to yield may vary

and higher biomass, chlorophyll and N may not result in higher

yields. Herein, two case studies were used to determine the accuracy

and reliability of the yield prediction ability of NDVI with

agronomic traits such as DH, PH, and EARS. Overall, in both

case studies, NDVI was, at least in plots with yields below 8 T ha-1

and using cultivated modern wheat varieties, an adequate predictor

of yield (with prediction accuracies of up to R2 =0.536; Figure 5B).

The addition of agronomic traits such as DH to NDVI, in multiple

regression models to predict yield improved prediction accuracies

by up to 75% in plots with yields above 8 T ha-1 as compared to

simple regression NDVI models. However, the accuracy obtained

from multiple regression models (NDVI+DH+EARS was the best

model with lowest BIC) to predict yields below 8 t ha-1 was 18%

higher than simple regression models using NDVI. These results,

support the hypothesis that the addition of simple to measure

additional agronomic traits to NDVI in yield prediction models

increased prediction acuracy. Moreover, phenology, i.e. (days to

heading, DH), plant height (PH), ear density (EARS) are agronomic

traits which all have the potential to be measured non-destructively

in high throughput using proximal and aerial sensing devices.

Potentially, in the future, yields will be accurately predicted using

functions that model contributions of these various traits reducing

harvest costs of breeding programs.
4.2 Mechanisms of NDVI saturation and
underestimation of productivity

The assumptions of a linear relationship between GY and NDVI

are not always fulfilled because of the reduced sensitivity of this

vegetation index to large biomass (Huete et al., 1985). One of the

most prominent and discussed limitations of remote-sensing-based

studies is the saturation found with dense canopies, which

underestimates productivity (Chen et al., 2006; Gu et al., 2013).

Herein, saturation at high NDVI values is clearly demonstrated in

case studies 1 and 2. In Case Study 1, yield in wheat landraces was

weakly correlated with NDVI and additional easy-to-measure

agronomic traits, such as DH, PH, and EARS. Moreover, yield

prediction models using these traits in landraces were never

adequate showing non-significant R2. Compared to semi-dwarf
B

A

FIGURE 4

Prediction accuracies (coefficients of determination, R2), root means
square root (RMSE) and probability of models developed with 50
data points from Case Study 1 using modern varieties in 2017 (A)
and 2018 (B). Predicted yield values were calculated in 20 plots not
used in the development of models (irrigated and optimal sowing
date). Dashed line indicates a 1:1 correlation.
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cultivars with a high harvest index, landraces show relatively high

biomass and high or similar NDVI (see Figures 2A, B), whereas

yields and harvest index are low (Jaradat, 2013; Lopes et al., 2015

and Supplementary Figure 1) resulting in poor correlation and

prediction ability. It has been previously reported that reductions in

plant height and biomass associated with the Rht-B1b (formerly

Rht1) and Rht-D1b (formerly Rht2) alleles in modern varieties

increased grain yield, spike dry matter, grains m−2 and harvest

index (Gale and Youssefian, 1985; Flintham et al., 1997) at the

expense of stem dry matter (Fischer, 1985). The mechanisms

underlying this trade-off are yet to be discovered, however, the

results observed by Fischer (1985) and Flintham et al. (1997)

support our observations that biomass in tall landraces (and high

NDVI) is increased at the expense of yield loss. As such, higher

biomass and NDVI in the landraces did not result in higher yields in

this set of germplasm. It is concluded that the yield of landraces

must be assessed directly and traditionally harvested and weighted

due to a lack of yield prediction accuracy from models developed

with NDVI and additional agronomic traits.

Further evidence of productivity saturation underestimation

was observed in Case Study 2, where NDVI and yield prediction

models were less robust, at yields above 8 t ha-1 and NDVI above

0.75. This can be explained by differences in grain yield components

in high-yielding plots, including grain number and size (Sukumaran
Frontiers in Plant Science 08
et al., 2018) which NDVI alone cannot detect. However, when DH

was included in the prediction models, the accuracies were

considerably improved (to R2 =0.595). These results highlight the

importance of developing new and more sensitive indices (Huete

et al., 2002; Gracia-Romero et al., 2019) to improve performance

predictions under high-yielding conditions together with the

inclusion of easy to measure additional agronomic traits in

prediction models.
4.3 Can NDVI measurements replace
machine-harvested and seed-weighted
yield determination in experimental wheat
field trials?

The development of accurate yield prediction models is of key

importance to facilitate the adoption of new wheat varieties and best

agronomic practices. If sufficiently solid algorithms with reduced

error in assessing GY are achieved, it might be possible to avoid the

harvest of the whole panel of experimental plots, reducing the costs

and efforts of the selection process. The actual replacement of labor-

intensive harvested yields determined by machine harvest and seed

weight in the field with yields predicted from NDVI and agronomic

trait based models would be particularly useful for multi-location

trials where seed recovery is not essential. Most countries worldwide

perform regional evaluations of value for cultivation and use testing,

and these networks would benefit from accurate yield

prediction models.

The methodology proposed in this study suggests using a

reduced number of wheat plots in experimental field trials to

calibrate an optimized model to predict the yield of the remaining

plots. A similar evaluation of the calibration and training size was

presented by Tehseen et al. (2021), who demonstrated the effect of

different population sizes of landraces in developing genome

prediction methods and assisting the selection of rust-resistant

wheat genotypes. Herein, the larger the training sets were, the

more robust the models were, however, mean accuracies were very

similar among the dataset sizes evaluated as the loss of predictive

accuracy was reasonably small when the number of replicates

sampled for the training set was reduced to 20 in comparison to

the sets with 100 plots. Thus, following a plot selection criterion

based on NDVI and additional agronomic traits, could help reduce

the number of field plots to be machine harvested for calibration of

the model. Moreover, to avoid NDVI saturation at high yielding

growth conditions, calibration models must be developed separately

according to data obtained from different treatments either with

optimal crop management or with yield limiting factors (e.g.

drought, heat or others) requiring separate model training.

To date, many studies have used different empirical models

developed using NDVI to successfully predict wheat GY. However,

most of the highest predictions are based on using accumulated

NDVI values across crop development stages and collecting data

across different years (as Aranguren et al. (2020) with R2 = 0.89 and

n = 204) or combining information from different study sites and

using satellite information (as Lopresti et al. (2015) with R2 = 0.56

and n = 90). In similar evaluations (data across a single growing
B

A

FIGURE 5

Prediction accuracies (coefficients of determination, R2), root means
square root (RMSE) and probability of models developed with 50
data points from Case Study 2 using plots with yields over and
below 8 t ha-1 (A, B), respectively. Predicted yield values were
calculated in 10 plots not used in the development of models
(rainfed and late sowing). Dashed line indicates a 1:1 correlation.
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season and from a unique experimental field) when GY differences

are evaluated among genotypes grown under irrigated (i.e., high-

yielding conditions), prediction accuracies are limited (as Naser

et al. (2020) r = 0.47 and n = 72). Given the reported improvements

achieved with the addition of DH, PH, and EARS to the models,

opportunities to find proxies capable of evaluating those parameters

directly from NDVI and high-throughput platforms will help to

better select varieties in a cost-effective manner.
5 Conclusions

The proposed models combining NDVI with additional

agronomic traits improved GY prediction of wheat varieties

compared to models using NDVI as the sole predictor. These

demonstrations will benefit the application of remote sensing in

breeding programs, thereby providing more confidence in the

selection of varieties using proxies. Remote sensing-based models

showed a high potential to discriminate between wheat genotypes

within a field, but only at GY lower than 8 t·ha-1, after which the GY

prediction models were less robust. Similarly, the accuracy was

reduced when landraces were assessed. Accuracy reduction was

associated with NDVI saturation owing to (i) high biomass and low

harvest index in landraces and (ii) under high yielding conditions

when wheat varieties share high biomass but differ in other yield

components (grain size and number). Therefore, using

conventional harvest is advisable when testing landraces and

adaptation to yield potential conditions (high yield with optimal

agronomic management), at least until novel or improved models

are available.
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