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The frame of corn harvester is prone to vibration bending and torsional

deformation due to the vibration caused by field road bumps and fluctuations.

It poses a serious challenge to the reliability of machinery. Therefore it is critical

to explore the vibration mechanism, and to identify the vibration states under

different working conditions. To address the above problem, a vibration state

identification method is proposed in this paper. An improved empirical mode

decomposition (EMD) algorithm was used to decrease noise for signals of high

noise and non-stationary vibration in the field. The support vector machine (SVM)

model was used for identification of frame vibration states under different

working conditions. The results showed that: (1) an improved EMD algorithm

could effectively reduce noise interference and restore the effective information

of the original signal. (2) based on improved EMD – SVM method identify the

vibration states of the frame with the accuracy of 99.21%. (3) The corn ears in

grain tank were not sensitive to low order vibration, but had an absorption effect

on high order vibration. The proposed method has the potential to be applied for

accurately identifying vibration state and improving frame safety.

KEYWORDS

reliability of harvester, frame vibration, decrease noise, low order vibration,
vibration frequency
1 Introduction

Vibration is the reciprocating motion of a mechanical or structural system near its

equilibrium position. It often brings many serious hazards in engineering, and is usually the

direct cause of mechanical and structural damage and failure. For example, due to

vibration, the machining accuracy of machine tools is reduced, maintenance costs are
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increased, electronic equipment cannot work properly, and vehicle

frames fail and fracture (Maia et al., 2003; Bin et al., 2018; Han et al.,

2020). In addition, according to statistics, about 42% of total gas

turbine failures have been caused because of vibration (Meher-

Homji, 1995). For corn harvesters frame, the vibration caused by

field road bumps and fluctuations leads to bending and torsional

deformation (Su et al., 2011), and it poses a severe challenge to the

reliability of the machine.

For vibration problems, a great deal of research has been done

by domestic and foreign scholars. Frequency response function

(FRF) is a common method and it represents the relationship

between input and output when excitation and response signal

are known (Cai and Hou, 2021). Particularly, FRF was

indispensable in the field of structural dynamics which studies the

characteristics of vibration systems (Allemang et al., 2022). By

establishing the dynamic differential equation of the cab, Li et al.

calculated the FRF and optimized the vibration isolation

performance (Li et al., 2013). Chen et al. solved the analytical

expression of the vibration response for the pedestrian bridge. The

research results showed that the dynamic response can be easily

calculated by using the simplified formula for the bridge structure

(Chen et al., 2018). However, the calculation of FRF needs to know

the input and output at the same time to establish the relationship

model of the structure.

For the case that only the output signal is known, the output-

only modal identification method is widely accepted in the field of

vibration. This method could directly identify modal parameters

from the structural response signals (Poulimenos and Fassois, 2009;

Nagarajaiah et al., 2014). Blind source separation (BSS) was a

powerful signal processing tool in the 1990s (Cardoso, 1998).

Compared with the parametric modeling method, the main

advantages of the BSS were simple technology, high

computational efficiency, nonparametric, and no prior

information of dynamic system (Yu, 2019; Naghsh et al., 2022).

The working mode analysis method based on vibration response

transmissivity has developed rapidly due to the unique dynamic

characteristics of vibration response transmissivity. Sun et al.

directly estimated the vibration mode of the structure by using

the characteristic that the response transfer ratio was independent

of the input at the system pole (Quin et al., 2017). However, only the

output mode identification method requires that the number of test

sensors should be more than the number of signal sources, and the

amplitude of the separated signal is unstable.

In addition to the above methods, the identification of structural

modal parameters by finite element software is also a universal

method in vibration research. Modal parameters are the function of

structural physical characteristics. Its modal parameters (vibration

mode, damping ratio and frequency) will also change when the

structure is damaged or the physical parameters (mass, stiffness and

damping) change. Bum et al. used first order analysis technology to

design a vehicle sub-frame and proposed an equivalent model of

vehicle sub-frame composed only of beam elements (Kim et al.,

2009). Shrinidhi et al. used ANSYS software to analyze the ladder

frame and extracted the first six non-zero natural frequencies and
Frontiers in Plant Science 02
their corresponding modes of vibration (Rao and Bhattu, 2019). In

the research of harvester vibration, Li et al. constructed the

parameterized models of the harvester chassis frame and the

header frame respectively, then optimized them (Li et al., 2013; Li

et al., 2014). Xu et al. analyzed the vibration of the engine, header

and vibrating sieve respectively, then revealed the influence of main

vibration source and feeding rate ( Li et al., 2014; Gao et al., 2017).

Yao et al. adopted the method of combining finite element analysis

with vibration to explore the corresponding relationship between

vibration dominant frequency and modal shape, and optimized the

header and frame to avoid the resonance dominant frequency (Yao

et al., 2015; Yao et al., 2017). Chen et al. established a 7-degrees of

freedom dynamic model of the harvester frame, and revealed the

law of modal shape and frequency for the frame (Chen et al., 2020).

However, the above method requires more meshes to obtain better

accuracy, and it leads to a large amount of calculation in the whole

analysis. On the other hand, the above researches focused on the

interpretation of mechanical structure model and ignored the

exploration of the key information contained in vibration signal.

Hence, this paper starts from the perspective of signals to study

frame vibration states of corn harvester and explore the vibration

mechanism. The absorption of vibration energy by corn ear is

different for every transportation condition when the grain tank is

full. On the micro level, it is reflected that corn ear may hinder a

certain order or several orders of the signal but is not sensitive to

other orders, making the original signal become the superposition

of the remaining order signals. On the macro level, the original

excitation signal is distorted, and it is different from the theoretical

calculation value. It will lead to abnormal vibration of the frame and

even resonance, which seriously affects the reliability of the

machine. The vibration signal will show the characteristics of

non-stationary and high noise caused by its many parts, complex

structure, and the influence of field road fluctuation and turbulence

for the corn harvester. The EMD has the advantages of adaptive

decomposition of noisy and non-stationary signals without

considering the basis function (Kedadouche et al., 2016). It can

realize the secondary filtering of signals and restore the information

of original vibration signals. Therefore, the EMD is used to process

signals in this paper. However, mode mixing occurs directly using

this method due to the lack of a complete theoretical basis for the

EMD algorithms, i.e. a separate intrinsic mode function(IMF) signal

may contain different time scales, affecting the synthesis of

subsequent signals and the extraction of features. So original

a lgor i thm need to be improved be fore us ing EMD

decomposition signals.

Deep learning is a special type of machine learning methods

capable of extracting the optimal input representation directly from

the raw data without user intervention [Dong et al., 2021]. It is

popular because of its strong learning ability and wide coverage.

However, deep learning needs to rely on a large number of sample

data in practical application. For field vibration testing, it involves a

variety of working conditions and machine models, which increases

the complexity of data. Once the external conditions change, data

needs to be collected again. Thus, the method of deep learning is not
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universal enough for the problems studied in this paper. On the

other hand, the model design of deep learning is very complex. If

the ready-made model is used, the final results will have a big

deviation, and the final results may not be explained (Xu et al.,

2020). On the contrary, SVM is a small sample learning method

with solid theoretical basis. In essence, it avoids the traditional

process from induction to deduction, and realizes efficient

“transition inference” from training samples to prediction

samples, which greatly simplifies the usual classification and

regression problems (Li et al., 2019). At the same time, SVM is

robust to the sample set, and the final result of its output is easy to

interpret. Therefore, this paper adopts SVM method to identify the

vibration states of the frame.

The main work of this research as follows:
Fron
(1) For the non-stationary and high noise characteristics of

field vibration signal, the improved EMD method could

effectively reduce noise interference and restore the effective

information of the original signal.

(2) The SVM model based on power spectrum entropy (PSE)

and standard deviation (SD) is established. Optimizing

model parameters, and results are compared and analyzed.
tiers in Plant Science 03
(3) The established model realizes the identification of frame

vibration states for corn harvester under different working

conditions.
2 Materials and methods

2.1 Experimental equipment

In this study, Yitong Manchu Autonomous County, Siping City,

Jilin Province, located in northeast China, was selected as test area.

The harvesting machine used was the self-propelled 4YZP-4Y

harvester jointly developed by Jilin University and Shandong

Juming Machinery Co., LTD., as shown in Figure 1A. MX1601

module of Hotingger Brüel & Kjær (HBK) and acceleration sensor

of PCB were used in the data acquisition system. The specific

parameters are shown in Table 1. Data test points were distributed

on the harvester frame, and the wiring diagram and schematic

diagram of the test instrument and equipment are shown in

Figures 1B, C, respectively. The working conditions of experiment

were that the engine runs at low speed, medium speed and high

speed respectively when the grain tank was full, as shown in Table 2.
B

C

A

FIGURE 1

Experimental machine and wiring diagram: (A) Experimental corn harvester; (B) Test system wiring diagram; (C) Test system schematic diagram.
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2.2 Proposed vibration noise
removal method

In this section, we first review the standard EMD algorithm, and

then introduce the calculation process of the proposed algorithm

in detail.

2.2.1 Standard EMD framework
The EMD performed signal decomposition according to the

time scale characteristics of the data itself without setting any basis

function in advance (Shen et al., 1998; Huang et al., 1998). It could

decompose a complex signal into a limited number of IMF

components, which contained local characteristic signals of

different time scales for the original signal. The EMD

decomposition method is based on the following assumptions:
Fron
(1) The signal has at least two extreme points, a maximum and

a minimum;

(2) The characteristic time scale is defined by the length of time

between two extreme points;

(3) If the signal data lacks extremum points but there are

deformation points, the extremum points can be obtained

by differentiating the data once or several times, and then

the decomposition results can be attained by integration.
The specific decomposition process of the EMD can be divided

into the following steps, as shown in Figure 2:

2.2.2 Proposed algorithm
The main limitation of the EMD was mode mixing (Dai et al.,

2019). The root cause of this phenomenon was the influence of

abnormal events in the signal, such as discontinuous signal,

pulse interference and noise. Based on the theory above, the

proposed EMD algorithm can be divided into the following

steps (*)
Step1. Applying equations (1) to (7) to obtain the Hilbert

marginal spectrum of the IMF1. Specifically, it can be described as:
tiers in Plant Science 04
(1) The original signal x(t) is decomposed by standard EMD to

obtain IMF1. Hilbert transformation is performed on the IMF1 to

obtain v(t), namely:

v(t) =
1
p

Z ∞

−∞

u(t)
t − t

dt , (1)

(2) Construct the analytic signal:

zi(t) = u(t) + jv(t) = ai(t)e
jji(t Þ; (2)

(*) If you need the source codes for this article, please contact the

author at zrq@jlu.edu.cn

(3) The amplitude and phase functions are obtained:

ai(t) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i (t) + v2i (t Þ;

q
(3)

ji(t) = arctan
vi(t)
ui(t)

, (4)

(4) The instantaneous frequency is further calculated as follows:

fi(t) =
1
2p

· wi(t) =
1
2p

·
dji(t)
dt

, (5)

(5) Continue to obtain Hilbert spectrum H(w,t):

H(w , t) = RPo
n

i=1
ai(t)e

j

Z
ji(t)

, (6)

(6) Hilbert marginal spectrum is obtained:

h(w) =
Z T

0
H(w , t)dt, (7)

In equation (6), RP represents the real part, T represents the total

length of the signal in equation (7).

Step2. The analytic signal y(t) is constructed by equation (8) to

(9). It can be described as:

(1)The average instantaneous frequency of the IMF1 can be

calculated by equation (8) according to the energy mean method

(Deering and Kaiser, 2005).
TABLE 2 Engine speed under different working conditions.

Working conditions S1 S2 S3

Engine speed 750r/min 1500r/min 2300r/min
fro
TABLE 1 Parameter values of the MX1601 module and acceleration sensor.

Device Parameter Value

MX1601 module

Bandwidth 3 kHz

Sampling rate 20 kS/s

Number of channels 16 channels

Linear error < 0.02% of full scale value

356A33 sensor
Sensitivity 1.02mv/(m/s2)

Measuring range 2-10000Hz
ntiersin.org
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f =
o
k

i
a1(i)f

2
1 (i)

o
k

i
a1(i)f1(i)

, (8)

Where a1(t) is the Hilbert envelope amplitude of the IMF1, f1(t) is

the instantaneous frequency of the IMF1.

(2)Solve the analytic signal y(t):

y(t) = a0 sin (2p ftfs), (9)

Where fs is the sampling rate of the signal; As a rule of thumb, a0 is

1.6 times the average amplitude of the signal component.

Step3. The analytic signal y(t) is mixed with the original signal x

(t) to obtain x1(t) and x2(t):

x1(t) = x(t) + y(t), (10)

x2(t) = x(t) − y(t), (11)

Step4. the EMD algorithm is used to decompose x1(t) and x2(t)

respectively, and the intrinsic modal functions L1(t) and L2(t) are

attained. The intrinsic modal function of x(t) is obtained as L(t).

L(t) =
L1(t) + L2(t)

2
, (12)
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2.3 Vibration states identification method

In statistics, the SD reflects the dispersion of a data set. In the time

domain vibration signal, it could reflect the change of signal energy

(Yao et al., 2010; Ji et al., 2018). The value of the SD will increase with

the advance of frame vibration amplitude. The PSE was a

dimensionless index, which could reflect the distribution of different

frequencies in the frequency band (Cao et al., 2015). When the

frequency component is widely distributed in the frequency band,

the uncertainty of the distribution is high, leading to the increase of the

PSE. On the contrary, when the frequency components are

concentrated in a certain frequency band, the uncertainty of

frequency distribution is low, resulting in the decrease of the PSE.

The SD is the root of the sum of the squares of the deviations.

The exact value can be calculated by the equation (13):

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
·o

n

i=1
(xi − x)2

s
, (13)

where �x = 1
n :o

n

i=1
xi, n is the length of the entire data x.

The PSE is the extension of Shannon entropy in the frequency

domain, which is related to the distribution of frequency

components. The calculation method of the PSE is as follows

(Shen et al., 1998; Cao et al., 2015):
FIGURE 2

Standard EMD flow chart.
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Step1. The power spectrum of signal x(t) can be attained by

equation (14).

s(f ) =
1

2pN
X(w)j j2, (14)

where N is the length of the data x(t). X(w) denotes the Fourier

transform of x(t) by the fast Fourier transform (FFT).

Step2. According to equation (15), the probability density

function of the spectrum is estimated by normalizing all

frequency components:

pi =
s(fi)

o
N

k=1

s(fk)
, (15)

where s(fi) is the spectral energy of the i-th frequency component fi,

pi is the corresponding probability density, N is the total number of

frequency components in FFT.

Step3. The corresponding PSE is defined as:

H = −o
N

k=1

pi · log (pi), (16)

E =
H

logN
=

−o
N

k

pi · log (pi)

logN
, (17)

The PSE is a dimensionless index within the range of [0,1], where 1

represents the spectrum with relatively uniform and uncertain

frequency component distribution, and 0 represents the least

uncertain distribution.

The SVM was a kind of generalized linear classifier that

classified data by supervised learning (Cortes and Vapnik, 1995).

Its decision boundary was the maximum margin hyperplane to be

solved for learning samples, and classification was achieved by

establishing a mapping model between input feature vector and

output label vector. That was, after a sample input was given, the

estimated type of the corresponding output label under the

mapping relationship could be obtained. The SVM established a

model to convert the low-dimensional input x and output y into

inner product of high-dimensional space through kernel function,

as shown in Figure 3.
Frontiers in Plant Science 06
3 Experimental setup

The process of this study is introduced as follows. First, the original

signal was decomposed after filtering to obtain a series of intrinsic

mode functions (IMFs). Then, the relative energy ratio of each IMFwas

calculated, and several IMFs with high relative energy ratio were

selected to combine into a new signal. In order to reduce the

amount of calculation, the PSE and the SD were calculated for every

200 data, and 326*2 feature sets were obtained; Working conditions S1,

S2, and S3 were labeled as Label1, Label2, and Label3 respectively;

Secondly, a random function was used to scramble the ordinal matrix

to get a number sequence again to avoid overfitting; Next, 1 to 250 rows

were used as the training sets and 251 to the last rows were used as the

test sets; Finally, the SVM was used to establish frequency

recognition model.

For the SVMmodel, if the parameters c and g are too small, it may

be underlearned, and vice versa, it will be overlearned. All of these

situations will affect the accuracy of model training. Hence, finding

appropriate parameters is particularly critical to the learning ability of

the model. In this study, we used particle swarm optimization (PSO),

genetic algorithm and grid search to optimize both two parameters

respectively. The whole algorithm is summarized in Algorithm 1. The

identification flow diagram is shown in Figure 4.
Input:Original signal matrix AA, sampling

frequency fs, empty column vector y,

threshold ϵ.

1:IMF emd(AA)

2:Find the number of columns of IMF and label it

n

3:for 1 to n

4:x IMF(i),:

5:Solve (3) to obtain amplitude Am
6:A 1.6*mean(Am)

7:Obtain Li(t) by (9) to (12)

8:Calculate the relative energy ratio of each

Li(t), denoted as Ei
9: if Ei>ϵ then

10: y y+ Li(t)

11: end if

12:end for
FIGURE 3

Nonlinear SVM schematic diagram.
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Fron
13:Calculate PSE and SD of y using equations

(13) to (17)

14:Construct the eigenvector matrix, optimize

the SVM model

Output:Predicted and true value
ALGORITHM 1
Proposed algorithm.

4 Results and discussion

4.1 Signal decomposition and construction

After filtering, the decomposition of the original signal by

improved EMD algorithm would generate a series of intrinsic
tiers in Plant Science 07
modal functions and a residual signal, as shown in Figures 5, 6

(Take working condition S1 as an example).

According to Figures 5, 6, IMFs were arranged from high

frequency to low frequency. The vibration amplitudes of IMF3,

IMF4, and IMF5 were larger than that of other IMFs, which

indicated that the vibration of the original signal was mainly the

superposition of these three vibration components. On the other

hand, by observing the images of IMF3, IMF4, and IMF5, it could be

seen that the waveform showed regular periodic changes. Thus, it

could be inferred that the excitation of a single component in the

original signal also changed periodically. In addition, compared

with standard EMD, the improved EMD algorithm could not

completely eliminate mode mixing, but could reduce its

interference to a certain extent.
FIGURE 4

The flow chart in this study.
FIGURE 5

IMF1-IMF6.
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For the purpose of reconstructing the essential signals, IMFs

need to be selected for this work. IMFs with high relative energy

ratio contained most of information for original signal (Li et al.,

2007; Ji et al., 2018). Therefore, we calculated the relative energy

ratio of decomposed signals to extract valuable components, as
Frontiers in Plant Science 08
shown in Figure 7A. It could be seen that the relative energy ratios

of the IMF3, IMF4, and IMF5 were much higher than that of other

IMFs, which was consistent with the above analysis. Thus, IMF3,

IMF4, and IMF5 were selected to be reconstructed as new signals.

The new signal is shown in Figure 7B.
FIGURE 7

(A).Relative energy ratio of the first six IMFs under Condition S1 Condition S2 Condition S3,respectively. (B).New signal based on the relative energy
ratio.
FIGURE 6

IMF7-IMF12.
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4.2 Characteristic data analysis

In this section, we drew images of reconstructed signal, the SD,

and the PSE under working conditions S1, S2 and S3 respectively, as

shown in Figures 8, 9. In addition, in order to explain the change of

frequency components more directly, we also performed local

amplification and FFT on the original signal.

Figure 8B showed that the SD value of the signal was about 0.63

and the amplitude was relatively low. It could be indicated that the

vibration energy at the measured point was low in the working

condition S1. The FFT of the signal was shown in Figure 8C. It can

be seen that the frequency components of the signal were 24Hz,

48Hz, 72Hz, and 96Hz, and the main frequency were 24Hz and

48Hz, which are about 5-10 times larger than 72Hz and 96Hz. It

suggested that the vibration at the measured point was mainly

transmitted from the engine. The frequency component was the

ignition frequency of each order of the engine. In addition, it could

be seen that the signal fluctuated greatly from the morphological

characteristics of the signal in Figure 8E, which indicated that the

signal contained many components. Looking further at Figure 8D,

we can see that the PSE value of the signal was about 0.45.

It was obvious from Figure 9B that the SD value of signal in the

working condition S2 was about 2.51, and the vibration amplitude

increased by about 298% compared with working condition S1,

indicating that the vibration was more intense than S1. Then we

calculated FFT and the results are shown in Figure 9C. It can be seen

that vibration frequency components at the measurement point

were mainly 50Hz and 96Hz, and 50Hz was the main component,
Frontiers in Plant Science 09
and its peak value was about 4 times of 96Hz, which revealed that

the vibration was mainly the first-order combustion frequency of

the engine. In addition, a component of 5.9Hz could be seen in the

signal from the Figure 10C, showing that there was not only

excitation from the engine but also low-frequency excitation from

the road at the measurement point, which was consistent with the

research of Yao et al. (Yao et al., 2017). The PSE of the signal was

shown in Figure 9D. Compared with 0.45 of condition S1, the value

of the PSE decreased by 20% to 0.36, which was caused by the

reduction of frequency component. Accordingly, the signal curve

was smoother than S1, as shown in Figure 9E.

In working condition S3, it was clear from Figure 10B that the

SD value of the signal was 4.15. Compared with working conditions

S1 and S2, the amplitude increased by about 559% and 65%

respectively. This means that the vibration at the frame was more

severe than the first two working conditions and the signal

contained more energy. According to Figure 10C, the frequency

components of working condition S3 were mainly 36Hz and 73Hz,

and they were frequency doubling relationship. It shows that the

excitation source at the measurement point was still the engine. In

addition, since the frequency division of the engine was very close to

the second-order natural frequency (36.19Hz) (Yao et al., 2015), the

second-order resonance of the frame might have occurred. As the

frequency component in this condition was less than that in both S1

and S2, it can be seen from Figure 9D that the value of PSE

decreased to 0.21, about 53% and 42% lower than the first two

working conditions, respectively. The corresponding signal curve

was also smoother, as shown in Figure 9E.
FIGURE 8

In working condition S1, signal (A) time domain figure,(B) the SD,(C) the PSE,(D) the FFT,(E) local amplification figure.
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4.3 Comparative analysis of identification
results based on the SVM

From the analysis in Section 4.2, we known that the energy and

frequency components of the vibration signal were different when

the frame was under the three working conditions. It was directly

reflected in the changes of the value of SD and the PSE. Its

coordinated distribution is shown in Figure 11. As can be seen

from Figure 11, the vibration energy of the frame was low and the

frequency distribution was wide when the harvester was in working

condition S1. The combination coordinate points of characteristic

values were densely distributed in the lower right corner of the

coordinate graph. The frequency component of the frame decreased

and the vibration energy increased when the harvester was in

working condition S2, which made the combined coordinate

points of characteristic values distributed in the middle of the

coordinate graph. The frequency component was further reduced,

and the vibration energy was further increased when the harvester

was in working condition S3. It caused the combined coordinate

points of the feature values to be distributed in the upper left corner

of the coordinate graph. Hence, the combination of the two

characteristic values could effectively distinguish the vibration

states changes in different working conditions.

Based on the above analysis, the SVM models based on the SD

and the PSE were established. For illustrating the influence of the

SVM model with different parameters on the recognition accuracy,

we used particle swarm optimization algorithm, genetic algorithm,
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and grid search method to optimize the SVM model respectively.

The optimal parameters and accuracy of different algorithms were

shown in Table 3. As can be seen from Table 3, the test accuracy was

99.21%, 98.68%, and 97.37%, respectively, when three different

algorithms were used to optimize parameters. Therefore, the

accuracy of particle swarm optimization algorithm was the

highest. The value of penalty parameter c was 1, and the value of

kernel function parameter g was 0.1.
4.4 Discussion on generalisation
capabilities

In order to illustrate the generalisation capabilities of the

algorithm proposed in this paper, this section describes the

applicability of the algorithm from different optimization

methods, different machines and different crops.

4.4.1 Generalisation of different
optimization methods

When using particle swarm optimization algorithm, genetic

algorithm and grid search method to optimize the SVM model, the

actual and predicted data obtained were shown in Figures 12A–C.

As shown in Figure 12A, two samples were wrongly classified

when particle swarm optimization algorithm was used to search for

optimal parameters. One S3 sample was wrongly classified as S2 and

the other S2 sample was classified as S3. The reason for this
FIGURE 9

In working condition S2, signal (A) time domain figure, (B) the SD, (C) the PSE,(D) the FFT,(E) local amplification figure.
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phenomenon, on the one hand, the discrete optimization problem

was not handled well due to the characteristics of the PSO algorithm

(Bratton and Kennedy, 2007), resulting in local optimal. On the

other hand, no matter the frequency component or energy of the

vibration signal when the harvest was in working condition S2 and

S3, the difference of the characteristic values calculated was much

smaller than that in S1 (the PSE difference was 42%, the SD

difference was 65%), therefore it was easy to misidentify the

measurement points of S2 and S3.
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When genetic algorithm was applied to parameter optimization,

the S2 sample was incorrectly classified as S3, as shown in Figure 12B.

Compared with the PSO algorithm, the accuracy of genetic algorithm

was reduced. The main reason was that the length of the original

vibration signals was inconsistent, and it led to the different length of

the calculated characteristic values. Thus the accuracy of the PSO

algorithm was lower than that of the genetic algorithm.

As can be seen from Figure 12C, one S3 sample was inaccurately

classified as S2 and the other sample was classified as S3 when the grid

search method was applied. The reason for this phenomenon might be

that the penalty parameter c was too large when using the grid search

method, which led to the over-fitting phenomenon, and the points of

S2 and S3 were confused. In addition, the higher-order signal

components were very close when the harvester was in working

condition S2 and S3. It made the absorption of higher-order

vibration energy by corn ear tend to be consistent, resulting in a

small difference in the characteristic values of the two

working conditions.

4.4.2 Generalisation of different machines
We also used the self-propelled 4YZLP-2C harvester to carry out

the frame vibration test under the same working condition in this

paper. PSE and SD were calculated after the obtained data was

denoised, decomposed and reconstituted into a new signal, and then

the feature vector matrix was imported into SVM and optimized by

PSO. The recognition result was shown in Figure 12D. As shown in

Figure 12D, two samples were wrongly classified when the self-
FIGURE 11

Distribution of the SD and the PSE coordinates.
FIGURE 10

In working condition S3, signal (A) time domain figure, (B) the SD,(C) the PSE,(D) the FFT,(E) local amplification figure.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1065209
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2023.1065209
propelled 4YZLP-2C harvester was used for testing. One S3 sample was

wrongly classified as S2 and the other S2 sample was classified as S3.

The reasons for this phenomenon were similar to the test of self-

propelled 4YZP-4Y harvester. On the one hand, the characteristics of

PSO algorithm led to local optimality; On the other hand, the difference

of the feature values calculated in S2 and S3 working conditions was

much smaller than that in S1 working conditions, thus it was easy to

misidentify. Compared with the test of the self-propelled 4YZP-4Y

harvester, the accuracy at this time is reduced by 0.19% to 99.02%,

which indicates that the total error is within a reasonable range when

the same method is applied to different machines.

4.4.3 Application in rice and wheat harvester
The rice and wheat combine harvester is similar to the self-

propelled corn harvester in the main structure. It is composed of an

engine, a header, a frame, etc., and their field operation

environment is very similar, resulting in vibration bending and

torsional deformation of the frame. Thus, the vibration states
Frontiers in Plant Science 12
identification method proposed in this paper also has certain

applicability to the rice-wheat combine harvester.
4.5 Discussion

In this paper, the improved EMD algorithm combined with the

SVM was used to identify the vibration state changes of the frame

under different working conditions. For the corn harvester, the

measured vibration signal presented high noise and non-stationary

characteristics caused by the vibration of field road bumps and

fluctuations when walking in the field. If the characteristic values

were directly extracted for recognition, the accuracy would be

affected. Therefore, the EMD method was adopted to process the

signals first. However, due to the phenomenon of mode mixing in

the EMD algorithm, the original algorithm was improved to

enhance the accuracy of decomposition before signal processing.

Secondly, we decomposed the original vibration acceleration signal
B

C

D

A

FIGURE 12

Test actual and predicted classification of data sample sets: (A) Particle swarm optimization (accuracy=99.21%); (B) Genetic algorithm (accuracy=98.68%);
(C) Grid search (accuracy=97.37%); (D) Test the self-propelled 4YZLP-2C frame under the same working conditions (accuracy-99.02%).
TABLE 3 Optimal parameters and test accuracy by using different algorithms.

parameter optimization algorithm optimal parameter training accuracy test accuracy

particle swarm optimization
c=1
g=0.1

100% 99.21%

genetic algorithm
c=0.02
g=1.14

100% 98.68%

grid search
c=2.31
g=1.83

100% 97.37%
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to obtain a series of IMFs, and selected several groups of IMFs

according to the relative energy ratio to synthesize the new signal.

Compared with the original signal, the new signal at this time has

greatly reduced the interference of non-stationary and high-

frequency noise, therefore it can better reflect the original

vibration state of the harvester. Then we calculated the PSE and

SD values of the new signal, and obtained the energy variation and

frequency distribution of vibration under different working

conditions. According to the combination of energy change and

frequency distribution, we have analyzed the main excitation source

and the change of vibration order under each condition. Finally, the

feature vector matrix based on PSE and SD was constructed, and the

model parameters of SVM were optimized. Through comparative

analysis, the recognition accuracy of these three optimization

methods is 99.21%, 98.68% and 97.37%, respectively.

We could see that most of the signal information was contained in

the IMF3, IMF4, and IMF5 after the original signal was decomposed

when the machine was in the working condition S1. From these three

signal patterns we could see that the vibration form was regular

periodic vibration. As can be seen from frequency domain analysis,

the components in the signal were only low frequency excitations from

the engine, and the first and second order vibration was the main

component. The frequency components of each order were far away

from the natural frequency of the frame. In addition, the value of the

SD was very small compared with S2 and S3, thus the overall vibration

was relatively stable and the reliability was high. Most of the signal

information was contained in the IMF3 and IMF4 when the machine

was working condition S2, where the frequency components were

dominated by the engine first-order ignition frequency and the low

frequency excitation of the road. The main reason for this

phenomenon was that as the engine speed increased, so did its

higher frequency component, and it was easier to absorb by the ears

in the grain tank. Hence, it could be seen from the spectrum that the

frequency component of the higher order was much smaller than that

of the lower order. Most of the signal information was contained in the

IMF2 when the machine was in working condition S3. Similar to

working condition S1, the vibration form at the frame was regular

periodic vibration. With the increase of engine speed, the absorption of

energy by the corn ear did not change much. In addition, the frequency

division of the engine was very close to the second-order natural

frequency of the frame (Yao et al., 2015), so resonance might have

occurred in working condition S3. If the machine works in condition

S3 for a long time, its service life will be seriously reduced. Therefore, it

should be considered to change the transmission ratio or optimize the

structure of the frame to enhance the reliability of the machine.

Compared with the traditional analysis methods, the method

proposed in this paper does not require the placement of a large

number of sensors and complex numerical calculations, and only needs

to obtain response datas to build the recognition model, simple

operation, and high accuracy of the recognition of vibration states.

This paper provides a new research idea for the vibration analysis of

corn harvesters.
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5 Conclusions

This paper proposed a novel vibration states identification

method based on the improved emd and the SVM. Following

conclusions can be drawn from the results of proposed methods:
(1) The improved emd algorithm can effectively reduce noise

interference and restore the effective information of original

signal. IMFs generated by decomposition can better reflect

the change of the single component for the original

excitation signal.

(2) The corn ear in the grain tank can absorb the vibration of

the frame, and the absorption of vibration signal varies with

the order. It reflected that it is not sensitive to the lower

order signal components, but has a strong absorption effect

on the higher order signal components.

(3) The proposed method can accurately identify the vibration

states of the frame, and its accuracy can reach 99.21%.
However, there are still some limitations in this study: Firstly,

the improved EMD algorithm still has mode mixing, and it may

make IMFs lose its physical meaning and is not conducive to the

later signal reconstruction. Secondly, the purpose of this study was

to explore the vibration mechanism for the frame during the grain

tank of corn harvester was in full load state, so other working

conditions were not involved. Finally, compared with the traditional

finite element analysis method, this paper did not concern the

calculation of vibration mode and the damping ratio of structure.

Thus, we will use mask signal method to reduce mode aliasing as

much as possible in the future research. At the same time, the

diversity of working conditions should be increased. Finally, we will

consider identifying the parameters of the structure only from the

output vibration response signal.
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