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Rice is the staple food ofmore than half of the population of the world and India as

well. One of the major constraints in rice production is frequent occurrence of

pests and diseases and one of them is rice blast which often causes yield loss

varying from 10 to 30%. Conventional approaches for disease assessment are

time-consuming, expensive, and not real-time; alternately, sensor-based

approach is rapid, non-invasive and can be scaled up in large areas with

minimum time and effort. In the present study, hyperspectral remote sensing

for the characterization and severity assessment of rice blast disease was

exploited. Field experiments were conducted with 20 genotypes of rice having

sensitive and resistant cultivars grown under upland and lowland conditions at

Almora, Uttarakhand, India. The severity of the rice blast was graded from 0 to 9 in

accordance to International Rice Research Institute (IRRI). Spectral observations in

field were taken using a hand-held portable spectroradiometer in range of 350-

2500 nm followed by spectral discrimination of different disease severity levels

using Jeffires–Matusita (J-M) distance. Then, evaluation of 26 existing spectral

indices (r≥0.8) was done corresponding to blast severity levels and linear

regression prediction models were also developed. Further, the proposed ratio

blast index (RBI) and normalized difference blast index (NDBI) were developed

using all possible combinations of their correlations with severity level followed by

their quantification to identify the best indices. Thereafter, multivariate models like

support vector machine regression (SVM), partial least squares (PLS), random

forest (RF), and multivariate adaptive regression spline (MARS) were also used to

estimate blast severity. Jeffires–Matusita distance was separating almost all

severity levels having values >1.92 except levels 4 and 5. The 26 prediction

models were effective at predicting blast severity with R2 values from 0.48 to

0.85. The best developed spectral indices for rice blast were RBI (R1148, R1301)

and NDBI (R1148, R1301) with R2 of 0.85 and 0.86, respectively. Among
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multivariate models, SVM was the best model with calibration R2=0.99; validation

R2=0.94, RMSE=0.7, and RPD=4.10. The methodology developed paves way for

early detection and large-scale monitoring and mapping using satellite remote

sensors at farmers’ fields for developing better disease management options.
KEYWORDS

rice blast, hyperspectral remote sensing, JM distance, vegetation indices, ratio blast
index, normalized difference blast index, machine learning techniques, support vector
machine regression (SVM)
Introduction

As the population is booming, the demand for food will surge. It

is essential to raise crop efficiency to increase the food supply in

order to meet this enormous demand for food. Cereals are a reliable

source of staple food for people. Among them, rice is one of the

most common and widely cultivated all over the world, particularly

in Asia and Africa. However, diseases are the major biotic stresses to

rice that results in significant quality and yield losses (Skolik et al.,

2018; Yang et al., 2019). Among all the diseases that have an impact

on rice growth, rice blast has long been recognized as one of the

most devastating diseases because of its worldwide distribution and

the resulting severe yield loss (Zhang et al., 2003). The extent of

damage depends on several environmental factors, resulting in

losses of 10–30% of the global yield of rice. Therefore, disease

prevention and treatment are essential components for rice growth

and development.

Rice blast is caused by Pyricularia grisea (synonymous Pyricularia

oryzae Cav.; teleomorph Magnaporthe grisea). Pyricularia oryzae is the

most studied species in theMagnaporthales and was ranked first among

the top 10 fungal plant pathogens in the world based on the scientific

and economic significance of the disease it causes on rice (Dean et al.,

2012). It affects all plant developmental stages and causes symptoms on

the leaf, collar, neck, panicle, and even in the glumes. Leaf blast

symptoms often consist of long, diamond-shaped lesions with a

brown or reddish-brown edge and a grey or whitish center (Acharya

et al., 2019). Cool and rainy conditions, water stress in the nursery, and

excessive nitrogen field dressing all contribute to the disease’s growth.

The fungus thrives on rice straws, weeds, reeds, rushes, and cereals that

resemble millet. When rice seedlings are seeded, the fungus spreads its

spores and infects them (Shahriar et al., 2020).

Traditionally, specialists or seasoned farmers rely on visual and

manual skills to identify rice diseases. The development of molecular

biology and the associated techniques has also allowed for the accurate

detection of rice diseases, and these methods such as (enzyme-linked

immune sorbent assay (ELISA), polymerase chain reaction (PCR), etc.

are commonly accepted as “standard” or “reference” methods in the

domains they are related to (Feng et al., 2020). However, these

strategies also possess several drawbacks such as being time-

consuming, cost-ineffectiveness, etc. that limit their large-scale

acceptance as well as applications. Therefore, a non-destructive

detection system of blast disease could be effective to support the
02
judicious application of crop protection chemicals at an appropriate

place, and time at appropriate dosages and thereby can assist farmers

to control the cost of production which also pertains to sustainable

agri-input management. Recent advancements in optical sensor

technology may make it possible to detect foliar diseases directly in

the field (West et al., 2003). Additionally, because of its great spectral

resolution, hyperspectral technology has been increasingly popular in

recent years for crop pest and disease monitoring. It may detect

unseen signs representing the physiological status of plants at the early

stages of disease (Bongiovanni and Lowenberg-Deboer, 2004;

Haboudane, 2004; Inoue et al., 2012). In a study by Lin et al.

(2020), different reflectance-based vegetation indices were identified

for the assessment of rice sheath blight. Similarly, Yudarwati et al.

(2020) found the vegetation indices consist of blue, green, red, and red

edge bands normalized green red difference index (NGRDI),

normalized pigment chlorophyll ratio index (NPCI) and plant

senescence reflectance index (PSRI) exhibit higher predicting power

for BLB infestation. Liu et al. (2008) gathered rice reflectance spectra

in the laboratory and field conditions and used the reflectance ratio to

determine the severity of the brown rice spot disease. Moreover, for

the first time, Yang (2012) investigated the near-infrared

hyperspectral image to detect blast rice in N, Kipponbare at the

seedling stage.

Furthermore, the only way to obtain more comprehensive

information on crop disease is to look into the entire spectrum of

electromagnetic radiation in the optical range. Using the

hyperspectral data in a completer optical range has a problem

with high dimensionality and significant multi-collinearity in the

linked data (Vaiphasa et al., 2007; Sahoo et al., 2015). Hyperspectral

data-based multiple linear regression (MLR) models typically suffer

from multi-collinearity and are over-fitted since the number of

observations may be equal to or less than the predictors (Curran,

1989). Partial least square regression (PLSR) and MLR can

effectively restrain the problems of multi-collinearity and

overfitting (Cho et al., 2007). Ban et al. (2019) estimated the

apple scab disease severity and correlated it with the SPSD

chlorophyll reading with the help of multivariate modeling, PLSR.

Ahmed et al. (2019) have also studied different machine learning

algorithms including that of KNN (K-Nearest Neighbour), J48

(decision tree), naive bayes, and logistic regression, decision tree

algorithm for crop disease. Liang et al. (2019) investigated a deep

convolutional neural network for blast disease recognition. There
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are very few studies to investigate vegetation indices and machine

learning techniques for blast disease assessment and to the best of

our knowledge, there is no study where a comparison of various

multivariate models has been done for the assessment of disease

severity using a diverse set of rice genotypes.

In the present study, a total of 26 vegetation indices were

evaluated for the rice blast disease. Additionally, two indices (RBI,

NDBI) were also proposed for the assessment of rice blast severity.

The ratio blast index (RBI) and normalized difference blast index

(NDBI) were obtained after analyzing all possible combinations

between 350-2500nm and their correlations with blast severity

(Das et al., 2017). Moreover, rice blast severity was estimated from

the reflectance spectra using PLS along with multivariate adaptive

regression spline (MARS), support vector machine regression

(SVM), and random forest (RF). When the relationship between

the spectra and the qualities to be modeled is not linear, SVM,

MARS, and RF are more appropriate (Ding and Peng, 2012; Bao

et al., 2014). Therefore, to access the severity of leaf blasts in rice, a

non-destructive spectroscopy-based approach is being developed.

Briefly, the objectives of the present study were (i) to compare the

effectiveness of reported spectral indices and two proposed indices

for high throughput phenotyping of rice blast severity in

comparison to the conventional approaches, and (ii) to evaluate

the retrieval accuracy of severity assessment using four different

multivariate models.
Materials and methods

Experimental site

A field experiment was conducted in the year 2019, at Almora,

Uttarakhand, India (29.59°N latitude, 79.64°E longitude, and at an

altitude of 1245 m AMSL). The rice was grown under two

conditions, one in upland condition and another in lowland

condition, with 10 genotypes of rice each both blast sensitive and

blast resistant taking 3 replications each laid in a randomized block

design (Table 1). The meteorological data of the experimental site

indicated that daily mean temperature and mean relative humidity

during the growing season fluctuated from 20.25 to 26.0°C and 57.5

to 97.5%, respectively. The total rainfall received was 418.5 mm

during the growing season (Figure 1).
Cultivation condition and pathogen
inoculation

An isolate of rice blast M. oryzae Isolate 1637 was used in the

present study. The fungus was maintained through the study by

sub-culturing on Rice Straw Extract Agar (RSEA) medium for

sporulation and on Potato Dextrose Agar. Spore Suspension of

M. oryzae isolates 1637 with concentration 106 mL-1 prepared and

added with Tween 20. The suspension was sprayed with the help of

a hand sprayer over the seedlings. As the rice was grown with a total

of 20 genotypes of rice posing both blast sensitive and blast
Frontiers in Plant Science 03
resistant, so different level of blast severity has been developed

under the favorable condition of Almora, India.

The overall workflow of the present study has been depicted in

Figure 2 and the detailed methodology for each experiment has

been depicted in the following subheadings.
Scoring of blast severity

Its most prevalent and diagnostic symptom is diamond-shaped

lesions, which occurs on the leaves, while lesions on the sheaths are

very uncommon. Depending on the environment, the age of the

plant, and the level of resistance of the host cultivars, the symptoms

on leaves may change. On the leaves, tiny brown spots first appear,

then they develop into rhombic, elongated, and, occasionally,

several cm long patches. The spots have centers that are grayish-

white, but when they dry up, they turn straw-colored and form a

brownish border (Asibi et al., 2019). Older lesions frequently take

on a pale tan color with necrotic edges on cultivars that are

vulnerable. In the field, the disease severity level was estimated by

evaluating the percentage of the relevant host tissue or organ

covered by symptoms (or lesions) of the disease and the number

and size of lesions. In this study, the extent of disease severity was

evaluated based on the protocols given by the IRRI (International

Rice Research Institute) (1996) (Table 2).
Spectral reflectance measurement

Canopy reflectance of the field was measured for 10 (0-9 scale)

disease severity levels along with 10 different genotypes with help of

a hand-held ASD Field Spec spectroradiometer. It operates between

350 and 2500 nm, with sampling intervals of 1.4 nm between 350

and 1050 nm and 2 nm between 1000 and 2500 nm. After

resampling, the instrument supplied data with a 1 nm interval.

All analyses have relied on spectrum reflectance data with a
TABLE 1 Genotypes of rice grown under upland and lowland conditions.

Upland condition Lowland condition

Rice genotype Rice genotype

VL 32475 DH-94

DSN-119 DH-33

VL 32473 DH-47

DSN-140 Bala

BL-21 DH-34

BL-6 DH-32

DSN-120 DH-30

BL-12 DH-49

BL-10 DH-44

BL-18 DH-79
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bandwidth of 1 nm (Need reduced sampling for spectral index

development). The spectral measurement was made between the

hours of 11:00 a.m. and 1:00 p.m. on a sunny, clear day using the

spectroradiometer with a 25° field of view and placed 0.5 meters
Frontiers in Plant Science 04
height from the canopy and at the nadir position. The device was

optimized and reference reflectance was taken with a white

reference panel called spectralon before canopy reflectance

measurements. The average of the sample’s 30 spectral scans is
FIGURE 2

The overall workflow of the present study.
FIGURE 1

Daily weather condition during the rice growing season.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1067189
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mandal et al. 10.3389/fpls.2023.1067189
used to calculate each spectral measurement. We have collected 30

spectral signatures for all severity levels from both upland and

lowland conditions.
Data pre-processing

Prior to the data analysis, spectral data are frequently pre-

processed to increase the predictive power of multivariate

calibration models. This is because variation in the predictor

variables unrelated to the response variable may lower the

predictive power of the models. Pre-processing is intended to

lessen the impacts of random noise and enhance the signal-to-

noise ratio. The Savitzky-Golay filter, which employs a moving

polynomial fit of any order and whose size is determined as (2n+1)

points, where n is the half-width of the smoothing window, is the

most widely used filter in spectral data processing. The polynomial

fit interpolates the locations between the 2ns (Savitzky and

Golay, 1964).
Spectral derivative and red edge analysis

The mean reflectance’s first derivative was determined. Then,

under different levels of disease severity, red edge shifts and shapes

in the first derivative curve were examined. By fitting a second-

order polynomial equation to the red and infrared slope, the linear

interpolation technique was used to determine the amplitude (drre)

of the red peak for each infection level (Guyot et al., 1988). The red

edge parameters; drre, the amplitude of the red edge peak in the first

derivative reflectance curve, and ∑(dr 670-780), the area under the
Frontiers in Plant Science 05
red edge curve were used to characterize the spectrum under

various severity levels (Gazala et al., 2013).
Data processing for spectral discrimination
of blast severity

It is hard to utilize all the wave bands from 350-2500 nm for severity

level discrimination (n=1763 excluding ambient absorption bands). Due

to noise from ambient water absorption, the wavelengths between 1351

and 1439 nm, 1801 and 1949 nm, and 2351 and 2500 nmwere excluded

from the analysis. Then, 10 nm averaged data was calculated to reduce

the data redundancy. The number of relevant wavelengths obtained from

the resampling analysis was further reduced using the “Genetic algorithm

mixed with PLS regression” (GA-PLS).
Spectral separability for discriminating
blast severity levels

For spectral discrimination of 10 disease severity levels, the best

bands from GA-PLS study were employed. Jeffries-Matusita (J-M)

distance was taken into consideration as the measure of the spectral

separability index (Vaiphasa et al., 2007; Ismail et al., 2008). The

average distance between two class density functions is known as

the Jeffries-Matusita distance between two probability functions

(Richards, 1993; Schmidt and Skidmore, 2003). The square of the J-

M distance runs from 0 to 2, and a higher value denotes that the

class pairs are more separable (Richards, 2013). Instead of using the

threshold value of 1.90 that is typically used in remote sensing

datasets, a higher J-M distance of values greater than 1.94 (97% of 2)

was evaluated in the current investigation as the threshold of

spectral separability between disease severity levels (Das et al.,

2020). The J-M distance formula is provided below:

J −Mmn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1 − e−a)

p
(1)

a =
1
8
(mm − mn)

T(
Cm + Cn

2
)−1(mm − mn)

+ 2ln(
( 12 ) Cm + Cnj jffiffiffiffiffiffiffiffiffiffiffiffiffi

Cmj j�p
Cnj j ) (2)

where, J–Mmn represents the J–M distance between the severity

score pair m and n; mm is the spectral reflectance’s mean vector of mth

severity score at optimum wavebands acquired from GA-PLS analysis;

Ci = the spectral reflectance’s covariance matrix of mth severity score at

optimum wavebands; |Cm| = the determinant matrix of Cm; ln =

natural logarithm function; T = transpose function of matrices.
Prediction of blast severity using index-
based regression models

In the present study, 26 narrow-band spectral indices were

calculated using canopy reflectance at different wavelengths. The

equations and the references for these indices have been presented
TABLE 2 Description of different scores of rice blast disease.

Rating Description

0 No lesion observed

1 Small brown specks of pin point size

2
Small roundish to slightly elongated, necrotic gray spots, about 1-
2 mm in diameter, with a distinct Moderately Resistant brown
margin. Lesions are mostly found on the lower leaves

3
Lesion type same as in 2, but significant number of lesions on the
upper leaves

4
Typical susceptible blast lesions, 3 mm or longer infecting less than
4% of leaf area

5
Typical susceptible blast lesions of 3mm or longer infecting 4-10% of
the leaf area

6
Typical susceptible blast lesions of 3 mm or longer infecting 11-25%
of the leaf area

7
Typical susceptible blast lesions of 3 mm or longer infecting 26-50%
of the leaf area

8
Typical susceptible blast lesions of 3 mm or longer infecting 51-75%
of the leaf area many leaves are dead

9
Typical susceptible blast lesions of 3 mm or longer infecting more
than 75% leaf area affected
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in Table 3. Then these indices were correlated with the score of the

rice blast. The indices which showed a higher correlation coefficient

(r ≥ 0.8) were used to develop linear regression models for disease

severity prediction using 2/3rd of the total 600 data. Here, we have
Frontiers in Plant Science 06
compiled all the data from both management conditions to make

the model more robust. Then these prediction regression models

were validated using spectral indices data for the remaining

1/3rd dataset.
TABLE 3 Details of spectral indices used for regression model development for disease severity prediction.

S.
No.

Index Formula References

Structural indices

1 Green Index (GI) R554/R677 Zarco-Tejada et al., 2005

2 Green Vegetation Index (GVI) (R682−R553)/(R682+R553) Kauth and Thomas, 1976

3 Lichtenthaler Indices (Lic1) (R790 – R680)/(R790 + R680) Lichtenthaler et al., 1996

4 Modified Simple Ratio (MSR) (R800/R670 − 1)/[(R800/R670)0.5 + 1] Chen, 1996

5 Modified Triangular Vegetation Index (MTVI) 1.2*[1.2*(R800-R500)2.5*(R670-R550)] Haboudane et al., 2002

6 Normalized Difference Vegetation Index
(NDVI)

(R830 − R660)/(R830 + R660) Rouse et al., 1973

7 Normalized Difference Water Index (NDWI) (R560 − R830)/(R560 + R830) McFeeters, 1996

8 Perpendicular Vegetation Index (PVI) (RNIR-aRred-b)/(1+a2)
NIR,soil = a Rred,soil+b

Richardson and Wiegand,
1977

9 Red Green Index (RGI) R690/R550 Zarco-Tejada et al., 2005

10 Renormalized Difference Vegetation Index
(RDVI)

R800 − R670)/[(R800 + R670)
0.5] Roujean and Breon, 1995

11 Second Modified Triangular Vegetation Index
(MTVI2)

1.5(1.2*(RNIR – Rgreen) – 2.5(RRed – Rgreen)]/[(2 RNIR+1)2 – (6 RNIR – 5
RRed0.5) – 0.5]0.5

Haboudane, 2004

12 Triangular Vegetation Index (TVI) 0.5 * [120 * (R750 − R550) – 200 * (R670 − R550)] Broge and Leblanc, 2001

13 Water Band Index (WBI) R900/R970 Penuelas et al., 1995

Biochemical indices

14 Pigment-Specific Normalized Difference-a
(PSNDa)

R800/R680 Blackburn, 1998

15 Pigment-Specific Simple Ratio-b (PSSRb) R800/R635 Blackburn, 1998

16 Pigment-Specific Simple Ratio-c (PSSRc) R800/R470 Blackburn, 1998

17 Modified Chlorophyll Absorption Ratio Index
(MCARI)

[(R700 − R670) − 0.2 (R700 − R550)] (R700/R670) Daughtry, 2000

18 Water Band Index (WBI) R970/R900 Wang et al., 2007

19 Green Vegetation Index (GVI) (−0.283MSS4 − 0.66MSS5 + 0.577MSS6 + 0.388MSS7) Kauth and Thomas, 1976

20 Modified Chlorophyll Absorption Ratio Index
(MCARI)

[(R700 − R670) − 0.2 (R700 − R550)] (R700/R670) Daughtry, 2000

21 Normalized Difference Chlorophyll Index
(NDCI)

(R762-R527)/(R762+R 527) Marshak et al., 2000

Physiological indices

22 Moisture Stress Index (MSI) R1599/R819 Hunt and Rock, 1989

23 Normalized Difference Infrared Index (NDII) (R780 − R710)/(R780 − R680) Datt, 1999

24 Photochemical Reflectance Index (PRI) (R531 − R570)/(R531 + R570) Gamon et al., 1992

25 Photochemical Reflectance Index-2 (PRI2) (R531 − R570)/(R531 + R570) Gamon et al., 1992

26 Red-edge Vegetation Stress Index (RVSI) rR714+R752/2-R733 Merton and Huntington,
1999
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Proposed indices

The proposed Ratio Blast Index (RBI) and Normalized

Difference Blast Index (NDBI) have the following forms:

RBI =
Rl1
Rl2

(3)

NDBI =
(Rl1 − Rl2)
(Rl1 + Rl2)

(4)

These two indices were computed for every two-pair combination

wavelength that was conceivable. Correlation analysis was used to

determine the correlation coefficient (r) between the derived indices

and the severity level of the blast disease. A matrix plot that displayed a

characteristic pattern with a number of hotspots with a reasonably high

coefficient of determination was created by plotting all of the squares of

r values, which represent the coefficient of determination. The

wavelength combinations with the highest coefficient of

determination were chosen as the best indices (Lu et al., 2018).
Multivariate machine learning techniques

Partial least square
One of the most prevalent issues in machine learning is

multicollinearity. This happens when a dataset’s two or more

predictor variables have a high degree of correlation. Partial least

square (PLS), a powerful multivariate statistical technique, solves the

challenges associated with multicollinearity by concurrently

performing principle component extraction and classification (Shen

et al., 2011; Ursani et al., 2012; Helmholz et al., 2014). PLS uses

component projection to have a reduced number of uncorrelated

components (also known as latent variables, or LVs) from the entire

spectrum with minimal information loss. The global minimum of the

root mean square error of cross validation (RMSECV) was used to

calculate the number of LVs (Darvishzadeh et al., 2008). In the

current study, “plsr” function of the “pls” package (Mevik and

Wehrens, 2007) was performed in R version 3.5.0 to implement PLS.

Multivariate adaptive regression splines
A set of splines with various gradients are used in the

multivariate adaptive regression splines (MARS) method to

statistically fit the data of dependent and independent variables

(Friedman, 1991). One set of data ends and another one begins at

the extremities of the splines (knots), resulting in piecewise curves

known as “basis functions” or “hinge functions”. We utilized the

function “earth” in package “earth” to implement this method

(Milborrow, 2014) in R version 3.5.0.

Support vector machine
It is a margin-based classifier. It is widely used for non-

separable data like Vis-NIR spectral data. To maximize the
Frontiers in Plant Science 07
distance to the closest examples that can be neatly divided, the

support vector machine (SVM) selects a hyperplane that splits the

data into two different classes. To solve the SVM problem, the data

is transformed from a complex space with non-linear multivariate

relationships into a higher dimensional linear space via kernel trick,

which is then back-transformed to the lower dimensional space for

the output of the results. The SVM approach for regression and

function approximation is implemented using support vector

regression (SVR) (Smola and Schölkopf, 2004). We employed the

“svm” function from package “e1071” (Chang, 2001) in R

version 3.5.0.
Random forest
Random forest (RF) is used to boost the performance of a

single decision tree by fitting numerous trees together to form a

“forest,” then integrating the trees using votes from the majority of

the prediction trees. Trees that have grown very deeply, in

particular, have a propensity to learn highly erratic patterns

because they overfit their training sets, which results in low bias

but high variance. In order to lower the variance, multiple deep

decision trees trained on various subsets of the same training data

are averaged using random forests (Hastie et al., 2009). The

function “randomForest” from package “randomForest”

(Breiman, 2001) was used to implement this technique using R

version 3.5.0. RF’s total amount of trees was configured with a

default value of 500.
Deep neural network
Deep neural network (DNN) is an established artificial neural

network system. DNN can be used to train on complex data and

foresee outcomes. Single hidden layers are present in the structure

of simple neural networks, while many hidden layers are present in

DNNs in addition to an input and output layer (Costache et al.,

2020). In DNN, the feed-forward network is operated and analysed

using the back-propagation function. The network is challenging to

train due to the rising number of hidden layers and accompanying

varying learning speeds (Tien Bui et al., 2020). Due to the existence

of various hidden layers, DNN can tackle a variety of complex

classification problems. The DNN algorithm is regarded as a more

potent and effective one in neural network systems (Schmidhuber,

2015). We employed “h2o” package (Arora et al., 2015) to

implement this method in R version 3.5.0.

The 0-9 levels of disease severity at an interval of 1 were used as

response variable for the generation of regression models. At the

same time, the ten classes of disease severity levels were used as

dependent variables for the development of classification models.

The calibration of all the machine learning models has been done

using 2/3rd of the total 600 data set whereas the remaining 1/3rd of

the data was used for validation purposes. The root mean square

error (RMSE), coefficient of determination (R2), and residual

prediction deviation (RPD) were used to evaluate the regression
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models’ accuracy.

RPD =
Standard deviation (SD)

Standard error of prediction (SEP)
(5)

SEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1o
n
i=1 Pi − Oið Þ2

r
(6)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Pi − Oi)

2

s
(7)

Where Pi is the predicted value, Oi is the observed value and n is

the number of samples.

Chang et al. (2001) classified prediction accuracies into accurate

(RPD > 2), moderate (1.4< RPD< 2), and poor (RPD< 1.4).

The assessment of classification accuracy of different techniques used

for the classification was made through confusion or error matrix. The

overall accuracy or total accuracy (Ta) was obtained by dividing the total

number of correct predictions to the total number of tested predictions as

suggested by Lillesand et al. (2000), p. 724. Another coefficient that was

estimated from the confusion matrix function was the Kappa coefficient
Frontiers in Plant Science 08
(K) which denoted the degree to which the percentage correct

estimations of a confusion matrix due to “genuine” agreement versus

“chance” agreement was made. It ranged from 0 (worst) to 1 (best). The

formulae of these parameters are (Hasmadi et al., 2009):

Overall accuracy=Total accuracy (Ta)

=
Number of correct predictions
Total number of predictions

(8)

Kappa coefficirnt (K) =
q1 − q2
1 − q2

(9)

q1 =  o
N
i¼j=1xij
N

(10)

q2 =  o
N
i¼1xi+x+1
N2 (11)

Where, xij = number of counts in the ijth cell of the confusion

matrix, N = total number of counts in the confusion matrix, xi+ =

marginal total of row i, and x+i = marginal total of column i.
FIGURE 3

Different severity levels of rice blast infestation under upland and lowland conditions.
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Results

Rice blast scoring

The percentage of host tissue covered by the disease’s necrotic

lessons, as well as the number and size of the lessons, were evaluated

to determine the disease severity levels. According to IRRI guidelines,

the severity of the rice blast was rated on a scale of 0 to 9. The plant is

shown to be healthy and symptom-free at severity level 0, while the

plant is shown to be badly damaged by pathogens at severity level 9.

Based on the resistance and susceptibility of the cultivars to the blast

disease, the severity levels range from level 0 to level 9, with varying

levels of infestation shown in between (Figure 3). Rice genotypes, BL

18 and DH 79 grown under upland and lowland conditions,

respectively were assigned as level 9. Genotypes, VL 32475 and DH

94 grown under upland and lowland conditions, respectively were

assigned as severity level 0. The other cultivars with corresponding

severity levels are shown in Table 4.
Effect of disease severity on canopy
reflectance and red edge region

With differing levels of disease infestation, a different spectral

response was seen in this study. The dynamic changes in leaf

reflectance at various disease infection levels under both

conditions are depicted in Figure 4. The difference in reflectance

between the healthy plant and the rice plant at various severity

levels (scores 1 to 9) was calculated and plotted over the spectral

range of 350 to 2500 nm (Figure 5). The red band, which is around

690 nm, and the NIR, which spans from 800 to 1100 nm, is the

spectral ranges where differences are most obvious. The more the

severity, the more the positive difference in the red band and the

more negative difference in the NIR range. When compared to the
Frontiers in Plant Science 09
disease-infected plant, the seriously afflicted plant had higher

reflectance in the short-wave infrared (SWIR) area.

The red edge region is a spectral range from 680 to 760 nm

(Figure 6). The rate of change of reflectance with the wavelength in

the red edge region is very sensitive for the detection of the stress of a

crop. The point of inflection where the rate of change of reflectance

changes from positive to negative is called the red edge position (REP).

There was no evidence of a redshift (i.e shifting of REP to a higher

wavelength) with the increase in blast severity levels in this study.

However, the amplitude of the red edge peak (red edge value)

significantly decreases with the increase in severity levels. The

amplitude for scores 0 and 9 was 0.009429 and 0.002301, respectively

under upland land conditions whereas the amplitude of the score 0 and 9

was 0.010421 and 0.001935, respectively for lowland rice (Table 5). The

regression analysis between REV and disease severity score showed a

high R2 value of 0.81 and 0.91 for upland and lowland conditions,

respectively (Figure 7). Moreover, it has been observed from Table 5 that

the sum of the first derivative reflectance between 670-780 nm gradually

decreases towards the highest disease severity level.
Spectral separability using J-M distance
analysis

Significant spectral features through the GA-PLS technique were

used for spectral separability calculation. To lessen the data redundancy

for usage with GA-PLS, spectral averaging was carried out to 10 nm.

This method revealed that there were 22 selected wavebands,

specifically, 5 in the visible region (380, 400,470, 550, and 600 nm), 8

in the NIR region (730, 740, 900, 1100, 1140, 1180, 1260, and 1290

nm), and 9 in the SWIR zone (1320, 1440, 1480, 1590, 1650, 1780,

1950, and 2020 nm). These wavelengths were used to calculate the J-M

distance, which expressed that, except for levels 4 and 5, all severity

levels were determined to be separable with J-M distance values of

more than 1.94 (97% of 2) (Table 6).
Disease severity and spectral indices

The evaluation of the previously reported spectral indices revealed

that the structural indices performed the best for predicting the

disease severity levels (Table 7). The linear regression models

showed the strongest correlations of blast disease with TVI

(R2= 0.84 and 0.85 for calibration and validation, respectively) with

an RPD of 2.52. The PSSRb-based regression model showed the least

correlation with the disease severity (R2= 0.56 and 0.57 for calibration

and validation data sets) with an RPD value of 1.53.
Proposed ratio blast index and normalized
difference blast index

To analyze the association between blast severity and the proposed

indices in this study namely Ratio Blast Index and Normalized

Difference Blast Index from the spectral range of 350 nm to 2500

nm, the reduced sampling approach was employed (Yao et al., 2010) at
TABLE 4 Name of different genotypes of rice for both upland and
lowland conditions.

Upland condition Lowland condition

Rice geno-
type

Disease
score

Rice geno-
type

Disease
score

VL 32475 0 DH-94 0

VL 32473 1 DH-47 1

BL-12 2 DH-49 2

BL-10 3 DH-44 3

BL-6 4 DH-32 4

BL-21 5 DH-34 5

DSN-119 6 DH-33 6

DSN-120 7 DH-30 7

DSN-140 8 Bala 8

BL-18 9 DH-79 9
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10 nm intervals based on leaf spectral reflectance and to identify the

sensitive band ranges with higher R2 values for the 2/3rd calibration

data sets. In the NIR region, several “hotspots” with high blast severity

correlation coefficients with RBI and NDBI were found (Figure 8A and

9A). More accurate contour maps of R2 values between blast severity

with RBI and NDBI at 1 nm intervals were produced by precisely

sampling these sensitive spectral regions (Figure 8B and 9B. Based on

the R2 values, the best bands selected and indices were RBI (R1148,

R1301) and NDSI (R1148, R1301) for blast severity. Linear regression

equations for blast severity based on RBI and NDBI indices were

developed (Table 8). The results revealed that the model was the best in

predicting blast severity by using both RBI and NDBI values (R2= 0.85,

RMSE=1.14; R2= 0.86, RMSE=1.02, respectively for validation).
Multivariate models

Spectral reflectance observations were used as independent (X)

factors and severity scores as the dependent (Y) variables in the PLS
Frontiers in Plant Science 10
regression model. The RMSE tended to decline as the PLS model’s

latent variable count (LV) increased. Over-fitting, however, could

result from the inclusion of too many latent variables. The global

minimum in cross-validated root mean squared error (RMSECV)

suggested that models with up to 20 LVs were the most ideal. For all

four multivariate models, the R2 value was 0.92, 0.99, 0.96, and 0.99

in the calibration, and in the validation, it was 0.92, 0.93, 0.92, and

0.94 with RMSE of 0.82, 0.80, 0.80 and 0.70, respectively for PLS,

RF, MARS, and SVM (Figure 10). Among these models, SVM found

to be the most accurate and PLS to be the least accurate for

prediction of blast severity with respect to RPD of validation

(RPD=4.10 and 3.49, respectively). The performance order of the

test multivariate models in comparison to RPD is SVM> MARS>

RF> PLS (Figure 10). The adoption of multivariate approaches

increased the accuracy of the blast assessment, according to a

comparison of the results of an index-based and multivariate

approach. These methods revealed better sensitivity to changes in

disease severity since they included the entire spectrum as opposed

to the one or two variables employed in the index-based approach.
A

B

FIGURE 4

Spectral reflectance of rice canopy under different disease severity levels. (A) Upland and (B) lowland conditions.
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The classification of rice blast severity levels, using PLS, RF,

MARS, SVM and DNN methods were validated using the two most

sophisticated statistical techniques. The result of all the model

accuracy is presented in Table 9. The result shows that, RF model

was the most optimal during both calibration and validation with

Ta of 0.995 and 0.606 respectively, followed by MARS (calibration

Ta = 0.991, validation Ta = 0.567), PLS (calibration Ta = 0.748,

validation Ta = 0.544), DNN (calibration Ta = 0.622, validation Ta

= 0.535), and SVM (calibration Ta = 0.500, validation Ta = 0.439).

The performance order of multivariate models with respect to

kappa value was RF>MARS>PLS>DNN>SVM. The performance

of PLS, MARS, DNN and RF were found optimum during

calibration whereas they performed poorly during validation with

less overall accuracy and kappa< 0.6. But when regression was

performed, all the models performed well during both calibration

and validation (R2 > 0.9).
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Discussion

In the present study, the disease severity levels were estimated

by evaluating the percentage of host tissue covered by the necrotic

lessons of the disease and the number and size of the lesson. The

severity level 0 depicts that the plant is healthy having no symptoms

at all, whereas the disease severity level 9 depicts that the plant is

most severely affected by the pathogen. Due to very high

susceptibility towards blast, BL 18 and DH 79 showed the

maximum disease severity whereas the resistant variety VL 32475

and DH 94 exhibited the healthy one under upland and lowland

conditions respectively. Ordinarily, a plant leaf has a low reflectance

in the visible spectral range due to intense chlorophyll absorption

and a comparatively high reflectivity in the near-infrared area due

to internal leaf scattering and no absorption (Knipling, 1970). With

increase in blast severity level, the reflectance in the visible region
A

B

FIGURE 5

Spectral reflectance difference of rice plant with different severity levels with reference to healthy. (A) Upland and (B) lowland conditions.
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increased, basically, in the red region, the reflectance is more in the

severely affected plant than in the healthy plant. Our result may be

attributed to decreased contents of leaf pigment content in response

to blast infection which damaged the leaf chlorophyll and caused

lower absorption in the visible region. A similar finding was also

investigated by Kobayashi et al. (2003) and Zhang et al. (2020). In

our study, the reflectance of a healthy plant in the NIR region was

higher than that of an infected one and with the increase in disease

severity level, the reflectance in the NIR region gradually decreased

which may be attributed to the damage of internal leaf structure in

response to blast pathogen. This trend is consistent with the

findings of Zhang et al. (2020), and Knipling (1970). The fungus

generates enormous turgor pressure inside the leaf cell and a thin

penetration peg pierces the rice leaf surface using this pressure to

enter into the host by damaging the epidermal and mesophyll cell.

Due to the severe infection by the pathogen, the plant eventually

starts producing reactive oxygen species such as hydrogen peroxide
Frontiers in Plant Science 12
and deposition of callose at the site of infection (Thordal-

Christensen et al., 1997; Nishimura et al., 2003) which are the

main causes of producing necrotic lesions leading to cell damage

and finally death of the plant. Our results also showed higher

reflectance in the SWIR region for the severely affected plant as

compared to the disease-uninfected plant. This may be attributed to

the lower leaf water content of the blast-infected plants. For severely

affected plants pathogen almost kills the plant. Therefore, at the

disease severity level 9, there is no difference between the spectra of

soil and plant as the plant is almost dead. These observations are

aligned with results reported by Yang (2012) for blast disease in rice.

Evaluating the red edge region of the spectral reflectance (680-

760 nm) from 1st derivative reflectance values, a high correlation of

red edge value (REV) with disease scores was found. The pathogen

of rice blast damages the cell structure and dries the plant producing

necrotic spots. The damage to the chlorophyll content of the plant

led to an effect on the red edge value. Cell structure damage and loss
A

B

FIGURE 6

Red edge curve of blast infected rice canopy under (A) upland and (B) lowland conditions.
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of cell water also led to affect the same. The mixed effect of loss of

plant chlorophyll and damage to cellular structure yielded this

VNIR as most the sensitive region for disease detection. Marín Ortiz

et al. (2019) have found the same result for wheat rust disease. The

amplitude of the red edge peak decreases with the increase in

severity levels. Fahrentrapp et al. (2019) and Adak et al. (2021)

reported similar findings for gray mold leaf infections and nitrogen

stress in wheat, respectively. The maximum rate of change value at

REP is called red edge value (REV) which has good relation with

stress levels. The regression analysis between REV and disease

severity score showed a high R2 value of 0.81 and 0.91 for upland

and lowland conditions, respectively. The sum of the first derivative

reflectance between 670-780 nm gradually decreased towards the

highest disease severity level. This is consistent with findings by

Mahlein et al. (2010) who found similar red edge reflection patterns

studying sugarbeet leaves infected with fungal diseases such as C.

beticola and U. betae.
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Spectral separability analysis identified 22 bands as spectral

features for discrimination. Out of 22 bands, five are in the visible

region (380, 400, 470, 550, 600 nm), eight in the NIR region (730,

740, 900, 1100, 1140, 1180, 1260, 1290 nm), and nine in SWIR

region (1320, 1440, 1480, 1590, 1650, 1780, 1950, 2020, 2130 nm).

This indicates feature bands selected fall broadly into the visible

region affected by chlorophyll absorption (Vaiphasa et al., 2007; El-

Nahry and Hammad, 2009; Ustin et al., 2009; Das et al., 2018), NIR

range affected by cell structure and water content (Schmidt and

Skidmore, 2003; Mutanga and Skidmore, 2007; El-Nahry and

Hammad, 2009; Ustin et al., 2009; Das et al., 2018) and in SWIR

ranges due to variation water and organic compounds, dry matter,

lignin, cellulose, and protein, etc. (Majuva-Masafu and Linington,

2006; Teklu et al., 2010). The spectral reflectance increased in the

visible region with a decrease in the infrared region and again

increased reflectance in the SWIR region with increasing rice blast

severity. These may be attributed to decreased contents of pigments
TABLE 5 Effect of blast severity on red edge characteristics.

Disease
score

Upland condition Lowland condition

Amplitude of red
edge peak

(REV)

Area under the red edge curve
between 670 and 780 nm

Amplitude of red
edge peak

(REV)

Area under the red edge curve
between 670 and 780 nm

0 0.009429 0.45032 0.010421 0.49294

1 0.008400 0.40711 0.009063 0.43803

2 0.007041 0.33868 0.007677 0.37004

3 0.006242 0.31344 0.007551 0.37090

4 0.005954 0.30184 0.006897 0.33602

5 0.005993 0.30546 0.006378 0.31054

6 0.004648 0.25566 0.005692 0.28623

7 0.003948 0.21308 0.003414 0.18379

8 0.003579 0.19416 0.002420 0.14089

9 0.002301 0.14037 0.001935 0.09902
TABLE 6 The J-M distance between all 10 disease scores for spectral separability using bands selected from GA-PLS.

Score 0 1 2 3 4 5 6 7 8 9

0 – 1.9809 1.9996 1.9999 1.9999 1.9999 2 2 2 2

1 – – 1.9709 1.9936 1.9993 1.9968 1.9999 2 2 2

2 – – – 1.9494 1.9982 1.9775 1.9998 2 2 2

3 – – – – 1.9806 1.9638 1.9989 2 2 2

4 – – – – – 1.9285 1.9968 2 1.9999 2

5 – – – – – – 1.9964 1.9999 1.9999 2

6 – – – – – – – 1.9866 1.9980 1.9999

7 – – – – – – – – 1.9978 1.9998

8 – – – – – – – – – 1.9851

9 – – – – – – – – – –
fr
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in response to M. oryzae infection (Kobayashi et al., 2016), which

caused the pigments to deteriorate and absorb less efficiently in the

visible region. Infection ofM. oryzae appears to change the internal

cellular structure of leaves, thereby altering the spectral reflectance

in the NIR region (Knipling, 1970) whereas the lower leaf water

content in blast infected leaf tend to increase the reflectance in the

SWIR region. Different severity levels were found to be well

separable as significant biochemical changes are affecting the

whole range of the spectrum. Severity levels of 4 and 5 could not

be found separable and the possible reason might be that plant

stress effect on biochemical changes at these two severity levels were

not having a significant difference or else they did not yield a

significant change in spectral value in selective feature bands.
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In this research, the evaluation of the existing indices revealed

that the structural indices performed the best for predicting disease

severity levels. Regarding the structural indices, it mainly takes care

of the reflectance in the infrared region which is affected to the

maximum extent due to leaf cell damage caused by the pathogen.

Out of all the indices TVI was the best-suited indices for rice blast

indicated by R2 and RPD of 0.85 and 2.52, respectively. TVI is

calculated as the areas of a hypothetical triangle in spectral space

that connects green peak reflectance minimum chlorophyll

absorbance and reflectance at the NIR region. Therefore, these

indices are influenced by the chlorophyll content and greenness of

the plant, and the internal structure of the leaf. Becoming a necrotic

pathogen damages chlorophyll and cell structure, TVI could be
TABLE 7 Regression model for disease prediction using spectral indices.

S. No. Index Calibration equation R2 (cal) R2 (val) RMSE RPD

Structural indices

1 GI Y=-2.6675X+10.251 0.75 0.78 1.36 2.11

2 GVI Y=11.57X+7.563 0.75 0.78 1.36 1.36

3 Lic1 Y=-15.58X+16.59 0.68 0.68 1.63 1.76

4 MSR Y=-16.28X+17.38 0.67 0.67 1.64 1.74

5 MTVI Y=-13.38X+11.01 0.83 0.85 1.19 2.48

6 NDVI Y=-17.10X+18.17 0.67 0.67 1.66 1.73

7 NDWI Y=-28.63X+3.928 0.72 0.70 1.57 1.82

8 PVI Y=-189.7X+2.359 0.83 0.83 1.19 2.41

9 RGI Y=-7.413X-1.957 0.69 0.70 1.58 1.81

10 RDVI Y=-19.38X+13.99 0.81 0.83 1.19 2.39

11 MTVI2 Y=15.05X+11.79 0.77 0.79 1.30 2.20

12 TVI Y=-0.362X+10.78 0.84 0.85 1.17 2.52

13 WBI Y=-52.84X+58.42 0.72 0.71 1.55 1.85

Biochemical indices

14 PSNDa Y=-15.88X+16.87 0.68 0.68 1.63 1.75

15 PSSRb Y=-0.491X+8.954 0.56 0.57 1.87 1.53

16 PSSRc Y=-0.338X+10.22 0.63 0.60 1.48 1.55

17 MCARI Y=-11.58X+10.92 0.82 0.84 1.13 2.53

18 WBI Y=-52.97X+58.55 0.72 0.71 1.55 1.81

19 GVI Y=11.57X+7.563 0.75 0.77 1.36 2.39

20 MCARI Y=-23.79X+8.486 0.71 0.73 1.47 1.94

21 NDCI Y=-26.24X+23.06 0.51 0.48 2.07 1.38

Physiological indices

22 MSI Y=8.660X-1.537 0.69 0.65 1.51 1.89

23 NDII Y=-14.90X+6.926 0.72 0.70 1.57 1.82

24 PRI Y=51.84X+4.484 0.67 0.67 1.65 1.73

25 PRI2 Y=50.03X+6.148 0.70 0.71 1.56 1.83

26 RVSI Y=299X+10.11 0.78 0.79 1.30 2.19
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good for disease severity measurement considering the nature of the

disease. Similarly, Zhang et al. (2012) and Ashourloo et al. (2014)

proposed TVI as an effective index for the prediction of wheat rust.

The proposed indices in this study, RBI and NDBI were developed

using a contour mapping approach. The contour mapping

approach has the advantage of providing an efficient selection of

the optimal combination of wavebands for development of the

effective spectral indices. Based on the highest correlation value, two

wavebands namely 1148 nm and 1301 nm were chosen to develop

RBI and NDBI and these two indices outperformed the existing

indices for the prediction of blast severity. These two wave bands

correspond to unique interaction of reflectance at these wavelengths

with cell structure variation at different severity levels and water and

organic compounds like cellulose effect on spectral reflectance in

diseased plants.

Previously, the traditional approach for disease assessment has

been based on the vegetation indices (Gitelson et al., 2001; Gitelson
Frontiers in Plant Science 15
and Merzlyak, 1996; Haboudane et al., 2002) and then used some

form of a learning algorithm in these feature spaces, especially in the

visible region. The development of machine learning techniques in

biotic stress assessment has made tremendous progress in the past

few years (Ferentinos, 2018; Barbedo, 2019; Lin et al., 2019).

However, the development of these approaches depended heavily

on the reflectance in the visible region. In the present study, four

machine learning techniques (PLS, MARS, RF, and SVM) were

evaluated to develop a disease prediction model using the entire

spectrum of vegetation (350-2500 nm). All four models had better

predictive accuracy with respect to R2, RMSE, and RPD values of

the validation data set as compared to the index-based models. The

SVMwas found to be the best with the highest R2= 0.94, least RMSE

of 0.7, and highest RPD of 4.10 compared to others for the

assessment of blast severity. Being a margin-based classifier, SVM

is widely used for non-separable data like Vis-NIR spectral data.

Prasad et al. (2012) investigated SVM as a predicting technique for
A

B

FIGURE 7

Relationship between disease severity levels and red edge value (REV) under (A) upland and (B) lowland conditions.
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different diseases like Tikka (groundnut), rust, powdery and downy

mildew (apple), late blight, and early blight (tomato, potato) with an

overall accuracy of 89%. Similarly, Van De Vijver et al. (2020) have

also used spectral classifier SVM based on PCA to test and

discriminate between affected and non-affected pixels of potato

canopy infected by Alternaria solani and reported an accuracy of

92%. The investigation reported by Zhang et al. (2020) revealed that

the SVM-based spectral reflectance ratio construction method was

used for the assessment of rice blast severity at the heading stage

with an accuracy of 83.87%. In this study, the classification of

disease severity levels was also performed using PLS, SVM, RF,

MARS and DNN models. The performance of MARS, PLS, RF and

DNN were found optimum during calibration whereas they

performed poorly during validation with less overall accuracy and

kappa< 0.6. But when regression was performed all the models
Frontiers in Plant Science 16
performed well for calibration and validation (R2 > 0.9). Also, the

regression models seem to be balanced in terms of calibration and

validation values as compared to classification results. As the

number of classes were very high (total 10 classes), there were

overlapping among the classes. This may be the reason behind the

poor performance of classification as compared to regression.

In this study, we used vegetation indices and machine learning

techniques for determining the severity of the rice leaf blast. Even

though excellent results were obtained, additional study is required to

confirm the findings on a larger spatial scale and to explore the model’s

range of potential applications for other plant species and diseases too.

The study is confined to non-imaging spectrometry approach only.

This can be further extended to different low cost imaging sensors

having suggested spectral bands from this study at air-borne and

satellite platforms for upscaling to regional applications.
A

B

FIGURE 8

Contour maps of coefficients of determination (R2) for linear relationship between blast indices (RBI) with disease scores, of rice canopy under
different blast disease severity levels at (A) 10 nm sampling interval at 350-2500 nm and (B) 1 nm sampling interval.
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Conclusion

The present study revealed that spectral data from the NIR

region can be employed to assess stress-induced changes in the

structure of plant tissue, such as cell collapse. The developed

indices and multivariate models represented in the present

study were able to predict different levels of disease severity

caused by rice blast pathogens with very good accuracy
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and precision. The insight into the already existing indices

expressed TVI to be the best one, whereas the proposed indices,

RBI and NDBI performed better than other existing indices. The

present findings also suggested the SVM as a robust approach

for assessing the rice blast disease severity level. In the future,

the methodology developed would help in its further use in high-

throughput phonemics of different crops for biotic stresses

and the development of a forewarning system for blast diseases.
A

B

FIGURE 9

Contour maps of coefficients of determination (R2) for linear relationship between blast indices (NDBI) with disease scores, of rice canopy under
different blast disease severity levels at (A) 10 nm sampling interval at 350-2500 nm and (B) 1 nm sampling interval.
TABLE 8 Relationships of disease severity levels to RBI and NDBI.

Spectral index Regression Equation R2 (cal) R2 (val) RMSE RPD

Ratio Blast Index (RBI) Y=59.211X-54.713 0.85 0.85 1.14 2.52

Normalized Difference Blast Index (NDBI) Y=177.2X+4.777 0.86 0.86 1.02 2.60
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This would also help to frame suitable integrated disease

management systems for different crops having infestation

chances of blast diseases to attain a step forward towards

agricultural sustainability.
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