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Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs

that play an important role in wood formation in plants. However, the

significance of the link between miRNAs and their target transcripts in wood

formation remains unclear in rubber tree (Hevea brasiliensis).

Methods: In this study, we induced the formation of reaction wood by artificially

bending rubber trees for 300 days and performed small RNA sequencing and

transcriptome deep sequencing (RNA-seq) to describe the complement of

miRNAs and their targets contributing to this process.

Results and discussion:We identified 5, 11, and 2 differentially abundant miRNAs in

normal wood (NW) compared to tension wood (TW), in NW relative to opposite

wood (OW), and between TW and OW, respectively. We also identified 12 novel

miRNAs and 39 potential miRNA-mRNA pairs with different accumulation patterns in

NW, TW, and OW. We noticed that many miRNAs targeted transcription factor

genes, which were enriched in KEGG pathways associated with phenylpropanoid

biosynthesis, phenylalanine metabolism, and pyruvate metabolism. Thus, miRNA-

TF-mRNA network involved in wood formation via tension wood model were

constructed. We validated the differential accumulation of miRNAs and their

targets by RT-qPCR analysis and overexpressed miRNA in Nicotiana benthamiana

with its potential target gene. These results will provide a reference for a deep

exploration of growth and development in rubber tree.

KEYWORDS

reaction wood, phenylpropanoid biosynthesis pathway, lignin biosynthesis, Hevea
brasiliensis, miRNA
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Introduction
Rubber tree (Hevea brasiliensis) is the main source of natural

rubber (NR). Once latex production is no longer economically

viable, rubber trees are also used as timber. The wood from rubber

trees has in fact become the main export commodity in southeast

Asia (Nair, 2010). Its delicate color and outstanding physical

performance make it an excellent option for flooring and home

furnishings. Due to its high potential commercial value, increasing

timber yield and quality has become a key point of biotechnology in

the rubber tree industry (Priyadarshan, 2017). However, two major

limitations hinder a more widespread use of rubber wood: (i) The

extent of unlignified or partially lignified tension wood fiber, which

is not easily digested by enzymes, is high, and the proportion of

normal fibers is low (Mellerowicz and Gorshkova, 2012; Gritsch

et al., 2015); and (ii) it has high sensitivity to biodegradation owing

to low levels of phenolic compounds with biocidal activity (Pramod

et al., 2019; Thaochan et al., 2020). The biosynthesis of lignin and

polyphenolic derivatives in living trees, particularly in rapidly

growing woody plants such as rubber trees, contributes to wood

quality and durability (Kuyyogsuy et al., 2018; Pramod et al., 2019;

Thaochan et al., 2020).

Lignin is an abundant biopolymer that is essential for plant cell

wall integrity and stem strength (Shen et al., 2012). The biosynthesis

of lignin monomers begins with phenylalanine deamination,

leading to the production of three monolignin alcohols: coniferyl,

sinapyl, and p-coumaryl alcohols (Eudes et al., 2012). Several genes

that participate in lignin biosynthesis and modulate lignin levels

have been identified in dicots (Sibout et al., 2005; Weng et al., 2010).

For instance, knocking down 4-coumarate:CoA ligase (4CL)

expression in hybrid poplar (Populus tremula × P. alba) resulted

in a sharp decrease in lignin content and markedly altered wood

chemical composition and wood metabolism (Voelker et al., 2010).

The PtrWND (wood-associated NAC domain) genes were shown to

induce the expression of wood biosynthetic genes, including

associated structural genes and transcription factors, resulting in

ectopic deposition of lignin in poplars (Zhong et al., 2010). Despite

the above progress in our understanding of lignin biosynthesis,

much remains to be investigated in terms of transcriptional and

post-transcriptional regulation. Recently, regulation of wood

formation via non-coding RNAs (ncRNAs) and microRNAs

(miRNAs) has received increasing attention (Lu et al., 2013).

miRNAs are post-transcriptional modulators of gene function

by promoting the cleavage of their complementary target messenger

RNAs (mRNAs) and/or imposing translation repression (Bartel,

2004; Zhang et al., 2019). Several studies have illustrated the vital

roles played by miRNAs in wood formation (Li et al., 2020; Yu et al.,

2020). For instance, transcript levels for 17 of the 29 LACCASE

(PtrLAC) genes in the black cottonwood (P. trichocarpa) genome

decreased in P. trichocarpa trees overexpressing miR397a, in turn

leading to a reduction of lignin levels (Lu et al., 2013). Similarly, the

overexpression of miR319a in Populus tomentosa in seedlings

resulted in delayed secondary growth and decreased xylem

production (Hou et al., 2020). In particular, miR165b guides the

development of pith secondary cytoderm is by restraining the
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AtHB15 (HOMEOBOX 15) expression domain (Du and Wang,

2015). However, how wood anatomical features like container shape

and thickness are genetically governed is not very clear. These traits

are important for cell wall composition and overall tree

performance (Quan et al., 2018; Quan et al., 2019).

To explore the molecular basis of changes in transcript levels

caused by miRNAs during wood formation, we sequenced small

RNAs from three wood parts: normal wood (NW)which is from the

stem of the tree at breast height, tension wood (TW) which is upper

side of the bending trunk, and opposite wood (OW) which is lower

side of the bending trunk. We then assigned predicted target genes to

these wood-abundant miRNAs by identifying genes whose transcript

levels were inversely correlated with miRNA abundance. We

complemented this approach by using a bioinformatics method for

miRNA target prediction and constructed the resulting miRNA–

mRNA interaction network. The small RNAs found in this study are

good candidates for miRNAs that are involved in wood formation.

They may also help with the development of functional markers for

molecular breeding in rubber trees and other tropical plants to help

change the composition of lignin or physical characteristics.
Materials and methods

Plant materials and
microscopy observations

The rubber trees (clone Reyan 7-33-97) used in this study were

grown in the experimental greenhouse of Hainan University

(Danzhou, Hainan, China; 109°29′25′′ E, 19°30′40′′ N) at the end
of June 2016. To probe the genes involved in the formation of

reaction wood, three rubber trees of similar age and with trunks of

similar diameter (about 2 cm) were bent at a 30° angle for 300 days

and were selected as experimental materials to force the formation

of reaction wood (Figure S1). The bending was applied starting at

9 a.m. on August 17th, 2020, and ended at 9 a.m. on June 13rd,

2021, at which point the wood samples were rapidly processed. The

wood quality from the collected samples was assessed by scanning

electron microscopy (SEM, Phenom proX, the Netherlands) in

Center for Analytical Instrumentation (Hainan University), and

the resulting images were processed in ImageJ software to measure

the area of the gelatinous (G) layer. The SEM images indicated that

the TW (tension wood) reaction wood had an extremely dense

cementitious layer (G-layer; Figure S2A) that was not present in

NW (normal wood) or OW (opposite wood; Figures S2B, C). These

observations were consistent with earlier findings (Sujan et al.,

2015). Therefore, xylem samples from the collected trees were

selected for further analysis.

Samples were collected for NW, TW, and OW from the same

individuals to allow for direct comparison in an identical genetic

background. Briefly, the bark above the sampling area was removed

to expose the inner wood layers. A sharp razor blade was then used

to collect TW (upper side) and OW (lower side) from the same

branch (Li et al., 2013). The control for stem xylem tissue was NW

and was collected about 1 m above the ground, before the bending

point. All collected samples were about 2 cm × 1 cm and 4–5 mm in
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depth. Samples were harvested in the morning, quickly frozen in

liquid nitrogen, and stored at –80°C until use.
RNA extraction and qualification

Total RNA was extracted from nine samples (NW1, NW2,

NW3, OW1, OW2, OW3, TW1, TW2, and TW3) using a modified

cetyl trimethyl ammonium bromide (CTAB) method (Chang et al.,

1993). Each tree counted as one biological replicate (NW1-3, TW1-

3, and OW1-3). Traces of genomic DNA were removed with

RNase-free DNase I digestion (Takara, Beijing, China). RNA

degradation and DNA contamination were assessed by

electrophoresis on 1% (w/v) agarose gels. RNA concentration,

quality, and integrity were estimated on a NanoPhotometer

spectrophotometer (IMPLEN, CA, USA) and an RNA Nano 6000

Chip on a Bioanalyzer 2100 (Agilent Technologies, CA, USA). Only

RNA samples with an OD260/280 ratio of 1.9–2.2, an OD260/230 ratio

≥ 2.0, and RNA integrity number (RIN) values > 6.8 were processed

for further experiments.
Small RNA library construction
and sequencing

Three micrograms of total RNA per sample was used to

construct sequencing libraries with a NEBNext multiplex small

RNA library prep kit for Illumina (NEB, USA) following the

manufacturer’s protocol. Briefly, the NEB 3′ SR adapter was

ligated to the 3′ end of miRNAs, siRNAs (small interfering

RNAs), and piRNAs (piwi-interacting RNAs). The SR real-time

primer was then annealed to the 3′ SR adapter to initiate double-

stranded DNA (dsDNA). The 5′ end adapter was connected to the

5′ ends of miRNAs. First-strand cDNA synthesis with M-MuLV

Reverse Transcriptase (RNase H-). The libraries were amplified by

35 PCR cycles with index (X) primer, SR primer for Illumina, and

LongAmp Taq 2X master mix. The PCR products were separated

on 8% polyacrylamide gel for 80 min at 100 V. DNA fragments

responding to 140-160 bp (the length of sRNAs with 5′ and 3′
adapters) were purified from the gel and eluted in 8 µL of elution

buffer. Library quality and titer were evaluated using a DNA high

sensitivity chip and Agilent Bioanalyzer 2100 instrument. A TruSeq

SR Cluster Kit v3-cBot-HS (Illumina) was used for cluster

formation on a cBot cluster generation system following the

manufacturer’s instructions. Libraries were sequenced on an

Illumina HiSeq 2,500 platform as 50-bp single-end reads.
Identification of known miRNAs and
novel miRNAs

After adapter trimming from the raw reads, any clean reads

shorter than 18 nt or low-quality reads (reads with N bases > 10%

and reads with a 3′ end with Q < 20 [Q = –10Log10
error_ratio]) were

discarded. The remaining clean reads were mapped to the rubber

tree reference genome (Liu et al., 2020) with Bowtie2 allowing no
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mismatch (Langmead et al., 2009). Reads derived from rRNAs,

protein-coding genes, snRNAs, tRNAs, snoRNAs, and repeat

sequences were removed by filtering the clean reads against the

Rfam database and RepeatMasker (Tempel, 2012; Kalvari et al.,

2018). Known miRNAs were identified with miRBase 20.0 (Meng

et al., 2018); potential miRNAs and their secondary structures were

determined using the miRDeep2 algorithm (Friedländer et al.,

2012) and sRNA-tools-cli (http://srna-workbench.cmp.uea.ac.uk/).

The formation of a typical hairpin structure was used as a criterion

to identify novel miRNAs from the transcripts showing no match to

known miRNAs. Unannotated small RNAs were assessed with

miRDeep2 (Friedländer et al., 2012) and miREvo (Wen et al.,

2012) using minimum free energy, possible Dicer cleavage sites,

and the secondary structures of small RNA tags. Custom scripts

were applied to count all candidate miRNAs and estimate the basic

deviation between each position of all identified miRNAs and the

first position of identified miRNAs of a given length. The secondary

structure of the novel_28 mature sequence was predicted and

compared to other miRNA families from rubber tree and

other species.
Prediction of the target genes of miRNAs

The RNA-seq data were from our previous study (Meng et al.,

2021). The online tool psRNATarget (https://www.zhaolab.org/

psRNATarget/) was used to predict miRNA targets with default

parameters with expectation ≤ 3 (Dai et al., 2018). A gene was

deemed to be a putative target for a miRNA when its transcript

levels showed a negative Pearson’s correlation coefficient with miRNA

abundance (correlation < –0.8, P-value < 0.05). miRNA abundance was

estimated with the formula (Zhou et al., 2010): Normalized abundance

= mapped read count/total reads * 1,000,000.
KEGG enrichment analysis of co-expressed
target genes

The predicted co-expressed target genes were subjected to

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway.

KEGG (http://www.genome.jp/kegg/) pathway enrichment

analysis was carried out with KOBAS software (Mao et al., 2005).
Construction for miRNA–mRNA
interaction networks and tissue-specific
expression analysis

The Pearson’s correlation coefficients between miRNAs and

transcription factor genes were calculated using expression values

from this study for miRNAs and from our previous study (Meng

et al., 2021) for mRNAs or between transcription factor genes and

other genes to identify miRNAs, transcription factor genes, and

their co-expressed genes. The resulting interaction network was

built in R (version 4.0.1) and visualized with Cytoscape

(version 3.8.1).
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Plasmid construction

According to the target sites (Figure 1A), to overexpress novel_28

(hbr-miR482c), the pre-miR482c sequence was amplified from genomic

DNA isolated from normal wood tree with primers containing BamH I

and Sac I restriction sites. The resulting PCR product was digested with

BamH I and Sac I and ligated into the vector pBI121 downstream of the

cauliflower mosaic virus (CaMV) 35S promoter (Shanghai Generay

Biotech; Figure 1B). The full-length coding sequence of HbrCAD1

(GH714_013930) was also cloned into pBI121 (GH714_013930-

pBI121; Figure 1B). Both constructs were transformed into

Agrobacterium (Agrobacterium tumefaciens) strain GV3101. The

primer sequences used for cloning are listed in Table S1.
Verification of interaction between hbr-
miR482c and its target

Agrobacterium-mediated transient expression in Nicotiana

benthamiana leaves (English, 1997) was used to assess the targeting of

HbrCAD1 transcripts by hbr-miR482c. Agrobacterium cultures

harboring the hbr-miR482c or HbrCAD1 construct were resuspended

in infiltration buffer, mixed, and infiltrated into six N. benthamiana

leaves (Figure 1C) from 3-week-old plants. As negative controls,

Agrobacterium cultures a mix of cultures harboring pB121 and the

35S::HbrCAD1 construct were infiltrated in N. benthamiana leaves.
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Validation of miRNA expression and that of
their target genes by RT-qPCR

A GoScript™ Reverse Transcription kit (Promega, USA) was

used for first-strand cDNA synthesis from total RNA of the nine

samples collected in this study. Six differentially expressed miRNAs

(novel_47, novel_67, novel_28, novel_165, novel_177, and

novel_101) and six target genes (ALDO1, PEPcase, CAD1, RF2,

PKc_like, GT) of miRNA-mRNA correlation network were chosen

(Figure S3). Gene-specific primers were designed for the target

genes with Primer Premier v5 software (Table S1). qPCR was

performed with TB Green Premix Ex Taq II (Tli RNase H Plus;

Takara, Beijing, China) for the target genes according to the

manufacturer’s instructions. PCR conditions were as follows:

denaturation at 94°C for 2 min, then 40 cycles of 95°C for 5 s

and 60°C for 30 s. Ubiquitin was used as internal reference for

normalization of expression data of rubber tree samples (Meng

et al., 2022), and b-actin was used for N. benthamiana (Nawaz et al.,

2019). For miRNA, a miRNA RT-qPCR Detection Kit (Aidlab,

Beijing, China) was used following the manufacturer’s instructions.

PCR conditions were as above. U6 transcripts were used as internal

reference for normalization (Zeng et al., 2009). A melting curve was

performed from 60°C to 95°C to confirm the specificity of the

amplicons. Relative expression levels of miRNAs and their target

genes were estimated by the 2–△△Ct method (Schmittgen and

Livak, 2008). Three technical replicates were analyzed per sample.
A

B D

C

FIGURE 1

Validation of the targeting of HbrCAD1 by its predicted miRNA novel_28 in Nicotiana benthamiana. b-actin was selected as internal reference; data
are means ± standard error of three independent biological replicates. (A) Alignment of hbr-miR482c and HbrCAD1. (B) The plasmids pBI121-
miR482c and GH714-013930-pBI121 used for the assay. (C) Principle of transient infiltration of N. benthamiana leaves with an Agrobacterium cell
suspension. (D) Relative HbrCAD1 expression levels in different samples. Data are shown as Log2 (fold-change), with the expression of HbrCAD1
from the pair pBI121 + 35S:HbrCAD1 set to 1.
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Results

Overview of small RNA sequencing from
reaction wood

We constructed nine small RNA libraries from different wood

tissues (NW, TW, and OW) to explore the role of miRNAs in wood

development in rubber trees. We obtained between 10.15 and 14.50

million raw reads after sequencing. We removed low-quality reads

and removed adapters to yield 9.86 to 14.35 million clean reads with

a length ranging from 18 to 30 nucleotides (nt) (Table 1).

We aligned the clean reads against the rubber tree reference

genome with Bowtie2 and used RSEM software to estimate read

counts per gene model. We successfully mapped from 5,936,751 to

9,992,003 reads to the rubber tree genome, or 89.53%-93.80% of all

clean reads across the nine small RNA libraries (Table 1). We then

removed all reads mapping to tRNA (transfer RNA), snoRNA

(small nucleolar RNA) and snRNA (small nuclear RNA) loci. We

focused on the remaining unannotated reads. We observed a peak

for 21-nt sRNAs, representing >14% of all candidates unannotated
Frontiers in Plant Science 05
sRNAs in the libraries, with a second peak for 24-nt sRNAs (from

10% to 13%; Figure 2).

Annotation of known and novel miRNAs
expressed in reaction wood

We compared the unannotated sRNAs identified above to all

miRNAs or their pre-miRNAs deposited in miRBase to identify

known and novel miRNAs. We identified 22 (NW), 22 (TW), and

23 (OW) known miRNAs belonging to 21 miRNA families

(Figure 3A). Of these, 19 miRNAs were shared across the NW,

TW, and OW libraries (Figure 3B; Table S2). We determined that

the first base of these known miRNAs tended to be a uracil (U) for

18–22-nt miRNAs (Figure S4).

The known miRNA hbr-miR166, hbr-miR396, hbr-miR408, and

hbr-miR482 families were each represented by two members, while

the remaining miRNA families only had one member (Figure S5).

Furthermore, two miRNAs (hbr-miR6170 and hbr-miR6171) were

specific to OW (Figure S5), suggesting that each wood tissue is

associated with a slightly different set of miRNAs.
TABLE 1 Summary of reads from small RNA sequencing.

Sample Raw reads Clean reads Total sRNA Mapped sRNA Mapping ratio (%)

NW1 10,891,608 10,601,788 8,002,438 7,378,835 92.21%

NW2 14,495,357 14,353,830 11,160,172 9,992,003 89.53%

NW3 12,182,526 11,943,571 9,115,657 8,359,523 91.71%

TW1 10,151,849 9,858,994 6,329,046 5,936,751 93.80%

TW2 12,222,618 11,860,937 8,982,250 8,115,462 90.35%

TW3 13,032,187 12,697,455 9,391,865 8,629,289 91.88%

OW1 13,364,645 12,973,816 10,208,783 9,422,696 92.30%

OW2 11,209,112 10,839,323 6,835,678 6,268,583 91.70%

OW3 12,370,905 12,040,308 8,412,275 7,664,797 91.11%
FIGURE 2

Length distribution of miRNA sequences sequenced from Hevea brasiliensis reaction wood.
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The sequences failed to match known miRNAs or pre-miRNAs

were used to predict novel miRNA resulting in 89 novel miRNAs

with typical hairpin structure (Figure 3, S6). The first base of these

novel rubber tree miRNAs (18–30 nt in length) also largely started

with a uracil (Figure S7). Furthermore, we cloned and assigned

novel_28 to the miR482 family through BLAST search against other

species in the miRBase database. We then predicted the secondary

structure of novel_28 and compared its mature sequence to that of

other hbr-miR482 family members, which revealed novel_28 is a

new member of the hbr-miR482 family (Figures S6, S8). Thus, we

renamed novel_28 as hbr-miR482c.
Differentially abundant miRNAs

To investigate how miRNAs might regulate wood formation, we

quantified the abundance of all miRNAs as TPMs (transcripts per

million), followed by a comparison of miRNA abundance between the

tree wood types (|Fold change|≥2 and P ≤ 0.05). The OW vs. NW

comparison yielded 11 differentially abundant miRNAs, 5 for the TW

vs. NW comparison, and 2 for the TW vs. OW comparison. Of the five

differentially abundant miRNAs between TW and NW samples, three

were more abundant in TW and two were more abundant in NW

tissues. Similarly, 5 miRNAs were more accumulated in OW and 6

were more accumulated in NW tissues. Finally, one miRNA was more

abundant in each TW and OW tissue (Table S3).
Prediction of miRNA target genes

We predicted miRNA targets through psRNATarget (Dai et al.,

2018), which identifies transcripts with complementary sequences

to those of miRNA candidates. We independently calculated

Pearson’s correlation coefficients between the abundance of each

miRNA and the transcript levels of all rubber tree transcripts

obtained from a previous study (Meng et al., 2021). We

considered genes as candidate targets when their transcript levels

were negatively correlated (<–0.8) with miRNA abundance. In the

TW vs. NW comparison, we determined that 4 novel miRNAs have

the potential to target 10 genes, but no clear target could be
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identified for the novel_86 miRNA. Similarly, we identified 31

targets for 8 of the differentially abundant miRNAs in the OW vs.

NW comparison, with no predicted targets for the other three novel

miRNAs (Table S4). Further, we identified 11 target genes for the 2

differentially abundant miRNAs from the comparison between TW

and OW. We selected those potential targets with a negative

correlation of –0.8 or below with their associated miRNA,

resulting in 39 putative targets for 12 novel miRNAs (cor ≤ –0.8

and P ≤ 0.05) (Table S5).
Identification of genes co-expressed with
transcription factor genes involved in
rubber tree reaction wood formation

In the above list of target genes, we noticed that 53.85% (or 21 of

39) encode transcription factors (TFs; Figure S9). To define the putative

targets of the encoded TFs, we measured the Pearson’s correlation

coefficients (PCCs) between TF genes and all other rubber tree genes,

using RNA-seq data available at the NCGC (National Genomics Data

Center) under the accession numbers CRA004241 and CRA004243. A

KEGG pathway enrichment analysis showed that these co-expressed

targets are largely related to phenylpropanoid biosynthesis,

phenylalanine metabolism, and fatty acid biosynthesis (Figure S10).

These results suggest a central role for these TFs during reaction wood

formation under prolonged mechanical stress.
Differentially expressed mRNA-miRNA pairs
related to wood formation

We then explored how miRNA-mediated adjustment of

transcripts affected reaction wood development. Here, we focused

on target genes co-expressed with those TF genes that were

associated with phenylalanine metabolism or carotenoid

biosynthesis and constructed the underlying interaction network

(Figure S10, 4). Our above analysis predicted that hbr-miR482c

modulates the transcript levels of HbrCAD1, which is related to

phenylpropanoid biosynthesis. Similarly, novel_67 might modulate

the transcript levels of genes related to lignin biosynthesis by
A B

FIGURE 3

Numbers of miRNAs identified in different xylem tissues. (A) Known and novel miRNAs identified from small RNA sequencing of NW, TW, and OW
from 300-day rubber tree reaction wood. (B) Venn diagram showing the extent of overlap between known miRNAs in each tissue type (NW, TW, and
OW) from 300-day rubber tree reaction wood.
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targeting C3H-type zinc finger TF family members (Figure 4);

novel_93 was predicted to modulate the transcript levels of genes

related to phenylalanine metabolism. In this network, hbr-miR482c

and novel_76 each targeted two genes involved in wood formation.

The C3H, FAR1 (FAR-RED IMPAIRED RESPONSE 1), bZIP, and

MYB TF families possibly play vital functions in wood growth from

our miRNA-TF-mRNA network. The target genes co-expressed

with these TF genes, such as fatty acyl-CoA reductase 1 (FAR1,

gene-GH714_004418), cinnamyl-alcohol dehydrogenase (CAD1),

and p-coumarate 3-hydroxylase (C3H, gene-GH714_027993), were

involved in carotenoid biosynthesis. We thus propose that the

miRNA-TF-mRNA regulatory network described here may play a
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significant role in adjusting the molecular events necessary for

reaction wood development in rubber tree. The expression levels

of these genes and associated miRNAs are shown in Figure 5.

We wished to confirm the transcript levels of miRNAs and their

target genes estimated from the RNA-seq datasets by a reverse

transcription quantitative PCR (RT-qPCR) analysis of the same RNA

samples. We observed a generally comparable trend in the

accumulation of most miRNAs and their target genes between RT-

qPCR and RNA-seq data in the OW, NW, and TW samples, although

the fold-change (FC) values from RNA-seq did not precisely match the

expression values obtained by RT-qPCR (Figure S3). These results

indicate the dependability of the sequencing data.
FIGURE 4

miRNA-transcription factor-mRNA networks associated with wood formation. Yellow octagons represent miRNAs, orange triangles represent
transcription factor genes, and blue ellipses represent genes.
A B

FIGURE 5

Expression profile of miRNAs and genes co-expressed with transcription factor genes. (A) Heatmap representation of the expression levels of genes
co-expressed with transcription factor genes in different tissues. (B) Heatmap representation of the expression profile of miRNAs in TW, OW, and
NW. Columns represent three different tissue types and rows represent different transcripts. Each square represents a transcript and the color
indicates the level of expression; red represents up-regulation and blue represents down-regulation.
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HbrCAD1 transcripts are cleaved
by hbr-miR482c

miRNAs can cause the cleavage of their target transcripts

between the 10th and 11th nucleotides of their target site

(Rhoades et al., 2002). In this study, we predicted from

bioinformatics analysis that hbr-miR482c may influence lignin

biosynthesis by targeting HbrCAD1 transcripts (Figure 4). To test

this hypothesis experimentally, we co-expressed the precursor of

hbr-miR482c and HbrCAD1, driven by the strong cauliflower

mosaic virus (35S) promoter, into N. benthamiana leaves by

Agrobacterium-mediated transient infiltration. As negative

controls, we co-infiltrated the construct expressing the HbrCAD1

and the empty effector vector (pBI121). We observed that HCAD1

transcript levels decrease significantly when the hbr-miR482c

precursor is co-expressed (Figure 1D). Thus we suspected that

HbrCAD1 transcripts might be the target gene of hbr-miR482c.
Discussion

A model for reaction wood formation in
rubber tree and other tree species

The scanning electron microscopy of the xylem samples from

reaction wood had confirmed that the tension wood had the

remarkably thick gelatinous layer (Figure S2). These results were

supported by earlier findings and confirmed a tension wood model

were constructed in our study (Sujan et al., 2015). We wished to

identify genes important for wood formation based on their

expression models in various wood tissues of rubber tree. We drew

heatmaps and constructed an interaction network to reveal

connections between genes related to phenylpropanoid biosynthesis.

Enriched KEGG terms underscored the involvement of

phenylpropanoid biosynthesis, phenylalanine metabolism, and

pyruvate metabolism in reaction wood formation. Indeed, our results

showed that the genes co-expressed with miRNA-targeted TF genes

were related to metabolism and physiological functions that all

contribute to reaction wood development. Similar consequences have

been reported in previous work, lending some support to our current

study (Li et al., 2013; Lv et al., 2021). Future work should pay close

attention to exploring the functions of noncoding RNAs and their

candidate target genes predicted from our RNA-seq results. In

particular, genes linked to wood development can now be identified

from their expression patterns across wood growth regions.
Integrated analysis of the
miRNA-TF-mRNA network

Important transcription factors associated with secondary

growth have been identified, such as members of the C3H and

MYB TF families (Demura and Fukuda, 2007; Zhong and Ye, 2009).

Zhang et al. reported that miRNAs may be connected to tension

wood development by regulating secondary cell wall biosynthesis in
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Moso bamboo (Phyllostachys edulis) (Zhang et al., 2018). In this

study, we determined that the transcript levels of 21 TF genes from

13 families changed over the course of wood bending (Figure S9).

Of these, TF genes from the C3H andMYB families may help adjust

the expression of genes related to phenylpropanoid biosynthesis

and possibly play a significant role in the wood development in

rubber tree. Previous research revealed that overexpressing the

MYB TF genes PtoMYB216, PtoMYB74, and PtoMYB92 from P.

tomentosa induced the expression of genes related to lignin

biosynthesis, resulting in thicker xylem cell walls, more xylem

layers, ectopic lignin deposition, and enhanced lignin contents by

13–50% (Qiaoyan et al., 2013; Li et al., 2015; Li et al., 2018).

Analogously, compared to the control, the expression levels of

lignin biosynthetic genes, lignification ability, xylem volume, and

lignin levels of C3H overexpressed in Arabidopsis all increased

(Fornalé et al., 2015). We also observed that C3H-type zinc finger

TF family members possibly take part in wood development by

regulating the transcript levels of GLUCOSYLTRANSFERASE (GT)

(gene-GH714_027993), which is associated with cellulose

biosynthesis. This observation underscores the significance of

C3H family members during plant development.
miRNA regulaged key genes in wood
formation pathway

The proteins that are thought to catalyze glucan-chain

elongation in cellulose and callose biosynthesis are processive GTs

that belong to GT2 family. In Arabidopsis, 10 to 12 GT2 family

members form CESA (cellulose synthase catalytic subunit) and

callose synthase (Yang et al., 2016). Moreover, GTs are a vital

component of wood development. For instance, in Arabidopsis,

CesA8 participates in secondary cell wall formation, as its loss-of-

function mutation produced plants with a delicate stem phenotype

(Taylor et al., 1999; Taylor et al., 2000; Taylor et al., 2003). Similarly,

a mutation in rice CesA8 caused a dramatic decrease in the cellulose

content of secondary cell walls, resulting in a brittle culm phenotype

(Zhang et al., 2009; Song et al., 2013). Meng et al. found that

HbrCesA8, which is related to cellulose biosynthesis, may

participate in reaction wood formation in rubber tree (Meng

et al., 2021). These findings support our miRNA-mRNA model

for rubber tree wood formation. Our multiomics-based approach

produced a post transcription network of which several nodes are

regulated by novel_67, which possibly affects some target genes

during wood development.

The expression levels of CAD, 4CL, peroxidase (POD), and

CAFFEATE O-METHYLTRANSFERASE (COMT) are specifically

linked to lignin composition (Do et al., 2007; Wagner et al., 2009;

Vanholme et al., 2010; Chanoca et al., 2019). Here, we showed that

HbrCAD1 transcript levels are less abundant in OW tissues compared

to NW, suggesting that HbrCAD1-catalyzed reactions might

contribute less to wood formation in OW relative to NW tissues.

Previous studies have shown that repressing PAL, CAD, or other

enzymes of the lignin biosynthetic pathway may cause decreased

lignin content (Chanoca et al., 2019). Furthermore, in Arabidopsis,

studies have indicated that single or double knockout mutants in PODs
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representatively resulted in a small but significant decrease in lignin

content and altered lignin biosynthesis in inflorescence stalks,

indicating that modulating POD expression levels may affect lignin

composition (Herrero et al., 2013; Barros et al., 2015). In general, we

hypothesize that the expression pattern of HbrCAD1 contributes to

establishing the difference in lignin levels across tissue types.
Conclusions

Based on the small RNA data obtained from wood tissues

collected from rubber tree, we identified 114 miRNAs (25 known

and 89 novel) present in 300-day reaction wood. We also

established a network linking miRNAs, their putative TF target

genes, and the genes that are co-expressed with these TF genes in

the context of cellulose biosynthesis. Finally, we revealed the

interaction landscape of these three regulatory layers in adjusting

reaction wood growth and validated the network in wood formation

of rubber trees. In summary, we described target genes associated

with wood development in rubber tree and studied their post-

transcriptional regulation. These results will provide the theoretical

basis to clarify miRNA-mediated post-transcriptional mechanisms

during wood growth and development in rubber trees.
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