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Marı́a Paz Jerez1, José Ortiz1, Catalina Castro1,
Elizabeth Escobar1, Carolina Sanhueza1,
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Chenopodium quinoa Willd. is a native species that originated in the High Andes

plateau (Altiplano) and its cultivation spread out to the south of Chile. Because of

the different edaphoclimatic characteristics of both regions, soils from Altiplano

accumulated higher levels of nitrate (NO−
3) than in the south of Chile, where soils

favor ammonium (NH4
+) accumulation. To elucidate whether C. quinoa

ecotypes differ in several physiological and biochemical parameters related to

their capacity to assimilate NO−
3 and NH4

+, juvenile plants of Socaire (from

Altiplano) and Faro (from Lowland/South of Chile) were grown under different

sources of N (NO−
3 or NH4

+). Measurements of photosynthesis and foliar oxygen-

isotope fractionation were carried out, together with biochemical analyses, as

proxies for the analysis of plant performance or sensitivity to NH4
+. Overall, while

NH4
+ reduced the growth of Socaire, it induced higher biomass productivity and

increased protein synthesis, oxygen consumption, and cytochrome oxidase

activity in Faro. We discussed that ATP yield from respiration in Faro could

promote protein production from assimilated NH4
+ to benefit its growth. The

characterization of this differential sensitivity of both quinoa ecotypes for NH4
+

contributes to a better understanding of nutritional aspects driving plant

primary productivity.

KEYWORDS

ammonium, nitrate, ammonium-toxicity, landraces, photosynthetic performance, C

metabolism, oxygen-isotope fractionation, alternative- oxidase
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Introduction

Carbon (C) assimilation and release in plants are key plant

biochemical processes for global primary productivity. It is

dependent on multiple processes ranging from photosynthesis,

which absorbs energy from sunlight to build carbohydrates, to

aerobic cellular respiration, which releases metabolic energy to be

captured by the cell in the form of ATP during mitochondrial

oxidative phosphorylation (Del-Saz et al., 2018; O’Leary et al.,

2019). Both photosynthesis and respiration and, thus, plant

growth are dependent on nitrogen (N) plant status (Miller and

Cramer, 2005). This essential macronutrient is mostly uptaken from

soils by roots in different inorganic forms (Miller and Cramer, 2005;

Kant et al., 2011; Xu et al., 2012). Nitrate (NO−
3 ) can be a dominant

form of N in arid and semi-arid regions with basic and aerated soils,

where alkali compounds are accumulated. Conversely, NH4
+ is a

common N source in regions with high precipitations and acidic

soils, where soluble basic molecules including NO−
3 are leached

(Luzio et al., 2002; Blake, 2005; Miller and Cramer, 2005; Hachiya

and Sakakibara, 2017). Several studies suggest that climate

variations could change the ratios of the inorganic forms of N

(NO−
3 and NH4

+) available for plants (Myers et al., 2014; Coskun et

al., 2016; Greaver et al., 2016; Schittek et al., 2016; Ackerman et al.,

2019). Climate change may potentially increase NH4
+ over NO−

3 by

slowing down the rate of nitrification (the aerobic oxidation of

NH4
+ to NO−

3 ) (Auyeung et al., 2015). Precisely, the decrease in

rainfall, together with an increase in temperature and a decrease of

pH in soils, could compromise biological nitrification rather than

denitrification, altering the availability of inorganic forms of N in

soils (Breuer et al., 2002; Barnard et al., 2006; Auyeung et al., 2015;

Coskun et al., 2016; Greaver et al., 2016; Daryanto et al., 2019).

Compared to NO−
3 , NH4

+ assimilation entails a lower energy

cost, and can be beneficial for plant growth in many circumstances,

including elevated levels of CO2 (Rubio-Asensio and Bloom, 2017).

However, some plants are sensitive to NH4
+ due to its toxicity,

displaying growth suppression and chlorosis (Rubio-Asensio et al.,

2015). Alterations in photosynthesis and PSII performance have

been described in plants growing under NH4
+ because of increased

synthesis of reactive oxygen species (ROS) (Zhu et al., 2000; Guo

et al., 2005; Alencar et al., 2019). Regarding respiration, several

studies have shown increases in O2 consumption in plants growing

under NH+
4 as the sole N source (Rigano et al., 1996; Britto et al.,

2001; Escobar et al., 2006). It was suggested that exposure to NH4
+

could alter respiratory activity in leaves for the benefit of redox

homeostasis through the modulation of the activities of the

cytochrome oxidase pathway (COP) and the non-phosphorylating

alternative oxidase pathway (AOP; Rigano et al., 1996; Britto et al.,

2001; Escobar et al., 2006; Ortiz et al., 2020), which can be measured

in vivo by mass spectrometry (Del-Saz et al., 2018). However, no

previous studies have characterized the respiratory activities of COP

and AOP in plants grown under different N sources.

Chenopodium quinoa Willd. (Amaranthaceae family) is an

important crop for food security worldwide (FAO, 2011). It has

been reported that quinoa was originated in the Altiplano of the

Andes (3500 m.a.s.l., shared by Peru, Bolivia, and Chile) and spread

out to Southern Chile by the Inca Empire (Martinez et al., 2009).
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However, it has recently been suggested that highland and lowland/

coastal plants were domesticated independently in these

environments (Planella et al., 2015; Jarvis et al., 2017; Maughan

et al., 2019). In the Altiplano, quinoa plants deal with extreme

drought, high-flux solar radiation, very strong daytime temperature

changes, limited volume of annual rainfall (150–300 mm/year), and

saline-alkali soils (Garcıá et al., 2007; Cárdenas-Castillo et al., 2021;

Rascón et al., 2021). In the South of Chile, quinoa plants face acidic

soils, uneven N content in the soil, and rainfall ranging from 500 to

1,500 mm/year (Luzio et al., 2010; Bascuñán-Godoy et al., 2018).

Previous studies described that NO−
3 availability is an important

factor that helps determine differences between these ecotypes at both

biochemical and metabolic levels (Pinto-Irish et al., 2020). These

authors found that the Andean ecotype displayed a more efficient

mechanism of NO−
3 uptake than the southern ecotype, displaying a

higher level of proteins in leaves and roots. Additionally, seeds

presented higher levels of amino acids, and metabolites from

shikimate, ornithine, purine, and nicotinamide metabolism. It

remains to be determined whether the N source is a factor that

may lead to different plant physiological performance. It has been

described that alternative respiration plays different roles under

abiotic stress conditions (Del-Saz et al., 2018) depending on plant

species or genotypes (Florez-Sarasa et al., 2016; Del-Saz et al., 2018;

Del-Saz et al., 2021). Bearing in mind that Chile is one of the most

climatically diverse places on the planet, there is a need to

characterize respiration metabolism under different scenarios of N

forms available for uptake. In this sense, quinoa is an optimal species

because the distribution of this species is geographically wide in Chile

and diverse ecotypes have been described (Bazile et al., 2014).

In the present research, we categorized two places in Chile with

a different predominance of NO−
3 or NH4

+ forms (Luzio et al., 2010)

according to the existence of a longitudinal gradient of pH from the

North (alkaline) to the South (acidic) of this country (SoilGrids,

2021). We performed measurements of photosynthesis, oxygen-

isotope fractionation, total soluble sugars, starch, NH4
+, protein,

chlorophylls, and betacyanin contents in two ecotypes of quinoa

plants from Altiplano (Socaire) and South of Chile (Faro) grown

under different N sources as proxies for the evaluation of plant

performance or sensitivity to NH4
+. Thus, our main objective was to

characterize plant respiratory parameters in leaves of both C.

quinoa ecotypes grown under NO−
3 and NH4

+. Secondly, we

discuss possible respiratory differences based on other

biochemical parameters related to plant performance and N

assimilation that help to provide first insights into the regulation

of the respiratory pathways by this nutrient.
Materials and methods

Plant material

Seeds of two Chilean ecotypes of C. quinoa (Willd.) from

contrasting agro-ecological origins were used in the experiments:

Socaire from the Chilean Altiplano (Socaire, 23°35’31.58” S, 67°

53’17.69” W, and 3,500 m.a.s.l.) and the Lowland/Southern coastal

Faro ecotype (Chillan, 36°35’ 43.2” S, 72°04’ 39.9”W and 140 m.a.s.l.).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1070472
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jerez et al. 10.3389/fpls.2023.1070472
Seeds of Socaire were collected in a private field (23°34′S 67°54′W,

3,500 m.a.s.l.). The soil in the zone is basic (pH between 7.8 and 8.8)

and the total percent and available N were 0.09% and 46 mg/kg,

respectively. Soil and climate characterizations of the zone can be found

in Garcıá et al. (2007). Faro seeds were collected in Chillan at “El Nogal

Experimental Station” (36°35’ 43.2” S, 72°04’ 39.9”Wand 140 m.a.s.l.).

The pH of the soil was approximately 4.5, and the total percent and

available N were 0.01% and 44 mg/kg, respectively. Soil and climate

characterizations in this station are found in Fischer et al. (2013) and

Stolpe (2006). Seeds of both ecotypes (Socaire and Faro) were collected

in summer (February) in each location (in Socaire soils and in Chillan

soils, respectively). Seeds of both ecotypes are included in the National

Seed Bank of Chile managed by the Genetic Resources section of the

National Institute of Agriculture Research (http://163.247.128.32/

gringlobal/search.aspx, INIA-Intihuasi Vicuña, Chile).
Determination of optimal N supply

In order to compare the performance of both ecotypes under NO−
3

andNH4
+, we established an optimal N concentration for plant growth.

We set up biomass curves under the supply of different amounts of N,

using NO−
3 as a referential condition because it is generally the

preferred N source for plants without toxic effects. Germinated seeds

of both ecotypes with similar lengths of emerged radicle were

transplanted into 700-ml pots containing sand:perlite (1:1), and six

concentrations of NO−
3 (using KNO3 salt) and NH4

+ [using (NH4)2SO4

salt] were tested: 0.0, 5.0, 10, 20, 40, and 100 mM. Ten pots (with three

plants each) were submitted to each N concentration of NO−
3 or NH4

+.

The conditions of the growing chamber and the irrigation solution

were the same as explained below. Thirty-day-old plants were collected

for total biomass determination.
Plant growing conditions

Socaire and Faro plants reached maximum biomass at 20 mM

of N (Supplementary Figure 1). Therefore, this amount was used for

the physiological experiments comparing N sources. Plants were

germinated and grown in pots supplied with 20 mM of NO−
3 or

NH4
+ using the following growing conditions: light intensity of 575

µmol/m2/s, 21°C/19°C day/night, 16 h light/8 h dark photoperiod,

and 75% relative humidity. Plants were supplied once with MS 407

nutrient medium described by Murashige and Skoog (1962), and

consisting of the following: 0.30 mMMgSO4.7H2O, 0.22 mMCaCl2,

0.62 mM KH2PO4, 12.7 mM KCl, 0.05 µM KI, 1.00 µM H3BO3, 1.32

µM MnSO4 . 4H2O, 0 . 30 µM ZnSO4 .7H2O , 0 . 01 µM

Na2MoO4.2H2O, 0.001 µM CuSO4.5H2O, 0.001 µM CoCl2.6H2O,

0.51 µM Na2.EDTA, 0.50 µM FeSO4.7H2O, 2.78 µM inositol, 0.02

µM nicotinic acid, 0.01 µM pyridoxine HCl, 0.001 µM thiamine-

HCl, and 0.13 µM Glycine. KNO3 and (NH4)2SO4 varied according

to the treatment. The pH was set at 5.8.

Thirty pots of 700 ml (three plants per pot) were used for each

N source and ecotype. The experiment was run in a completely

randomized design and additional plants were grown to prevent the

bordering effect. Juvenile plants were collected 30 days after sowing
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at midday. Harvested plants for biochemical analysis were

fractionated into belowground and aboveground (leaves and

biomass). The root samples were rinsed in distilled water and

dried with a paper towel. The tissue samples were frozen in liquid

N and then freeze-dried. Tissue was ground to a fine powder in

liquid N using a mortar and pestle and stored in Falcon tubes at

−80°C. Measurements were performed belowground and

aboveground, except for pigments that were performed in leaves.
Plant growth analyses

Images of plants and leaves submitted to the different

treatments were taken with the Scanner Epson Perfection V850

Pro Photo (Epson Corporation, San Jose, CA). The image

acquisition parameter was set to “high” accuracy (600 dpi; image

size 18 MB). Leaf area was measured through image analysis using

the ImageJ software (NIMH, Bethesda, Maryland, USA). Above and

belowground biomasses were determined by drying the tissues at

60°C for 48 h till constant weight.
Determination of the percentage of C and
N per dry matter

N and C elements were measured in the whole plant from the

different N treatments and ecotypes (n = 3). Briefly, plant tissue was

oven-dried at 60°C for 48 h and ground. A subsample of 5 mg was

weighed and stored in plastic vials. Samples were measured using

the Elemental Combustion System CHNS-O (Costech Analytical

Technologies Inc., Valentia, USA). C and N are reported as the

percentage of elements per dry matter.
Determination of total soluble sugars,
starch, and NSCs

We used above- and belowground tissue from each ecotype and N

source (n = 6). Changes in total soluble sugars (TSS), starch, and total

nonstructural carbon (NSC) in aerial and roots were assayed following

themethod ofMarquis et al. (1997). Total soluble sugars were separated

and extracted with methanol/chloroform/water according to and

determined by colorimetry using 2% phenol and sulfuric acid at 490

nm according toDickinson (1979) and Chow et al (2004). The insoluble

fraction that contains starch was hydrolyzed to glucose overnight using

a sodium acetate buffer and amyloglucosidase (Sigma-Aldrich 10115, St.

Louis, MO, USA) at 45°C and then measured with a phenol–sulfuric

acid reaction as in Marquis et al. (1997).
NH4
+ and protein quantification

Total soluble protein and ammonium contents were determined

in the above- and belowground tissue of the two quinoa ecotypes

studied. NH4
+ was determined according to Forster (1995).

Absorbance was measured at 660 nm in a spectrophotometer
frontiersin.org
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(Infinite 200 Pro, Tecan, Männedorf, Switzerland). We used the TCA/

acetone procedure for protein extraction (Wang et al., 2008). The

Quick Start Bradford Assay kit (Bradford, 1976) was used for protein

quantification using BSA as the standard protein (n = 4), according to

manufacturer instructions (Bio-Rad, Hercules, CA, USA).
Chlorophylls and betacyanins in leaves

Chlorophylls a and b were extracted from leaves of plants of all

treatments (n = 6) in 80% of acetone overnight and centrifuged at

12,000g for 10 min. The content of chlorophylls was determined at

664 and 647 nm following the method described by Lichtenthaler

and Buschmann (2001).

Betacyanins were extracted from leaves (n = 6) in water/

methanol and spectrophotometrically determined at 536 nm. The

betacyanin content of the plant aqueous extracts was estimated

according to Abderrahim et al. (2015).
Lipid peroxidation

The lipid peroxidation in the above- and belowground tissue of

the two quinoa ecotypes studied (n = 5) was determined in vitro by

estimating the formation of malondialdehyde (MDA) according to the

method described by Ortega-Villasante et al. (2005). Frozen leaf tissue

(0.1–0.2 g) was homogenized in 1 ml of TCA–TBA–HCl reagent [15%

(w/v)] trichloroacetic acid, 0.37% (w/v) 2-thiobarbituric acid, 0.25 M

HCl, and 0.01% butylated hydroxytoluene. After homogenization,

samples were incubated at 90°C for 30 min and centrifuged at 12,000 g

for 10 min. Absorbance was measured at 535 nm and 600 nm.
Gas exchange

Gas exchange measurements of net photosynthesis (AN) were

performed in leaves from both ecotypes and N sources in six plants

per treatment, using a portable photosynthesis system (Li-6400XT,

LI-COR Inc., Lincoln, NE, USA) equipped with a light source

(6200-02B LED, Li-Cor).

Light curves were run to determine the light saturation intensity

at which plants reached maximum photosynthesis. AN rates were

measured at mid-morning (between 11 a.m. and 1 p.m.) with the

gas exchange previously stabilized. Conditions in the leaf chamber

were as follows: block temperature of 25°C, 1,500 µmol photon m−2

s−1, an air flow of 300 (mol s−1), and a CO2 concentration (Ca) of

400 mol mol−1. Relative humidity ranged between 45% and 50%

and VPD ranged between 1.6 and 1.9 kPa. AN data were normalized

by the area of leaves (n = 6).
Respiration and oxygen-isotope
fractionation measurements

For respiratory measurements, leaves of quinoa plants, which

were grown at the University of the Balearic Islands under similar
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growing conditions, were placed in a 3-ml stainless-steel closed

cuvette and maintained at a constant temperature of 25°C. Air

samples were sequentially removed from the cuvette and fed into

the mass spectrometer (Delta XPlus; Thermo LCC, Bremen,

Germany). Changes in the 18O/16O ratios and O2 concentration

were obtained to calculate the oxygen-isotope fractionation and the

electron partitioning to the AOP (ta), allowing calculations of the in
vivo activities of AOP and COP as described in Del-Saz et al. (2017).

End point fractionation values of the AOP (Da) were determined in

leaves with a solution of 25 mM potassium cyanide (KCN) for 20

min. A value of 32.8 ± 0.69‰ (n = 3) was obtained in leaves of the

Faro ecotype. Owing to a limitation in the number of Socaire plants,

we assumed a similar value of Dc of 32.8‰. We also assumed a value

of 20.0‰ for the endpoint fractionation values of the COP (Dc) as

this has been shown to be constant in most leaves and species

examined (Ribas-Carbo et al., 2005). Values presented are the mean

of one measurement in four plants per ecotype that were performed

from 9 a.m. to 5 p.m. during five consecutive days.
Statistical analysis

For the determination of sufficient N source supply, we used

three-way ANOVA (level of significance p < 0.05) using ecotype,

source of N, and concentration as factors. Data from the effects of N

source (NO−
3 or NH4

+) on the different quinoa ecotypes (Socaire

and Faro) were analyzed by two-way ANOVA. Tukey HSD test was

used to identify means with significant differences (level of

significance p < 0.05).
Results

Growing under different N sources

The total dry biomass of both ecotypes enhanced with increased

N supply, until reaching mean maximum biomass values at 20 mM

N (Supplementary Figure 1). Consistently with previous results

published by Pinto-Irish et al. (2020), we considered 20 mM N as

optimal for growing conditions (because both ecotypes reached the

highest biomass either under NO−
3 or NH4

+). At higher

concentrations (40 and 100 mM), plant biomass decreased under

NO−
3 , and mortality increased under NH4

+; for this reason, these

data were omitted in Supplementary Figure 1. Considering that

NO−
3 is generally the preferred N source without deleterious effects,

our results focused on the comparison of the ecotypes under NH4
+

regarding their performance under NO−
3 .

The two-way ANOVA reveals interactions between ecotypes

(E) and nitrogen (N) source (E × N) in aboveground, belowground,

and total leaves biomass (Figure 1 and Table 1). Ecotypes presented

similar aboveground biomass under NO−
3 (Figures 1A, E); however,

under NH4
+ supply, Socaire showed a 72% reduction in plant

biomass, while Faro maintained similar values to those observed

under NO−
3 (p < 0.031) (Figures 1A, E). Regarding belowground

biomass, ecotypes exhibited a large contrasting response under

NH4
+ (E × N), with a 80% reduction in Socaire under NH4

+
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compared to NO−
3 , while a twofold increase (p < 0.001) was

observed in Faro (Figure 1C). Both the total leaf area and total

leaf biomass per plant (sum of all leaves) (Figures 1B, D, E)

correlated well with aboveground biomass. No differences in leaf

area or leaf biomass were observed between N sources in Faro.
C and N content under different N sources

The %C, %N, and the C:N ratio were significantly affected by E

× N interaction (Table 1). Both ecotypes presented similar %C

values under NO−
3 supply; however, their content was significantly

reduced under NH4
+ supply (p < 0.001) (Figure 2A).

Under both N sources, Socaire displayed an enhanced level of %

N compared to Faro (Figure 2B). A significant increase in %N was

observed in Socaire plants under NH4
+ compared to NO−

3

conditions. Contrastingly, Faro showed a similar %N under both

N sources. Under, the %N in Socaire was twice as high as in Faro.

The C:N ratio was higher in Faro than in Socaire at both

conditions. However, both ecotypes showed a significant decrease in

the C:N ratio under NH4
+, with the lowest values in

Socaire (Figure 2C).
NH4
+ and protein content under

different N sources

The two-way ANOVA revealed that NH4
+ content

belowground was affected by E × N interaction (p < 0.001). The

NH4
+ content in roots increased by 30% in Faro ecotype under

NH4
+ treatment compared to NH4

+, while it was maintained in

Socaire (Figure 3). Aboveground NH4
+ was not affected by N

sources and differences were based on E (p < 0.001).

The two-way ANOVA reveals that protein content at above-

and belowground (p < 0.001) tissues was affected by E × N
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interaction (Table 1 and Figures 3A, B). Under NO−
3 , protein level

was three times higher in Socaire than in Faro (in both above- and

belowground tissues). Under NH4
+, Faro showed a fourfold

increase in protein content in both shoot and root, while Socaire

showed an increase of 33% in protein content only aboveground.
Total soluble sugars, starch, and
nonstructural carbon

A non-significant E × N interaction was observed in the storage

of carbohydrates aboveground (normalized by dry weight) (p >

0.05); however, significant E × N interaction was observed for TSS,

starch, and NSC belowground (Table 1 and Figure 4).

In aboveground tissues (stem plus leaves), TSS tended to

increase under NH4
+ in both ecotypes and significant differences

were observed in Socaire (Figure 4A). Starch only depended on E

aboveground (p < 0.001) (Figure 3B). In belowground tissues, Faro

showed higher TSS and starch contents than Socaire under NO−
3

conditions (Figures 4D, E). Under NO−
3 , Faro showed the highest

values of NSC in both above- and belowground tissues. However, a

significant decrease in belowground NSC was observed under

NH4
+, while NSC values in the aboveground tissues reached

similar values to those observed in plants under NO−
3 (Figures 4C,

F). On the other hand, Socaire displays similar NSC values under

both sources of N (Figure 4). These results changed drastically when

they are interpreted as organs (Supplementary Figure 2), where

strong reductions were observed in NSC of Socaire under NH4
+ at

both aboveground tissues and roots.
Chlorophylls, betacyanins, and MDA

A significant E × N interaction was observed for chlorophylls,

betacyanins, and MDA (p < 0.001). Chlorophylls a and b increased
A B

D

E

C

FIGURE 1

Biometrical parameters: aboveground biomass (A), total leaf area (B), belowground biomass (C), total leaves biomass (D), and representative images
of whole plants and leaves (E) under different N sources in two ecotypes of C. quinoa. Plants were subjected to 20 mM NO−

3 or NH4
+ supply per 30

days. Values are means ± SE (n = 4). Different letters show statistical differences using two-way ANOVA considering ecotypes and source of N as
factors. Tukey HSD was used as a post-hoc test (p < 0.05).
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in Faro under NH4
+ compared to NO−

3 , while no significant changes

were observed in Socaire (Figures 5A, B). Regarding betacyanins, an

increase of 30% was observed in Socaire under NH4
+ compared to

NO3, displaying significantly higher values than those observed in

Faro (Figure 5C).

An increase of 50% in belowground MDA content was observed

in the Socaire ecotype under NH4
+ compared to NO−

3 (Figure 6),

while similar values were observed aboveground in comparison to

Faro under NO−
3 and NH4

+. Faro maintained MDA levels under

both N sources (Figure 6D).
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Gas exchange: photosynthesis

Both Faro and Socaire plants displayed similar AN rates in

leaves (normalized by area) under NO−
3 . Under NH4

+, AN was

approximately 50% higher in Socaire than in Faro (p <

0.05) (Figure 7).

Oxygen consumption and electron partitioning to the COP and

AOP under NO−
3 and NH4

+A significant E × N interaction was

observed in total O2 uptake (Vt) (p < 0.05) and in the electron

partitioning to the AOP (ta) (p < 0.05). There was a significant
TABLE 1 p-values (p < 0.05) and the size effects (h2; Eta squared) for the effects of E, N, and their interaction determined by two-way ANOVA analysis
on biometrics and physiological attributes: above- and belowground biomass, total leaves biomass, total leaves area, %C, %N, C:N ratio, NH4

+, protein,
TSS, starch, NSC, and MDA at both above- and belowground, Chlorophyll a and b, betacyanins, AN, Vtotal, ta, vcyt, and valt in leaves of two genotypes of
Chenopodium quinoa grown at two sources of nitrogen supplementation for 30 days.

Response variable p h2

E N E × N E N E × N

Aboveground biomass 0.044 0.162 0.031 0.166 0.081 0.191

Belowground biomass 0.579 0.162 <0.001 0.008 0.050 0.396

Leaves biomass 0.047 0.179 0.025 0.161 0.074 0.204

Leaves area 0.083 0.034 0.051 0.121 0.181 0.152

%C <0.001 <0.001 <0.001 0.086 0.431 0.108

%N <0.001 <0.001 <0.001 0.432 0.066 0.121

C:N ratio <0.001 <0.001 <0.001 0.206 0.420 0.013

NH+
4 aboveground <0.001 0.059 0.995 0.3533 0.0855 0.0000

NH4
+ belowground 0.122 0.993 0.005 0.083 0.000 0.267

Protein aboveground <0.001 <0.001 0.001 0.767 0.857 0.486

Protein belowground <0.001 <0.001 <0.001 0.106 0.279 0.297

TSS aboveground 0.2 <0.001 0.208 0.024 0.424 0.023

TSS belowground 0.003 <0.001 0.007 0.173 0.254 0.143

Starch aboveground <0.001 0.972 0.818 0.343 0.000 0.002

Starch belowground 0.011 0.038 <0.001 0.135 0.088 0.309

NSC aboveground 0.01 0.034 0.525 0.220 0.150 0.014

NSC belowground 0.003 <0.001 0.005 0.174 0.246 0.156

Chl a <0.001 <0.001 <0.001 0.200 0.227 0.251

Chl b <0.001 <0.001 <0.001 0.198 0.219 0.249

Betacyanins 0.558 0.844 <0.001 0.007 0.001 0.361

MDA aboveground 0.099 0.073 0.966 0.119 0.139 0.000

MDA belowground 0.283 0.026 0.013 0.034 0.144 0.179

AN leaves 0.012 0.077 0.198 0.215 0.1082 0.0577

Vtotal 0.17 0.012 0.811 0.085 0.276 0.003

ta <0.001 0.039 0.02 0.327 0.100 0.131

vcyt 0.555 0.005 0.415 0.015 0.322 0.028

valt 0.009 0.188 0.277 0.282 0.072 0.049
The h2 values were calculated from the information in the ANOVA table as h2 = Treatment sum of square/(treatment sum of square + total sum of squares). The factor with the largest effect size
is indicated in bold.
The underlined values show a significant effect (p < 0.05).
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reduction (by 30%) of ta in Faro under NH4
+ compared to NO−

3 ,

together with a significant increase (by 80%) in Vt via COP

(Figure 8). No respiratory changes were observed in Socaire (E ×

N, p < 0.05) (Figure 8).
Discussion

The Chenopodiaceae family has been considered a NO−
3

specialist and sensitive to NH4
+ (Smirnoff et al., 1984; Britto and

Kronzucker, 2002); however, our data showed evidence that the

preference for N source depends on the geographical origin of the

genotype. When comparing ecotypes under NO−
3 source, Socaire

showed a physiological performance more linked to the N

metabolism than Faro, through higher %N, NH4
+, protein, and

pigment levels, together with higher root biomass and lower content

of MDA (Figures 1–3, 5, 6). However, Socaire showed NH4
+-

sensitive growth, even under low NH4
+ concentrations, and under

different NO−
3 :NH4

+ ratios (Figure 1; Supplementary Figures 3, 4).

Conversely, Faro showed similar biomass accumulation under both

NO−
3 or NH4

+ sources.
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Maintaining high C levels is critical to tolerate NH4
+ in soils due

to an increased requirement for C skeletons that allow the

incorporation of NH4
+ into organic molecules (Wang et al.,

2022). Despite the fact that a significant decrease in the C:N ratio

was observed in both ecotypes under NH4
+ (Figure 2), except for

TSS in Faro roots, non-significant changes in non-structural

carbohydrates were observed under both N sources (Figure 4),

which correlated well with the maintenance of photosynthesis in

both ecotypes (Figure 7). Thus, the biomass restriction in the

Socaire ecotype under NH4
+ source appeared to be unrelated to

either photosynthesis or carbon storage impairment, which has

been observed in other species previously (Ariz et al., 2013;

Podgórska et al., 2013; Bittsánszky et al., 2015). Therefore, we

searched for other mechanisms that could explain these

responses, such as the AOP and COP in vivo activities.

Oxygen uptake and the electron partitioning to the AOP were

similar in Socaire under both N sources (Figure 8). In contrast to

Socaire, Faro showed better yielding of respiration by higher Vt via

COP (Figure 8). A possible explanation for this phenomenon can be

based on the occurrence of a “futile ammonium cycling” (Hachiya

and Noguchi, 2011), in which the increase of NH4
+
fluxes across the
A

B

C

FIGURE 2

Percent of C (A), N (B), and C:N ratio (C) under different N sources (NO−
3 and NH4

+) in two ecotypes of C. quinoa. Plants were subjected to 20 mM
NO−

3 or NH4
+ supply per 30 days. Values are means ± SE (n = 3). Different letters show statistical differences using two-way ANOVA considering

ecotypes and source of N as factors. Tukey HSD was used as a post-hoc test (p < 0.05).
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plasma membrane is accompanied by H+ extrusion (by the plasma

membrane proton-ATPase) to maintain the cytosolic charge

balance (Britto and Kronzucker, 2005; Szczerba et al., 2008). This

would require large amounts of ATP, helping to explain the increase

in O2 consumption via COP (Kronzucker et al., 2001). In fact, an

active H+ efflux to avoid cytosolic acidification and to release both

proton and acid compounds from inside the cell to the rhizosphere

was related to an ammonium-dependent increase of O2 uptake in

species adapted to acidic soils (Findenegg, 1987; Britto and

Kronzucker, 2002; Zhu et al., 2009). Thus, it seems that increases
Frontiers in Plant Science 08
in Vt and COP activity can contribute to adaptation to acidic soils.

On top of this, cell replication and the production of proteins are

processes that require the highest quantities of ATP in plants (Liang

et al., 2015). In this sense, higher rates of COP in Faro could be a key

strategy for the benefit of energy and protein production required

for plant development.

Interestingly, Socaire displayed a significantly higher valt than

Faro under NH4
+ source. Previous studies suggested a role for AOP

during the dissipation of reducing equivalents in cytosol to

compensate for the lack of the reductant sink exerted by nitrate
A B

C D

FIGURE 3

NH4
+ and protein content at aboveground (A, B) and belowground (C, D) under different N sources in two ecotypes of C. quinoa. Plants were

subjected to 20 mM NH4
+ or NH4

+ supply per 30 days. Values are means ± SE (n = 4). Different letters show statistical differences using two-way
ANOVA considering ecotypes and source of N as factors. Tukey HSD was used as a post-hoc test (p < 0.05).
A B

D E F

C

FIGURE 4

Effect of N source on TSS (A, D), starch (B, E), and NSC (C, F) in aboveground and belowground tissues in juvenile plants of two ecotypes of C.
quinoa. Plants were subjected to 20 mM NO−

3 or NH4
+ supply per 30 days. Values are means ± SE (n = 5). Different letters show statistical

differences using two-way ANOVA considering ecotypes and source of N as factors. Tukey HSD was used as a post-hoc test (p < 0.05).
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reductase under NH4
+ source (Britto et al., 2002; Escobar et al.,

2006; Hachiya et al., 2010). Furthermore, the AOP has an important

role in dissipating NAD(P)H, under different stress conditions

when the COP is impaired, including those prevailing in high

mountain habitats, such as cold, low oxygen, and high light

intensities (Angert et al., 2012; Jayawardhane et al., 2020). In this

sense, the AOP could be more important in Socaire (from Andes

mountains) than in Faro (from Lowlands).

In roots, the higher increase of protein content under NH4
+

compared to NO−
3 in Faro (Figure 3) could contribute to avoid

toxicity by NH4
+. This is consistent with lower changes in lipid

peroxidation under NH4
+ compared to Socaire (Figure 6). It has

been proposed that the accumulation of NH4
+ in shoots is more

deleterious than in roots (Hachiya et al., 2021); however, the NH4
+

per se is not the inductor of ammonium toxicity, but rather an

excessive proton production by the incorporation of NH4
+ in Glu to

form Gln by glutamine synthase in the chloroplast (Fangmeier et al.,

1994; Tobin and Yamaya, 2001; Hofmockel et al., 2010; Hachiya

et al., 2021). Thus, the high production of amino acids and proteins

in roots could act as a barrier to prevent the transport of NH4
+ to
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shoots (Hachiya et al., 2021). The increase of proteins in Faro roots

under NH4
+ compared to NO−

3 was related to TTS and starch

reductions, supporting the idea that an enhanced NH4
+ assimilation

takes place belowground in this ecotype (Figure 4). These changes

could be related to the donor of C skeletons for the different

processes associated with respiration and protein production

(glycolysis, tricarboxylic acid cycle, and amino acid production)

(De la Peña et al., 2019). Besides amino acids and proteins,

pigments are also sinks of NH4
+. Socaire, which showed the

highest %N under NH4
+, displayed small changes in protein

content under NH4
+ supply compared to NO−

3 (Figure 3), but

presented alternative sinks to cope with the excess of NH4
+.

Betacyanins (Figure 5C) constitute a class of secondary

metabolites in Quinoa derived from the amino acids Tyr and

DOPA (Sepúlveda-Jiménez et al., 2005). Betacyanins have been

related to scavenging ROS under stress conditions but have been

inversely related to growth in quinoa (Bascuñán-Godoy et al.,

2018). In contrast to Socaire, Faro increased chlorophylls (derived

from Glu) under NH4
+ compared to NO−

3 (Figures 5A, B).

Chlorophyll has been positively related to both performance of

PSII and growth in quinoa (Bascuñán-Godoy et al., 2018). The

improvement of betacyanins in Socaire, and the higher level of valt,

when compared to Faro, may indicate a role of AOP in dissipating

energy excess from chloroplasts, helping to maintain homeostasis of

metabolism under NH4
+ source. In this sense, a described “trade-
A

B

C

FIGURE 5

The effect of N sources in Chlorophyll a (A), Chlorophyll b (B), and
Betacyanins (C) in leaves of two Quinoa ecotypes. Plants were
subjected to 20 mM NO−

3 or NH4
+ supply per 30 days. Values are

means ± SE (n = 6). Different letters show statistical differences
using two-way ANOVA considering ecotypes and source of N as
factors. Tukey HSD was used as a post-hoc test (p < 0.05).
A

B

FIGURE 6

Lipid peroxidation (measured as MDA) at aboveground (A) and
belowground (B) under different N sources in two ecotypes of C.
quinoa. Plants were subjected to 20 mM NO−

3 or NH4
+ supply per

30 days. Values are means ± SE (n = 5). Different letters show
statistical differences using two-way ANOVA considering ecotypes
and source of N as factors. Tukey HSD was used as a post-hoc test
(p < 0.05).
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off” between the traits of resistance and productivity (Bechtold and

Field, 2018) may help to explain the growth reduction observed in

Socaire. Conversely, the maintenance of photosynthesis, an

enhancement in Vt, and the production of soluble proteins and

pigments related to the light collection in Faro suggest the existence

of a tight metabolic coordination between chloroplasts and

mitochondria. The application of “omics” technologies in future

experiments would shed more light on important metabolite

pathways for plant performance under NH4
+ source.
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Conclusions

Considering that agroecosystems have the potential to store a

vast amount of C, in this work, we highlight the role of soil N

sources in the ability to grow and store biomass in two ecotypes of

C. quinoa. Similar physiological performance was observed in

Andean and Lowland ecotypes under NO−
3 source, but under

NH4
+, these showed contrasting C:N relationships that were not

related to photosynthesis, but to biomass accumulation and ATP
A B

DC

FIGURE 8

The effect of N sources in total respiration (Vtotal) (A), cytochrome pathway activity (vcyt) (B), the electron partitioning to the AOP (ta) (C), and
alternative pathway activity (valt) (D) in leaves of two quinoa ecotypes. Plants were subjected to 20 mM NO−

3 or NH4
+ supply per 30 days. Values are

means ± SE (n = 6). Different letters show statistical differences using two-way ANOVA considering ecotypes and source of N as factors. Tukey HSD
was used as a post-hoc test (p < 0.05).
FIGURE 7

Net photosynthesis rates were taken in well-developed leaves on juvenile plants of two ecotypes of quinoa. Plants were subjected to 20 mM NO−
3 or

NH4
+ supply per 30 days. Bars are means ± SD (n = 6). Two-way ANOVA and Tukey test analysis (p < 0.05) were used for to detect differences.
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yield of respiration. The enhanced respiration via COP in Faro

under NH4
+ turned out to be beneficial through the increased

energy efficiency of respiration, allowing it to maintain growth, in

contrast to Socaire, whose biomass was severely affected. Studies

under field conditions and using a wider range of genotypes of each

environment are necessary to establish that our findings are a

general response. In view of the suggestions about alterations in

the N forms available for plants due to climatic variations,

increasing our understanding of plant nutrition is relevant,

especially in places acutely threatened by climate change, such as

the Andean zone.
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SUPPLEMENTARY FIGURE 1

Total dry biomass under different N sources and concentrations in two
ecotypes of C. quinoa. Plants were subjected to different NO−

3 or NH+
4

supplies from 0 to 100 mM per 30 days. Values are means ± SE (n = 7).
Different letters show statistical differences using three-way ANOVA

considering ecotypes and source of N and concentration as factors (Tukey
test; p < 0.05).

SUPPLEMENTARY FIGURE 2

C allocation between aboveground and belowground in response to NO−
3

and NH+
4 . TSS (A, D), Starch (B, E) and NSC (C, F) in aboveground and

belowground tissues in whole juvenile plants of two ecotypes of C. quinoa.

Bars are means ± SD (n = 5). Two-way ANOVA of and Tukey test analysis (p <
0.05) were used to detect differences.

SUPPLEMENTARY FIGURE 3

Total dry biomass of Socaire under different NH+
4 concentrations compared

to 20mMNO−
3 . Plants were grown at different N treatments per 30 days at the

same growing conditions described in Material and Methods. Values are

means ± SE (n = 5). Different letters show statistical differences using
three-way ANOVA considering ecotypes and source of N and

concentration as factors (Tukey test; p < 0.05).

SUPPLEMENTARY FIGURE 4

Percent changes in total dry biomass of Socaire (orange) and Faro (blue) under
different NO−

3 : NH+
4 ratios in two ecotypes of C. quinoa. Plants were subjected

to 20 mM of N, differing NO−
3 or NH+

4 ratios at the same growing conditions
described in Material and Methods per 40 days. The studied proportions were:

100:0; 75:25; 50/50; 25:75 and 0:100 of NO−
3 : NH+

4 ratios. The 100:0 of NO−
3 :

NH+
4 ratio was used as Control (100%). Tukey test was used to identify

differences regarding 100: 0 NO−
3 : NH

+
4 (p < 0.05). Values are means ± SE (n

= 5). For each genotype, ns indicates no significant difference, * indicates p <
0.05, ** indicates p < 0.01, and *** indicates p < 0.001.
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