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Texcoco, Estado de México, Mexico, 3UMR 0588 BIOFORA, INRAE Val de Loire, Cedex,
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Introduction: Phenotypic plasticity (PP) could be an important short-term

mechanism to modify physiological and morphological traits in response to

climate change and global warming, particularly for high-mountain tree species.

The objective was to evaluate PP response of growth ring traits to temperature

and precipitation in Pinus hartwegii Lindl. populations located at the ends of its

elevational gradient on two volcanic mountains in central Mexico (La Malinche

and Nevado de Toluca).

Methods: Increment cores collected from 274 P. hartwegii trees were used to

estimate their PP through reaction norms (RN), which relate the ring width and

density traits with climate variables (temperature and precipitation). We

estimated the trees’ sensitivity (significant RN) to climatic variables, as well as

the relative proportion of RN with positive and negative slope. We also estimated

the relationship between the PP of ring width and density traits using correlation

and Principal Component (PC) analyses.

Results: Over 70% of all trees showed significant RN to growing season and

winter temperatures for at least one growth ring trait, with a similar proportion of

significant RN at both ends of the gradient on both mountains. Ring width traits

had mostly negative RN, while ring density traits tended to have positive RN.

Frequency of negative RN decreased from lower to higher elevation for most

traits. Average PP was higher at the lower end of the gradient, especially on LM,

both for ring width and ring density traits, although high intrapopulation variation

in PP was found on both mountains.

Discussion: Results indicate that P. hartwegii presents spatially differentiated

plastic responses in width and density components of radial growth. PP was

particularly strong at the lower elevation, which has higher temperature and

water stress conditions, putting these populations at risk from the continuing

global warming driven by climate change.
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1 Introduction

Over the past decades, ambient temperature has increased

(IPCC, 2021) and levels and patterns of precipitation have

changed. As a result, it is estimated that heat waves (periods of

abnormally hot temperatures with a duration of days or weeks) and

droughts are becoming more intense at a global level, with

important effects on terrestrial ecosystems (Feeley et al., 2020).

Organisms must adjust the mechanisms of their physiological (e.g.,

carbon fixation, development of new tissue, etc.) and ecological

processes (regeneration, facilitation, etc.) through adaptation and/

or acclimatization to these changing conditions, migrate, or face the

risk of extinction (Futuyma and Moreno, 1988). Migration and the

development of new adaptive mechanisms are relatively slow, long-

term processes; therefore, acclimatization mechanisms, which occur

in the short term, are especially relevant in this scenario (Matesanz

et al., 2010).

Acclimatization mechanisms involve fine changes to an

organism’s development, morphology, and physiology. In plants,

this can lead to increased tolerance to abiotic stress (Matesanz et al.,

2010) and with it, an increase in survival and persistence under new

climate scenarios. These mechanisms are manifested through

phenotypic plasticity (PP), the capacity of a genotype to present

different phenotypes in response to changes in its environment

(Bradshaw, 1965; DeWitt and Scheiner, 2004). There are different

approaches and methods to estimate the degree of PP in specific

functional traits of interest (Sultán, 2003; Valladares et al., 2006;

Escobar-Sandoval et al., 2021). One of these approaches is the

estimation of reaction norms (RN), which quantify PP as the

regression of an individual’s phenotypic trait in response to

changes in a given environmental variable (Valladares et al., 2006;

Sultán, 2007; Arnold et al., 2019). Thus, RN is a graphical model

(linear or curvilinear regression) that shows the genotype ×

environment interaction and indicates (through its slope or

curve) the degree of PP (Valladares et al., 2006).

High mountain forest ecosystems are especially vulnerable to

climate change due to their harsh abiotic conditions, including

poorly developed soil, high UV radiation, presence of snow, and

low temperatures (Körner, 2007). As such, PP plays a particularly

important role in the development and survival of sessile and

long-lived organisms, like high-mountain tree species, facing

adverse environmental conditions (Bradshaw, 1965; Silvestre

et al., 2012; Santini et al., 2018). Given their long lifespan, trees

confront innumerable climate fluctuations with distinct frequency

and intensity (Rehfeldt et al., 2001), making them more likely to

encounter extreme climate events which are reflected through the

modification of their functional traits. Furthermore, these

modifications are physically recorded as growth rings. Radial
Abbreviations: RW, Ring width; LWW, Latewood width; RD, Overall ring

density; EWD, Earlywood density; MAXD, Maximum density; TAP, Total

annual precipitation; MAT, Mean annual temperature; TGS, Growing season

temperature; Tspring, Spring mean temperature; Twinter, Winter temperature;

TMIN, Mean minimum temperature; TMAX, Mean maximum temperature;

ARI, Aridity index; RN, Reaction norm.
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growth is one of the best indicators of PP, since both the width

and the density of the tissue formed during xylogenesis are

particularly sensitive to fluctuations in ambient temperature and

rainfall (Engelbrecht, 2012; Meng et al., 2020) and can be

quantified by measuring the growth rings. Plant species that are

found growing at the limits of their elevational distribution

generally present more plastic responses in their functional

traits as a survival mechanism (Sultán, 1987), given the

variability in temperature, levels, and patterns of rainfall, and

their interaction with elevation. It is thus expected that radial

growth of trees will be impacted differently depending on their

position along an elevational gradient (Fritts, 1976; Körner, 2007;

Carrillo-Arizmendi et al., 2022a).

The tree species Pinus hartwegii has attracted particular

interest in the context of climate change (Pérez-Suárez et al.,

2021), due to its wide altitudinal distribution range (3,000 – 4,000

m). Furthermore, it is the tree species with the highest recorded

elevational distribution, with records at 4,200 m. Therefore, P.

hartwegii has developed great resistance to the adverse conditions

for arboreal growth (poor soils, extreme low temperatures, short

growing seasons, etc.), present at high elevations in Mexico,

Guatemala, and Honduras (Neuner, 2014; Alfaro-Ramıŕez et al.,

2017; Manzanilla-Quiñones et al., 2019). Since its biological and

ecological processes are adapted to extreme low temperatures, P.

hartwegii has been pointed out as a particularly vulnerable tree

species to global warming. Under projected climate trends, the

distribution area suitable for P. hartwegii could be reduced by 30-

70% in the next 50 years (Alfaro-Ramıŕez et al., 2020). This will

undoubtedly have important consequences in many different

contexts and spatial scales. On one hand, P. hartwegii forests

have high value in the regulation of local and regional climate, in

addition to other important ecological services. Furthermore, this

species is used for construction and furniture making, with

strong impact on the local and regional economies (Sánchez,

2008; Torres-Rojo, 2015; Moctezuma-López and Flores, 2020).

Therefore, understanding the potential impact of global warming

on the radial growth of P. hartwegii and the role of PP to adjust

the growth response of trees would allow the establishment of

efficient preservation and management strategies.

In the present study, we therefore aimed to determine the

degree of PP of growth ring traits in P. hartwegii trees under

harsh environmental conditions at the ends of its elevational

distribution on two mountains in central Mexico — “La

Malinche” (LM) and “Nevado de Toluca” (NT). For this, we

proposed the hypothesis that the PP will show differential

adaptive mechanisms between growth ring traits (i.e., width and

density components) in response to interannual fluctuations in

temperature and rainfall at the extremes of the elevational gradient,

with compensatory effects at the population level, but not

necessarily at the individual level. Our specific objectives were to:

(1) evaluate PP in growth ring traits of P. hartwegii trees in response

to interannual climate fluctuation; (2) determine the potential

interrelationships between the PP of width and density traits in

the growth rings; and (3) evaluate the effect of elevation and

mountain on the expression of PP in growth ring traits to the

climatic factors.
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2 Materials and methods

2.1 Study sites

This study was carried out on two mountains in central Mexico:

“La Malinche” (LM) and “Nevado de Toluca” (NT) (Figure 1). LM

is located between the states of Tlaxcala and Puebla and has a

maximum elevation of 4,461 m (Acosta-Pérez and Kong, 1991). NT

is located in Mexico State, between the municipalities of Toluca and

Tenango del Valle, and has a maximum elevation of 4,680 m

(Körner and Paulsen, 2004). Both mountains belong to the Trans-

Mexican Volcanic Belt, however, there is a distance between the

mountains of 181.6 km. On both mountains there are widely

different conditions between the lower and upper extremes of the

elevational gradient. The data from the model ClimateNA (Wang

et al., 2016) indicate that the mean annual temperature (MAT) of

LM is 9.7°C at the lower end of the elevation gradient (Table 1) and

6.6°C at the upper end. The mean annual precipitation (MAP) at

the lower end of LM it is 1208.2 mm and at the upper end is 1132.1
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mm. On NT, the MAT is 9.9°C at the lower end and 5.5°C at the

upper, and MAP is 1458.3 mm at the lower end and 1299.1 mm at

the upper (Figure 1). In addition to P. hartwegii, which is the species

with the highest elevation distribution range (3500 - 4200), other

tree species can be found on both mountains, such as P.

montezumae Lamb. (3,000 - 3,200 m) and Abies religiosa Kunth

Schltdl. & Cham. (2,800 - 3,400 m); as well as grasslands, alpine

zacatonal, and highland paramo (4,000 - 4,400 m) (CONANP,

2013a; CONANP, 2013b).
2.2 Sampling design and
sample processing

On each mountain, sampling plots were selected at the lower

and upper limits of the elevational distribution gradient of P.

hartwegii. Three sites were sampled at each elevation on LM and

two per elevation on NT (Table 1). The sites were selected based on

the criteria of being low competition stands of mature P. hartwegii
TABLE 1 Geographic coordinates, number, and age of the trees sampled per site at the extremes of the elevation gradient on La Malinche (LM) and
Nevado de Toluca (NT) mountain.

Mountain Elevation end Elevation (m)
Latitude
(N) Longitude (O)

Samples
(No. Trees) Average age (age range) in years

LM Lower

3,472 19°15.509’ 98°1.7050’ 25 38 (64-24)

3,444 19°15.560’ 98°1.8550’ 25 30 (24-62)

3,363 19°15.785’ 98°12.138’ 25 68 (35-100)

LM Upper

4,100 19°24.091’ 98°03.370’ 25 49 (33-59)

3,966 19°14.474’ 98°1.9980’ 25 78 (34-158)

3,943 19°14.432’ 98°1.8920’ 25 34 (80-18)

NT Lower
3,400 19°7.3630’ 99°46.335’ 33 82 (16-104)

3,379 19°10.461’ 99°48.754’ 31 85 (63-139)

NT Upper
4,126 19°7.2610’ 99°45.229’ 30 79 (37-169)

4,000 19°9.4520’ 99°48.449’ 30 79 (33-147)
FIGURE 1

Left: Geographical location of the study area including the two mountain sites, Nevado de Toluca and La Malinche. Right: Climate diagrams with
monthly mean temperature and precipitation values at the geographic coordinates sampled at the lower (black) and upper (gray) ends of the
elevation gradient on the two mountains. Data were extracted from the ClimateNA database for the 1965-2016 period.
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trees, without evidence of disturbance due to logging, wildfire, or

pests. At each site, we selected between 25 and 31 dominant adult

trees with a straight trunk, over 40 cm in diameter at breast height.

For each selected tree, we extracted a wood core from the bark to the

center of the trunk using a 5-mm diameter increment borer

(HAGLOF ®, Suiza) at 1.30 m height above the ground. We

sampled a total of 274 trees.

The collected increment cores were air-dried at room

temperature and longitudinally sawn to obtain 1.57 mm thick

transverse sections. Then, the resin was extracted with a bath in a

water-pentane solution (2:1) for 48 hours. Each sample was exposed

to a source of X-rays for 25 min in the wood densitometry

laboratory of the Institut National de Recherche sur L’agriculture,

L’alimentation et L’environnement, INRAe Val de Loire Center,

Orleans, France. This was based on the procedure developed by

Polge (1978) and described by Mothe et al. (1998). Then,

microdensity profiles were obtained by scanning the X-ray images

at a resolution of 4,000 dpi with the software WinDendro, Regent

Instruments Inc. (Guay et al., 1992). This software converts the gray

levels of the pixels detected in the X-rays image to density values,

calibrated with a standard of known physical and optical density

(Schweingruber, 1996).
2.3 Annual tree-growth ring traits
and detrending

The microdensity profiles obtained from the growth cores were

imported into R (“R Development Core Team”, 2018). Then, we

calculated the following traits related to the width and density of the
Frontiers in Plant Science 04
growth rings: overall ring width (RW: mm), earlywood ring width

(EWW: mm) latewood ring width (LWW: mm), overall mean ring

density (RD: g cm-3), earlywood ring density (EWD: g cm-3),

latewood ring density (LWD: g cm-3), maximum density (MAXD:

g cm-3) and minimum density (MIND: g cm-3). This was done using

R functions designed to obtain these variables (Rozenberg

et al., 2002).

Cambial age influences width of growth rings and in general the

properties of wood, especially during the juvenile stage (the first 10

to 25 rings). Although it is a natural effect of tree growth, this effect

can introduce bias in the subsequent statistical analyses. We

therefore removed the effect of cambial age by adjusting the raw

data using the regional curve standardization (RCS) procedure, in

the four elevation plots, as described below (Figure 2) (Esper

et al., 2003).

Following Esper et al. (2003) and Rozenberg et al. (2020), we

compared three methods to eliminate the effect of cambial age: raw

data (no adjustment), residual RCS, and RCS ratio. Of these, the

residual methods had the best fit to eliminate the effect of cambial age;

we obtained one age-related curve for the lower end and another for

the upper end for each of the mountains (LM and NT) (Figure 2). In

each of the populations, we calculated the expressed population signal

(EPS) statistic, which serves to determine the statistical quality of the

chronology. The EPS value has a range of 0 to 1.0, where a value of

0.85 is considered acceptable (Buras, 2017). In all of our study sites,

the EPS for RW was 0.88 or higher, above the reference point used to

evaluate the quality of the chronologies. The residual chronologies

and the time-dependent RCS ratios were obtained from the means of

individual series. For the above analyses, we used the

dendrochronology library for R, dplR (Bunn, 2008).
FIGURE 2

Fit of cambial age to the raw data of the time series for all width and density traits of growth rings of P. hartwegii trees located at the upper and
lower ends of their elevation gradient on two mountains in central Mexico, “La Malinche” and “Nevado de Toluca”.
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2.4 Climate variables

The climate variables for each sampling location were obtained

with the software ClimateNA model v6.30 (Wang et al., 2016),

which includes monthly data as well as annual mean (MAT),

maximum (TMAX) and minimum (TMIN) temperature and total

annual precipitation (TAP) for the 1964-2016 period. We used the

monthly temperature data to calculate the mean temperature of the

growing season (TGS; months of April through September), spring

mean temperature (Tspring; months of April through June), and

winter mean temperature (Twinter; months of January through

March), The annual aridity index (ARI) was calculated with the

equation ARI = TAP/(MAT+10) (Fniguire et al., 2014). To verify

that the data from the ClimateNA software accurately reflected the

conditions at the study locations, we calculated the correlation

between the ClimateNA data, and the data recorded by local

meteorological stations. The meteorological stations were

“Amaxac de Guerrero” (No. 29042; 3,320 m of elevation) and

“Acxotla del Monte” (No. 29161; at 2,443 m of elevation) for LM

and “Tenango” (No. 15122; at 2,858 m) and “Nevado de Toluca”

(No. 15062; at 4,283 m) meteorological stations for NT. In all cases,

there were very strong correlations between MAT and TAP values

(r > 0.97), except in the case of TAP with meteorological station No.

29161, which had a moderate correlation (r = 0.59).
2.5 Statistical analysis

All the statistical analyses were done using the adjusted data for

the growth ring traits for the 1964–2016 period. To reduce the

number of variables to analyze (RW, EWW, LWW, RD, EWD,

LWD, MAXD, MIND), we estimate the Pearson correlation

coefficients among the growth ring traits, using the mean values

per sampling site per year (showed in annexes). Pairs of variables

that were strongly correlated (r > 0.9) were consolidated by selecting

only one representative variable; this resulted in the selection of five

variables for subsequent analyses: RW, LWW, RD, EWD

and MAXD.

The RN for each ring trait to each climate variable was

calculated for each individual tree based on the linear model Yi =

b1 + b2Xi + ϵij, where Yi is the phenotypic trait (ring trait); Xi is the

climate variable, b1 is the intercept, b2 is the slope (the PP value),

and ϵij is the model residuals. The model was fit using the lm

function of R, from the R stats package (R Core Team, 2018). For

each RN, we obtained the probability value (p) as well as the

adjusted R2 value as an indicator of the goodness of fit of the linear

model. When p < 0.05 we considered that the slope of the RN was

significantly different from zero, demonstrating that the ring trait

showed PP, and the regression coefficient (b2) was a quantitative

estimate of the amount of PP of the ring trait to the climate variable

for the corresponding tree. For the following statistical analyses, we

only worked with the climatic variables: “TGS” and “Twinter”,

because they were the ones with which P. hartwegii showed

greater PP through the traits of its growth rings. It should also be

noted that a previous research (Carrillo-Arizmendi et al., 2022b)
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carried out correlations between these two climatic variables

indicating that there is a relatively weak relationship (0.460 ≤ |r|

≤ 0.619), such that these two variables are not providing redundant

information, so we consider it is appropriate to include both in

order to compare the plastic response of trees to these two climate

variables and determine which one might be more reliable across

populations. The relative frequency of trees with significant RN

(RNS) for each growth ring trait-climate variable was calculated for

each mountain/elevation combination (hereafter, “population”), to

compare the overall “sensitivity” in PP of ring traits to different

climate variables at the lower and upper end of the elevation

gradient on both mountains. In addition, to identify possible

relationships and/or compensatory effects on PP of growth ring

traits, a correlation coefficient analysis and a principal component

analysis (PCA) of the PP values for the ring traits were carried out.

We also calculated the proportion of trees with positive and

negative slope of RNS for each ring trait. With these data, we

determined whether there were differences in the proportion of

trees with positive and negative RNS between the two ends of the

elevation gradient (lower and upper) and between mountains (LM

and NT). The Glimmix procedure in SAS (SAS 9.4, 2019), with the

link function for binary variables (proportions) was used for this

purpose. A two-way ANOVA (SAS 9.4) was also done to evaluate

the effect of elevation, mountain, and their interaction on the

average slope value (b2) of the positive and negative RNS for each

ring trait and climate variable to determine whether the populations

differed in the magnitude of PP.
3 Results

3.1 PP in growth ring traits of
P. hartwegii trees in response to
interannual climate fluctuation

Growth ring traits were more “sensitive” to the climate

variables TGS and Twinter; that is, they had the overall largest

number of significant RN with these two climate variables

(Table 2) and a high percentage of trees with significant RN for

more than one ring trait (Figure 3). Overall, the percentage of

trees with significant RN for a growth ring trait was around 50%

for both TGS and Twinter across elevations and mountains,

except for the RN related with Twinter at low elevation in LM

mountain, were it was only 44.3% (Table 2). None of the other

climate variables had similar percentages of significant RN across

all populations. For instance, there was a high percentage of

significant RN with mean annual temperature (MAT) in three

populations but not at high elevation in LM. TMAX was also

important in three populations, but not at low elevation in LM

and TAP was important only at the upper end in NT mountain.

Given that TGS and Twinter had the highest proportion of trees

with significant RN, the remaining analyses were done only for

these two climate variables. Looking at individual growth ring

traits, the proportion of trees with significant RN to TGS and

Twinter differed only for RW, between mountains at the lower
frontiersin.org

https://doi.org/10.3389/fpls.2023.1072638
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Carrillo-Arizmendi et al. 10.3389/fpls.2023.1072638
end, with a lower percentage on LM mountain (Table 2). Despite

these differences among populations, the overall proportion of

trees with significant RN in response to TGS and Twinter was high

on both mountains; over 70% of trees had significant RN for at

least one growth ring trait, and over 40% of trees in all

populations showed significant RN for three or more growth

ring traits (Figure 3).
3.2 Relationships between the PP of
growth ring traits

The correlation matrix and the first two PC obtained from the

PCA showed that for both climatic variables (TGS and Twinter), the

PP of growth ring traits was separated in three distinctive groups:

ring and latewood width in one group, ring and earlywood density

in other, and maximum density in the third group (Figure 4). In the

correlation matrix of PP values associated with both TGS and

Twinter, RW and LWW were strongly correlated, as well as RD

and EWD.In general, the PP of growth ring traits in response to the

two climate variables (TGS and Twinter) showed a similar structure.

Thus, the PP of each ring variable in response to TGS was strongly
Frontiers in Plant Science 06
correlated (r > 0.87) with the PP of the same variables in response to

Twinter. The exception was LWW, where the correlation was

slightly weaker (r = 0.76).
3.3 Effect of elevation and mountain on the
expression of PP in growth ring traits

A wide variation in PP was found for growth ring traits (RW,

RD, and MAXD) across populations in both TGS and Twinter-

related NR (Figure 5). Even though significant RN ranged from

negative to positive slopes for all traits, negative trends were more

common for RW and positive trends for RD and MAXD, except for

MAXD at low elevation in NT, where negative trends were

predominant. In addition, there were significant elevation and

mountain effects on both the proportion of trees with negative

and positive RN and the mean absolute PP value for a given growth

ring trait (Figure 5). The proportion of trees with negative trends in

their RN generally decreased from the lower to the upper end for all

traits in both mountains, although the effect of elevation was more

pronounced for RW and MAXD at the NT mountain for both

climate variables (Figure 5). Overall, mean absolute PP values were

higher on LM than on NT for both positive (in RD) and negative (in
TABLE 2 Percentage of trees with significant reaction norms (RNS) for growth ring traits in relation to different climate variables at the two ends of
the elevation gradient of Pinus hartwegii on two mountains in central Mexico.

Lower end Higher end

RW LWW RD EWD MAXD Overall RW LWW RD EWD MAXD Overall

La Malinche

TAP 42.7 32.0 41.3 41.3 25.3 36.5 6.7 8.0 13.3 9.3 9.3 9.3

MAT 49.3 46.7 53.3 46.7 48.0 48.8 32.0 28.0 38.7 41.3 41.3 36.3

TGS 42.7 X 38.7 64.0 57.3 49.3 50.4 53.3 44.0 50.7 52.0 49.3 49.9

Tspring 30.7 26.7 42.7 44.0 30.7 34.9 46.7 40.0 42.7 42.7 41.3 42.7

Twinter 49.3 X 37.3 45.3 44.0 46.7 44.3 54.7 46.7 49.3 48.0 42.7 48.2

TMIN 20.0 18.7 16.0 18.7 18.7 18.4 8.0 8.0 8.0 12.0 4.0 8.0

TMAX 29.3 32.0 40.0 38.7 37.3 35.5 60.0 45.3 57.3 56.0 48.0 53.3

ARI 13.3 9.3 14.7 20.0 8.0 13.1 2.7 2.7 8.0 2.7 2.7 3.8

Nevado de Toluca

TAP 25.0 15.6 26.6 26.6 9.4 20.6 66.7 58.3 56.7 53.3 48.3 56.7

MAT 76.6 59.4 53.1 57.8 60.9 61.6 65.0 56.7 55.0 51.7 41.7 54.0

TGS 69.8 X 57.8 48.4 54.7 53.1 56.6 58.3 53.3 45.0 41.7 40.0 47.7

Tspring 45.3 32.8 25.0 37.5 42.2 36.6 35.0 41.7 23.3 25.0 35.0 32.0

Twinter 73.4 X 54.7 42.2 56.3 53.1 55.9 60.0 51.7 50.0 58.3 48.3 53.7

TMIN 71.9 54.7 45.3 51.6 53.1 55.3 58.3 50.0 35.0 45.0 45.0 46.7

TMAX 64.1 53.1 45.3 50.0 51.6 52.8 66.7 58.3 51.7 56.7 51.7 57.0

ARI 0.0 4.7 3.1 1.6 3.1 2.5 10.0 3.3 0.0 0.0 5.0 3.7
fro
RW, Ring width; LWW, Latewood width; RD, Overall ring density; EWD, Earlywood density; MAXD, Maximum density; TAP, Total annual precipitation (mm); MAT, Mean annual
temperature (°C); TGS, Growing season temperature (°C); Tspring, Spring mean temperature (°C); Twinter, Winter temperature (°C); TMIN, Mean minimum temperature (°C); TMAX, Mean
maximum temperature (°C); ARI, Aridity index. x Differences between mountain; P = 0.05.
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RW and RD) RN (Figure 5). Also, at the lower end of the elevation

gradient mean absolute PP values were higher than at the upper end

for both positive (in RD) and negative (RW) RN. The effect of

elevation on the absolute PP value of negative RN for RWwas larger

at the LMmountain (Figure 5). Mean absolute PP values for MAXD

showed a similar trend, but differences between mountains and

elevations were not significant.
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4 Discussion

4.1 PP response of growth ring traits to
climate variables in P. hartwegii

Overall, radial growth of P. hartwegii trees was more sensitive to

temperature than to precipitation. This coincides with a previous
BA

FIGURE 4

By-plot of the first two principal components (PC1 and PC2) obtained from the PC analysis of phenotypic plasticity (PP) values for growth ring traits
(RW, LWW, RD, EWD and MAXD) associated with growing season temperature (A) and winter temperature (B).
B

C

D

A

FIGURE 3

Relative frequency of P. hartwegii trees with significant reaction norms (RN) for one or more growth ring traits at each elevational extreme (lower:
red; upper: blue) on each mountain; La Malinche (LM; A, C) and Nevado de Toluca (NT; B, D) in response to the growing-season temperature
(TGS; A, B) and winter temperature (Twinter; C, D). The number 0 represents the proportion of trees with no significant RN for any growth ring trait;
the other numbers represent the proportion of trees with significant RN for 1, 2, 3, 4 or all 5 growth ring traits. All bars add up to 100% in each series.
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report by Soto-Carrasco (2021) who analyzed the PP of P. hartwegii

on three other mountains in Mexico (Mount Tláloc, Pico de Orizaba,

and Cofre de Perote). In that study, precipitation was the climate

variable with the fewest significant RN for growth ring traits. Liu et al.

(2015) mentioned that high-mountain trees generally have low

sensitivity to precipitation, although they did not propose any

explanation for this finding. Hendrickson et al. (2004) and Storkey

(2004) mention that, under highmountain conditions, temperature is

the main factor influencing most physiological processes and

phenotypic changes in plants; precipitation seems to be a limiting

factor only for some processes associated with xylogenesis,

particularly during extreme drought events (Pompa-Garcıá and

Venegas-González, 2016; Camarero and Gutiérrez, 2017; Correa-

Dıáz et al., 2020; Pompa-Garcıá et al., 2021).
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In our study, the differences in tree sensitivity to climatic variables

could be also due to differences in the degree of micro-spatial

variation in temperature versus precipitation at the study locations.

Ambient temperature is more homogeneous within a single location,

associated mainly with site elevation, such that the value recorded at

the locality level better reflects the growing conditions of all trees on

it, while rainfall (and soil moisture) is very heterogeneous over short

distances (Gómez-Plaza et al., 2000; Wundram et al., 2010; Yang

et al., 2018). Therefore, total annual precipitation values recorded at

the site level do not necessarily reflect the moisture conditions for

each tree, potentially making it more difficult to detect significant RN

for them. It is worth mentioning that, although our analyses do not

consider the possibility of analyzing multi-annual or lagged effects, it

would be interesting to do so in future research and thus learn how
FIGURE 5

Absolute value of the slope of positive and negative RN of growth ring traits to TGS (growing season temperature) and Twinter (mean winter
temperature) at the lower and upper ends of the elevation gradient of P. hartwegii on La Malinche (LM) and Nevado de Toluca (NT) mountains. In
the graph for each ring trait, we include the average value of phenotypic plasticity (PP) and the proportion of trees with positive and negative RN (pie
charts). RW: Ring width (mm); RD: Ring density (g cm-3); MAXD: Maximum density (g cm-3).
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individual trees within a population differ in the reaction norms of

ring growth traits in response to interannual fluctuation of climatic

variables, especially precipitation.

On the other hand, the sensitivity of ring growth traits to the

inter-annual climate fluctuations also shows differences between

mountains. There was a higher overall proportion of significant RN

on NT than on LM (Table 2). The difference between mountains

could be due to differences in the range or variation coefficient of

climate variables, differences in age of trees, or to other site-level

factors affecting the response of radial growth to fluctuation of

climate variables. Although the variation coefficient of TAP was

similar between the two mountains (14%), the average value of TAP

was higher on NT and there was a larger difference between the

lower and higher elevations (1458.3 mm and 1299.1 mm,

respectively, compared to 1132.1 mm at the lower end and 1208.2

mm at the upper end of the elevation gradient on LM). On NT there

was also a higher variation coefficient of MAT than on LM, which

could have facilitated the detection of the PP response of trees in

this mountain. In addition, trees sampled at NT were older, on

average, than at LM (Table 1), which could suggest that sensitivity

of radial growth to climate fluctuation increases with age in P.

hartwegii trees. Similar findings have been reported in other studies,

particularly for high mountain species (Voelker, 2011; Dominik

et al., 2019). Besides, the proportion of trees with significant RN was

similar at both ends of the altitudinal range, despite the broader

inter-annual climate fluctuation at high elevation. At the upper end

of the gradient, there was a higher variation coefficient in MAT and

TAP, than at the lower end. However, environmental conditions at

the upper end of the gradient are far more restrictive for vegetative

growth (sub-optimal temperature and lower depth and moisture

retention capacity of soil), limiting the response of trees to

fluctuations in temperature and precipitation (Holtmeier and

Broll, 2005; Silva et al., 2016). Despite the results obtained, we

suggest that for further research, the variation of conditions within a

year or the global variation between years should be considered, to

corroborate that phenotypic plasticity does not refer only to the

response to average climatic conditions from one year to another.
4.2 Relationships between the PP of
growth ring traits in P. hartwegii

The similar correlation matrix and separation of growth ring

traits in three distinctive groups, based on the PP response to TGS

and Twinter, shows a strong relationship between the temperature

variables at different periods of the year and their effect on the

growth ring traits. In other words, the PP values for any growth ring

trait in response to TGS and with Twinter were strongly correlated.

However, the separation of ring width traits from ring density traits,

and these from maximum density indicates a different plastic

response, globally, of these traits to the temperature variables. The

positive loadings of PC2 to RD and EWD, and negative loadings to

RW and LWW show contrasting RN in these traits to increasing

temperature; a positive response for the first group and a negative

one for the second. MAXD also showed, globally, a negative

response to increasing temperature, more pronounced in the RN
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to Twinter. This contrasting response in RN for width vs. density

seems to indicate a compensatory effect in resource allocation at the

global (population) level in response to increasing temperature,

reducing cell division and size, and increasing cell wall deposition

(Rozenberg et al., 2020). A reduction in the rates of cell division

and/or the diameter of the cells (less ring width) and an increase in

the thickness of the cell wall (higher wood density) with increasing

temperature, could allow an increase in the functionality and

hydraulic security of the xylem in response to increased water

stress (Rozenberg et al., 2020). Several authors have pointed out that

during episodes of drought or increased temperature,

evapotranspiration increases, and with it, the water demand of

the trees, increasing the vulnerability of the xylem to hydraulic

failures due to cavitation and embolism (Bréda et al., 2006; Meinzer

et al., 2010; McDowell et al., 2011).

On the other hand, the correlation analysis also indicated a low

and generally non-significant correlation between the PP values for

width and density traits. Thus, despite the potential compensatory

effect between growth ring traits in response to temperature described

at the population level, at the tree level this compensatory effect

between growth ring traits was not shown. This is corroborated by the

broad within-population variation in PP values found in all growth

ring traits in the P. hartwegii populations sampled. Thus, trees

differed in their PP response; they seem to have a predominant

response in one or few growth ring traits, and for those with a

simultaneous significant RN for several growth ring traits, the PP

response was relatively independent for width and density traits.

Soto-Carrasco (2021), found similar results, arguing that trees

exposed to similar variations in temperature can respond differently

in the PP of their radial growth traits. Similarly, Pélabon et al. (2013),

indicate that high intra-population variation is common and reflects

variation in the specific physiological processes associated with the

phenotypic traits involved. Escobar-Sandoval et al. (2021), mention

that variation in the direction of the slope of the RN among trees

within the same population is possible because different trees are

positioned at different points along the response curve to the climate

variable, i.e., they inherently have different RN. In addition, it has

been reported that the RN of the majority of phenotypic traits

analyzed in plants over wide temperature intervals are generally

expected to be curvilinear (Arnold et al., 2019). As such, the

detection of individual trees whose significant RN have signs

opposite to the general trend could suggest differences among the

trees in their position on the temperature curve. However, the results

could also be due to the effect of other micro-environmental factors

intrinsic to each population (e.g., micro-spatial variation in

temperature or soil moisture), as has been described by other

authors (Diamond and Kingsolver, 2012; Tammaru and Teder,

2012; Smoliński et al., 2020). Natural tree populations are

characterized by high phenotypic variation in adaptive traits, due to

their inherently high genetic variation and high pollen dispersal

capacity, which enables them to cope with environmental changes.

If phenotypic plasticity has any adaptive role, it would also be

expected to be highly variable; thus, genetic variation in climatic

sensitivity for radial tree growth is also a possible cause of the

variation in PP within populations at both mountains (Rolland

et al., 1999; Lebourgeois et al., 2010).
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4.3 Effect of elevation and mountain on
the expression of PP in growth ring traits

The general trend of higher frequency of negative RN for ring

width traits and positive RN for ring density traits was most noted

at the upper end of the elevation gradient on both mountains. This

partially coincides with the results of Soto-Carrasco (2021), who

mentions that on the mountain Pico de Orizaba there was a higher

proportion of positive RN for ring density traits at higher elevation.

However, in her study, the percentage of positive and negative RN

for the ring width traits did not differ between elevations. We also

found several differences in the average PP values between the ends

of the elevation gradient sampled. The highest values of PP for both

positive and negative RN were found at the lower elevation on both

mountains, for most growth ring traits in response to both TGS and

Twinter. These results coincide with the report by Escobar-

Sandoval et al. (2021), where the absolute value of the mean slope

of positive and negative RN were generally higher at the lower end

of the gradient of the three mountains analyzed in that study, which

was attributed to the differences in the mean temperature between

the two extremes of the elevation gradient. In our study, the average

value of TGS during the study period was 2.0°C higher at the lower

than at the upper end of the elevation gradient on LM and 4.3°C

higher on NT. The difference in Twinter was even more marked,

with 5.3°C and 4.5°C higher temperatures at the lower than at the

higher elevation on LM and NT, respectively. A change in the slope

of the RN (i.e., a change in the phenotypic plasticity) associated with

a change in the range of TGS and Twinter values implies that the RN

associated with temperature are not linear (Arnold et al., 2019).

This is the case in many biological systems (Camarero and

Gutiérrez, 2004; Körner, 2012). It is common, for example, that

as temperature increases, the rate of change (slope of the regression

line) of metabolic processes is modified (Arnold et al., 2019;

Escobar-Sandoval et al., 2021). It is therefore possible that the

higher phenotypic plasticity observed at the lower end of the

gradient is due to the average position of the population with

respect to a non-linear RN of these traits to TGS and Twinter, as has

been pointed out in other studies with different growth traits in

several plant species (Valladares et al., 2006; Arnold et al., 2019).

The elevational differences in PP were generally more

pronounced on LM than on NT, associated in most cases with

the higher average PP value at the lower end of LM (Figure 5). A

steeper slope of the negative RN for ring width and the positive RN

for ring density indicates that trees on LM are adjusting more

rapidly their radial growth traits to the temperature increase.

Gilmore (1968), mentions that the factors that favor a reduction

in ring width generally increase their density, mainly in the second

half of the radial growth period (Büntgen et al., 2010; Bouriaud

et al., 2015). The differences between mountains, therefore, suggest

different needs and/or responses of trees, as a function of the micro-

environmental conditions on them. Even though temperature at the

lower end was similar on both mountains, LM has lower annual

precipitation, particularly during the summer and early fall

(Figure 1), so trees might be experiencing higher water stress.

This differential response is also shown in the wide intra-

population variation in the sign and magnitude of the RN slopes
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found in all growth ring traits, with individuals that differed from

the general population trends, discussed before. Although it is

difficult to identify the main factors involved in this PP variation,

the importance of PP variation as a buffering mechanism of the

impact of climate change at the population level is evident, as has

been mentioned by Escobar-Sandoval et al. (2021).

Therefore, P. hartwegii trees seem to have the capacity to show

plastic responses with different growth ring traits under climate

change-driven environmental variation. Populations at the lower

extreme of the elevation gradient showed higher proportion of trees

with negative trends in their RN to temperature and higher absolute

values of PP for growth ring traits, so they seem to be experiencing

higher impacts from global warming and climate change. However, the

wide intrapopulation variation detected in PP of these traits offers

positive perspectives on the short-term response capacity of these

populations, as PP may serve as a mechanism to buffer the impact of

interannual fluctuation and the gradual increase in temperature in the

medium term. However, it is fundamental to obtain additional

information with respect to the physiological mechanisms associated

with this variation in PP, its possible genetic origin (Zacharias et al.,

2022) and the adaptive implications (DeWitt and Scheiner, 2004;

Ghalambor et al., 2007; Chown et al., 2008).
5 Conclusions

In this work we identified that ring width and density traits of

P. hartwegii were more sensitive to temperature than to

precipitation, which may be attributed to the lower variability or

higher spatial homogeneity of ambient temperature at the site

level. Despite the most restrictive environmental conditions at

higher elevations, radial growth of trees was similarly sensitive to

inter-annual climate fluctuation at both extremes of the

elevational distribution gradient. Plastic response of ring traits

to interannual fluctuation in temperature at different times during

the year was strongly interrelated, with a clear separation of ring

width from ring density traits. At the population level, a general

trend was distinguished, with a negative response of ring width

traits and a positive response of ring density traits to increasing

temperature. At the individual level, however, plastic responses for

width and density traits were mostly independent from each other,

and a wide variation was found for both the sign of the RN and

magnitude of PP. Both the proportion of trees with positive and

negative RN to temperature and the absolute PP value differed

between elevations and mountains. At the lower end of the

gradient on both mountains there was a higher proportion of

negative trends and higher PP values for ring width and density

traits, attributed to a higher mean temperature at this elevation

level and a possible non-linear response to temperature. Overall,

our data show the presence of differentiated adaptive mechanisms

between ring width and density traits in the PP response to

temperature, with compensatory effects at the population level,

but not necessarily the individual level. Apparently, P. hartwegii

has the potential to present differential plastic responses between

its ring width and density traits, with a higher degree of average PP

at the lower end of the elevation gradient, associated with higher
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temperature and water stress. These plastic responses might be

important components in the reaction of populations located at

the elevational extremes of the species distribution range to the

continuing increase and interannual fluctuation in temperature

linked to climate change.
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Martıńez-Campos, A. R. (2022b). Warning effects on tree-ring variables in P. hartwegii
Lindl. at the extremes of its natural elevational distribution in central Mexico.
AGRFORMET 324, 109109. doi: 10.1016/j.agrformet.2022.109109

Chown, S. L., Sorensen, J. G., and Sinclair, B. J. (2008). Physiological variation and
phenotypic plasticity: a response to “Plasticity in arthropod cryotypes” by Hawes and
Bale. J. Exp. Biol. 211 (21), 3356–3357. doi: 10.1242/jeb.019349
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