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Drought stress identification of
tomato plant using multi-
features of hyperspectral
imaging and subsample fusion

Shizhuang Weng*, Junjie Ma, Wentao Tao, Yujian Tan,
Meijing Pan, Zixi Zhang, Linsheng Huang*, Ling Zheng
and Jinling Zhao

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui
University, Hefei, China
Drought stress (DS) is one of the most frequently occurring stresses in tomato

plants. Detecting tomato plant DS is vital for optimizing irrigation and improving

fruit quality. In this study, a DS identification method using the multi-features of

hyperspectral imaging (HSI) and subsample fusion was proposed. First, the HSI

images were measured under imaging condition with supplemental blue lights,

and the reflectance spectra were extracted from the HSI images of young and

mature leaves at different DS levels (well-watered, reduced-watered, and

deficient-watered treatment). The effective wavelengths (EWs) were screened

by the genetic algorithm. Second, the reference image was determined by

ReliefF, and the first four reflectance images of EWs that are weakly correlated

with the reference image and mutually irrelevant were obtained using Pearson’s

correlation analysis. The reflectance image set (RIS) was determined by

evaluating the superposition effect of reflectance images on identification. The

spectra of EWs and the image features extracted from the RIS by LeNet-5 were

adopted to construct DS identification models based on support vector machine

(SVM), random forest, and dense convolutional network. Third, the subsample

fusion integrating the spectra and image features of young and mature leaves

was used to improve the identification further. The results showed that

supplemental blue lights can effectively remove the high-frequency noise and

obtain high-quality HSI images. The positive effect of the combination of spectra

of EWs and image features for DS identification proved that RIS contains feature

information pointing to DS. Global optimal classification performance was

achieved by SVM and subsample fusion, with a classification accuracy of

95.90% and 95.78% for calibration and prediction sets, respectively. Overall,

the proposed method can provide an accurate and reliable analysis for tomato

plant DS and is hoped to be applied to other crop stresses
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1 Introduction

Tomato (Solanum lycopersicum L.) is a popular and important

vegetable crop cultivated in more than 100 countries and regions (Xia

et al., 2021). The tomato fruit possesses antiaging and cancer-

preventing effects and is also valuable for human health as it

contains natural antioxidants, such as lycopene, carotene, and

vitamins, as well as organic acids, such as malic acid and citric acid

(Eid et al., 2020; Mukhtar et al., 2020). During cultivation, tomato is

inevitably subject to many biotic and abiotic stresses. Drought stress

(DS) is the main factor affecting its growth and development. The

rational utilization of water resources is one of the topics of global

universal concern. How to identify DS degree accurately and optimize

irrigation reasonably must be explored for the sustainable

development of agriculture. Different molecular, biochemical,

physiological, morphological, and ecological traits of plants are

impaired under DS conditions (Seleiman et al., 2021), resulting in

wilted leaves, small stem diameter, and reduced photosynthetic

efficiency. Furthermore, DS can affect the concentration of

nutrients, such as sugars, acids, and proteins, in tomato fruit and

lead to a decline in yield and quality (Chen et al., 2014; Hao et al.,

2019). The detection of tomato plant DS can assist in providing

timely irrigation, ensure normal plant growth, improve fruit quality,

and reduce economic loss (Moharana and Dutta, 2019).

Plants rely on leaves for photosynthesis and respiration to

provide energy for themselves and exchange gases with the

outside world (Flexas et al., 2006; Haworth et al., 2018; Rad et al.,

2022). The leaf effectively summarizes the stress-driven

perturbations of the plant’s physiological status (Melandri et al.,

2021). Therefore, plant DS is usually characterized by the

appearance, temperature, and optical properties of leaves. Visual

analysis, canopy temperature, thermal imaging, machine vision, and

spectroscopic techniques are commonly used to analyze the DS

degree of plants. Visual analysis, which relies on professional and

experienced inspectors, is convenient and nondestructive but

susceptible to subjective interference (Weng et al., 2021). Canopy

temperature and thermal imaging can quantify the complex

relationship between temperature and stress degree without

needing physical contact, but they are affected by the aliasing of

plants and soil background information (Ni et al., 2015; Han et al.,

2016). The low cost, noncontact, and rapid acquisition of the leaf’s

external features are the major advantages of machine vision,

however, the lack of information about the internal composition

and structure of the leaf limits its identification accuracy

(Taghizadeh et al., 2011; Pandey et al., 2017). In recent years,

spectroscopic techniques, such as near-infrared spectroscopy and

reflectance spectroscopy, have been widely used in plant DS

assessment because of their simplicity, speediness, and zero

reagent consumption, these techniques provide information on

the stretching vibrations of hydrogen-containing functional

groups, such as C—H, N—H, S—H, and O—H (Steidle Neto

et al., 2017; Li P, et al., 2020; Das et al., 2021; Raddi et al., 2022).

Nevertheless, the techniques cannot precisely locate the leaf on the

designated plant. They may also be influenced by other plants. The

lack of spatial information reflecting the color, texture, shape, and

position of the leaf also limits the improvement of accuracy.
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As the combination of two sensor modalities, namely, imaging

and spectroscopy, hyperspectral imaging (HSI) is a promising

nondestructive detection method that can provide spatial and

internal information, such as the composition and molecular

structure of analytes (Mishra et al., 2019; Sun et al., 2021). HSI

technology is widely used in analyzing DS in plants. Chen et al.

established the machine learning model using HSI to monitor the

drought degree of tea seedlings under DS (Chen et al., 2021). Zhou

et al. tested the application of hyperspectral reflectance as a high-

throughput phenotyping approach for the early identification of DS

in citrus trees by conducting a greenhouse experiment (Zhou et al.,

2021). HSI has also been used to explore the physiological processes

of DS in plants, which is essential for selecting drought-tolerant

genotypes and promoting breeding research (Asaari et al., 2019).

HSI has an excellent performance in many analyses but may hardly

obtain a good recognition effect using only spectral information. For

instance, the nondestructive detection of healthy leaves and leaves

infected with grapevine leafroll disease based on the spectra from

HSI obtained a classification accuracy of 60.74% to 89.93% in the

first four phenological stages (Gao et al., 2020).

Recent studies have attempted to combine spectra and image

features to gain adequate information and improve the application

effects of HSI (Wang et al., 2015; Ru et al., 2019). Compared with

the accuracy of identifying yellow rust in wheat leaves using the

spectra alone, the accuracy of identifying yellow rust in wheat leaves

using spectra and texture features was increased by 7.3%(Guo et al.,

2020). Combining spectra, texture features, and morphological

features can improve the accuracy by 2% and 1.3% for the germ

side and endosperm side, respectively (Yang et al., 2015). The

texture and morphological features of images were extracted in

previous studies through statistical analysis methods, such as gray

level co-occurrence matrix (GLCM) and morphological parameter

calculation, whereas these methods are complex, time-consuming,

dependent on spatial scale, and subject to prior information (Sachar

and Kumar, 2021). In recent years, deep learning has demonstrated

its excellent feature extraction ability and has been widely used,

especially in the imaging field (Yu et al., 2020).

The leaf state in a single growth stage can hardly represent an

accurate expression of plant stress because of limited multidimensional

and heterogeneous information. Borraz-Martıńez et al. examined

young and adult leaves at the spectral level and found differential

pieces of information between them (Borraz-Martinez et al., 2019).

Subsample fusion, the integration of information from leaves at various

growth stages, was explored to determine tomato plant DS.

In addition, illumination conditions considerably influence the

image quality in HSI experiments. As a stable and diffuse light

source, the halogen lamp is often used as an illumination unit in

HSI. Nevertheless, the available light amount of the halogen lamp is

low in the visible region, resulting in HSI images with a poor signal-

to-noise ratio (SNR). Mahlein et al. indicated that supplemental

visible light can alleviate this problem (Mahlein et al., 2015).

The lack of light energy at 400–500 nm may be the main factor

leading to high-frequency noise in the visible region. The spatial

information may provide some help in accurately analyzing the plant

DS. Moreover, the fusion of multiple types of leaf samples may

enhance the judgment of plant physiological status. Herein, tomato
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plant DS was detected using multi-features of HSI and subsample

fusion (Figure 1). In particular, the objectives of the present study

were to (1) analyze the impact of blue lights on HSI image quality, (2)

combine the spectra of the effective wavelengths (EWs) and image

features extracted by LeNet-5 for DS analysis, (3) explore the effect of

subsample fusion in DS analysis, and (4) develop the identification

models of DS using dense convolutional network (DenseNet).
2 Materials and methods

2.1 Experimental design and
irrigation treatments

The experiment was conducted in a greenhouse situated in the

Laboratory of National Engineering Research Center for Agro-

Ecological Big Data Analysis & Application, Anhui University,

China. The red cherry tomato seedlings (50 days old) were

purchased from the local market and transplanted into 18 pots

(approximately 3 L each and one plant per pot) with ordinary soil

on July 22, 2021. The available nitrogen, phosphorus, and potassium

levels in the soil were determined by distillation method,

spectrophotometric method, and flame photometric method,
Frontiers in Plant Science 03
respectively. The fertilizer conversion ratio required to grow the

tomato between the field and pot were calculated. Based on the

calculation results, 1.603 g urea, 0.773 g phosphorus pentoxide, and

0.985 g potassium sulfate were added to the soil to promote tomato

plant growth. The temperature and the relative humidity in the

greenhouse were set at 24°C and 68%, respectively. The initial soil

relative humidity (SRH) was maintained at 60%–80% by applying

stored rainwater suitably. Appropriate and uniform light was also

provided. After the plant roots were fixed, watering treatment was

halted to reduce moisture. SRH was monitored daily by a

temperature and humidity sensor. The samples of the three water

treatments were obtained over time: (a) well-watered treatment:

60%–80% SRH; (b) reduced-watered treatment: 40%–60% SRH; (c)

deficient-watered treatment: 20%–40% SRH.
2.2 HSI system and data acquisition

The HSI images of the leaves on tomato plants were collected

using the HSI system in the visible/near-infrared range from 400

nm to 1000 nm (Figures 2; S1). The system consists of an indoor

measuring platform with an area of 0.45 × 0.45 m2, a Headwall

Nano-Hyperspec (Headwall Photonics Inc., Bolton, MA, USA)
FIGURE 1

Flowchart of the determination of tomato plant DS degree.
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push-broom sensor that offers 272 spectral bands and 640 spatial

pixels, a lighting unit with two halogen lamps (75 W) as the main

radiation and two blue lights (3 W) as the auxiliary radiation, and a

computing unit. Two halogen lamps and two blue lamps were

placed on both sides and diagonal of the sample to ensure proper

and uniform illumination. All lights were preheated for 30 min

before imaging to reduce the influence of light intensity changes

over time on the experiment (Ma et al., 2020). During data

acquisition, the parameters of the HSI system were set as follows:

exposure time, 60 ms; frame period, 65 ms; scanning speed, 0.543

deg/s. The distance between the lens and the sample was set at
Frontiers in Plant Science 04
30 cm by controlling the height of the lifting platform. For the

image calibration, white and dark reference images were acquired

by scanning a standard white board with 98% reflectance and

covering the lens before collecting the HSI images of leaves. The

correction formula is as follows:

Ic =
Ir − Id
Iw − Id

(1)

where Ic is the corrected image, Ir is the measured raw leaf

image, and Iw a Id are the white and dark reference

images, respectively.

After the parameters of the HSI spectrometer were set, the first

three leaves on the branch of the plant canopy were considered

young leaves, and the last three leaves on the branch below the

plant’s stem were mature leaves. Three young leaves (brightly

colored with luster and toughness) and three mature leaves (dull

colored without luster) were selected from each plant for HSI

measurement. A total of 630 samples were obtained, including

315 images of young leaves and 315 images of mature leaves

(Figure 3; Table 1).
2.3 Selection of EWs

After image correction, the region of interest (ROI) of the leaf

was obtained by using the threshold segmentation method. The

average value for all pixels within the ROI was calculated as the

reflectance. The extracted reflectance spectra have high dimension
FIGURE 2

HSI system for tomato leaf data acquisition.
FIGURE 3

Color composite images of tomato leaves under different water treatments.
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and multicollinearity (Ng et al., 2019). A small number of variables

can reduce the influence of noncorrelated variables, raise

computational efficiency, and improve model performance. The

genetic algorithm (GA), a variable selection method, was used to

select EWs. The support vector machine (SVM) classifier was used

as an evaluator. The algorithm parameters, such as initialized

population, number of iterations, crossover probability, and

variance probability, were set to 100, 400, 0.5, and 0.1,

respectively. The fivefold crossover validation was employed to

seek the global optimal solution in the descendants, and the mean

value of cross-validation accuracy was used as the fitness function in

this study. The EWs were determined by the following steps: (1)

After the first application of GA, an accuracy value of the test set

was obtained and used as the reference value. (2) GA was executed

in a loop, and the number of the loop was set to 1000. If the run

result was greater than the reference value, the result was designated

as the new reference value. The loop was exited, and step (2) was

repeated. (3) If GA was executed 1000 times continuously without

obtaining a good result, the previously acquired feature subset

would be considered the EWs. Table S1 shows the selected EWs.

GA is an adaptive global probability search and optimization

algorithm (Song et al., 2021) that utilizes selection, exchange, and

mutation operations to retain the variables with high objective

function values and delete the variables with low objective function

values by continuous genetic iterations based on the biological

evolution mechanism in nature. Thus, the optimal combination of

variables was obtained.
2.4 Image features

The reflectance image of EW with the highest weight value

given by ReliefF (Key et al., 2022) was regarded as the reference

image. The reference image contains specific and crucial

information. Other reflectance images with a weak correlation

with the reference image can provide complementary

information. Therefore, Pearson’s correlation analysis (Yang B, et

al., 2021) was used to calculate the correlation between the

reflectance images of EWs. Moreover, a threshold ranging from

−0.3 to +0.3 was set. The reference image was placed in a defined

container. Its correlation with the reflectance images of the

remaining EWs (indexed sequentially) was analyzed until a

reflectance image that met the threshold condition was found and

added to the container. The correlation between the reflectance
Frontiers in Plant Science 05
images of residual EWs and the reflectance images in the container

was further calculated. A set of mutually unrelated reflectance

images were obtained by threshold filtering. Then, the first four

reflectance images with a weak correlation with the reference image

were selected. Five reflectance images were superposed one by one

according to the correlation ranking. The reflectance image set

(RIS) was determined by analyzing the superposition effect of

reflectance images. The RIS demonstrates high specificity,

sensitivity, and convenience for further processing. Finally, the

image features were extracted from RIS by LeNet-5. The relevant

parameters are shown in Table S2.

Convolutional neural networks (CNNs), which use local

connection and weight sharing to reduce the training parameters

and computational complexity, can extract useful features quickly

and accurately (Yang W, et al., 2021). CNNs are composed of

convolution, pooling, and full connection layers. The convolution

layer continuously learns the different characteristics of the input

data. The pooling layer keeps the most important features while

reducing the feature dimension to avoid overfitting. The full

connection layer maps the resulting feature maps into a feature

vector and generates a probability vector belonging to each class to

achieve classification (Fazari et al., 2021; Weng et al., 2022). LeNet-

5, a classical CNN, consists of two convolution layers, two pooling

layers, two full connection layers, and one output layer

(Priyadharshini et al., 2019). Image features were extracted by

LeNet-5 without the final activation function.
2.5 Model construction

2.5.1 Conventional machine learning methods
SVM is a supervised machine learning algorithm. It is often used

to solve classification or regression problems owing to its excellent

generalization ability. It maps data to a high-dimensional space

through nonlinear transformation (defining an appropriate kernel

function); then, it constructs the optimal separated hyperplane in the

high-dimensional space to transform a nonlinear problem into a

linear problem (Huang et al., 2019). Random forest (RF) can strongly

prevent overfitting and resist noise, as it combines a large number of

decision trees and averages the results of all the decision trees to

determine the final classification type (Yang H, et al., 2021).
2.5.2 Dense convolution neural networks
DenseNet, a mainstream learning method, was used to

construct depth recognition models, enhancing feature

transmission, encouraging feature reuse, and mitigating the

gradient disappearance phenomenon (Li G, et al., 2020). It mainly

comprises dense connecting blocks. Each layer in a dense block

obtains additional inputs from all preceding layers and passes its

feature maps to all subsequent layers, which can derive gradients

directly from the loss function and the original input signal, leading

to implicit deep supervision (Lawal, 2021). The spectra and image

features were input as a 1D vector, and only one dense block was

used in this study.
TABLE 1 Sample distribution under different water treatments.

Datasets

Number of tomato leaf images

Well-
watered

Reduced-
watered

Deficient-
watered

Young
leaves

108 105 102

Mature
leaves

108 105 102
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2.6 Performance evaluation

The HSI images of the tomato leaves that underwent three kinds

of water treatments were divided into the calibration set and

prediction set with a ratio of 7:3. In this study, the calibration set

accuracy (ACCC), prediction set accuracy (ACCP), precision, recall,

and F1-score of the prediction set, were used to evaluate model

performance. All methods, including variable selection, image

feature extraction, and model construction, were performed in

Python 3.7.0. All programs were run on a computer with an Intel

Core i7-3770 CPU, a main frequency of 3.40 GHz, and

PyCharm software.
3 Results and discussion

3.1 Spectral analysis

Blue lights (3 W) were used as supplementary lighting in this

study. Figure 4A displays the spectral differences in the 400–1000

nm range, and the spectral curve without blue lights was affected by

noise within the 400–500 nm range. The deviation plot (Figure 4B)

shows considerable high-frequency noise in the spectrum without

blue lights in the 400–500 nm range, indicating that the auxiliary

lighting of blue lights can effectively improve image quality. It is also

evidenced by the results of the parallel experiment in Table S3.

The reflectance spectra for all the available young and mature

leaves of tomato plants under different water treatments with the
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supplementary illumination of blue lights are shown in

Figures 4C, D respectively. The low reflectance in the 450–700

nm range was due to the strong absorption of chlorophylls A and

B for blue and red lights. A convex peak was present at 560 nm,

and a high degree of tomato plant DS indicated a high reflectance

value. This finding suggests that DS would reduce the

concentration of photosynthetic pigments and weaken the light

absorption capacity. The red edge phenomenon near 730 nm and

the reflectance at a high level within 780–1000 nm were controlled

by the internal structure of the leaf. The tomato plants with a

serious stress degree had great blue shift distance for spectra. Plant

self-protection mechanisms, such as leaf dehydration, stomatal

closure, and leaf curling, would be activated under DS. However,

this physiological state feedback was delayed relative to the

spectral response. In brief, spectral changes determine the

feasibility of HSI in identifying tomato plant DS.
3.2 DS identification based on spectra

SVM, RF, and DenseNet were used to develop the recognition

models of tomato plant DS based on the full spectra and the spectra

of EWs of young and mature leaves (Table 2). The parameter

settings of models are shown in Table S4. In terms of the full spectra

of the young leaves, SVM, RF, and DenseNet had ACCC values of

90.90%, 83.63%, and 95.45%, respectively, and ACCP values of

87.36%,74.73%, and 87.36%, respectively. Similarly, SVM gained

the optimal recognition result for mature leaves with ACCC =
B

C D

A

FIGURE 4

Reflectance spectra of the leaf with blue lights (red line) and without blue lights (green line) in the range of 400–1000 nm (A); the deviation
calculated by subtracting between the raw spectrum and the spectrum smoothed with Savitzky-Golay at 400–700 nm (B); reflectance spectra for all
available young leaves (C) and mature leaves (D) under different water treatments.
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94.09% and ACCP = 91.57%. The reason may be that the decision

boundary of SVM was suited for the data distribution of tomato

plant DS. With a powerful feature representation capability,

DenseNet can accurately distinguish the DS levels of the tomato

plant by combining low-level and deep features. RF performed

slightly worse than the two other methods, it may be insensitive to

tomato plant DS data.

Selecting the important variables beneficial to the learning

algorithm can reduce the difficulty of the learning task and

increase the interpretability of models. The spectra of EWs

selected by GA were used to analyze tomato plant DS, and the

ACCP of the optimal SVM model improved by 3.16% for young

leaves and 1.06% for mature leaves compared with the use of full

spectra (Table 2). However, a slight deterioration in the

identification result of RF was observed in young leaves because

of a sharp decrease in the number of wavelengths. A total of 16

EWs for young leaves and 37 EWs for mature leaves were selected

by GA, as shown in Figure 5. Specially, the EWs of young leaves all

appear near the peak and valley in the visible region, meaning that

young leaves are sensitive to changes in pigment concentration

under DS. The EWs of mature leaves spread across the entire

spectral range. Overall, the changes in the photosynthetic

pigments and cell structure in the leaf were important indicators

for evaluating tomato plant DS. The spectral information

representing tomato plant DS differed between young and

mature leaves. Therefore, the information on young and mature

leaves can complement each other, probably facilitating

DS analysis.
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3.3 DS identification using spectra and
image features

The direct use of leaf reflectance images with 272 wavelengths in

HSI to identify tomato plant DS would consume a huge amount of

time and reduce accuracy because of the high redundancy of HSI

images. Knowing the correlation between reflectance images may be

advantageous for extracting and synthesizing valid information and

discarding useless information. Therefore, one young leaf sample

and one mature leaf sample were randomly selected, and the

correlation coefficient matrices of the EWs’ reflectance images

were calculated using Pearson correlation analysis. The heat map

indicated the weak and strong correlations between the reflectance

images of EWs, Further screening of the RIS helped remove

collinearity variables (Figure 6). The RIS was determined by

modeling analysis based on SVM for the spectra of EWs and

image features extracted by LeNet-5 from different reflectance

image combinations obtained by increasing the number of images

in a sequence according to the correlation ranking of the first four

reflectance images with weak correlation with the reference image

(Table S5). The final RIS included the images of 607, 695, and 711

nm for young leaves and 567, 773, 791, and 822 nm for mature

leaves. As shown in Figures 6A and 6B, the determined RIS was

marked in the heat map. Any reflectance image in the RIS was

weakly correlated with the other reflectance images, with

correlation coefficients ranging from −0.3 to +0.3. Then, the

image features extracted from RIS by LeNet-5 were combined

with the spectra of EWs, called spectroscopy-image combination,
TABLE 2 Classification results of tomato plant DS based on full spectra and spectra of EWs.

Data types Categories

Methods/Accuracy (%)

SVM RF DenseNet

ACCC ACCP ACCC ACCP ACCC ACCP

Full spectra
Young leaves 90.90 87.36 83.63 74.73 95.45 87.36

Mature leaves 94.09 91.57 93.18 86.31 97.27 88.42

Spectra of EWs
Young leaves 95.45 90.52 81.81 73.68 90.00 88.42

Mature leaves 95.45 92.63 93.63 86.31 98.63 89.47
EWs, effective wavelengths; ACCC, calibration set accuracy; ACCP, prediction set accuracy; SVM, support vector machine; RF, random forest; DenseNet, dense convolutional network.
BA

FIGURE 5

EWs selected by the GA of young (A) and mature (B) leaves.
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to estimate the DS level (Table 3). The addition of new features

resulted in different responses for the models. The accuracy of all

models, except RF, was improved for young leaves, possibly because

of the weak adaptability of RF to heterogeneous features and the

presence of nonnegligible noise in image features. In regard to the

mature leaves, the classification accuracy was improved by 1%–2%

after the spectroscopy-image combination. The parameters of SVM,

DenseNet, and RF are illustrated in Table S6. In general, the image

features can replenish the missing spatial information, and

spectroscopy-image combination offers an accurate stress analysis.
3.4 Effect of subsample fusion
on DS analysis

The tomato leaves at different growth stages showed varied

characteristics in color, composition, and appearance. The spectra

and image features of young and mature leaves would provide the

multilevel information of tomato plant DS. After subsample fusion

(Table 4), a global optimal result of ACCC = 95.90% and ACCP =

95.78% was achieved by SVM. DenseNet also showed a strong

identification ability of tomato plant DS. The detailed parameter

settings of the models are shown in Table S7. The precision, recall,

and F1-score values for the tomato plants with reduced-watered

treatment were slightly lower than those in the two other water

treatments. The reason is that reduced-watered treatment was in the

intermediate state during the whole process of DS and easy to be

misclassified into other classes. The confusion matrices of SVM, RF,

and DenseNet (Figures 7A, C, E) showed that the tomato plants

with reduced-watered treatment were easily misclassified as well-
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watered or deficient-watered tomato plants owing to inapparent

differences in characteristics. Furthermore, the receiver operating

characteristic (ROC) curves clearly showed the strong specificity

and high sensitivity of SVM, followed by DenseNet and RF. The

dispersed distributions of the ROC curves under the three water

treatments indicated the presence of variances recognizing different

classes (Figures 7B, D, F). Subsample fusion could augment the

information difference of inter-class samples to promote further the

effective identification of tomato plant DS. SVM performed well in

identifying tomato plant DS with excellent accuracy and

satisfactory robustness.

This study aims to provide a definite management decision for

the rapid identification of tomato plant DS based on the multi-

features of HSI and subsample fusion, which has significance in

agricultural crop management and production practices (Table 5).
3.5 Discussion

3.5.1 Feasibility of HSI in plant DS
Traditional approaches for assessing plant DS include canopy

temperature (Taghvaeian et al., 2014), chlorophyll fluorescence

(Kautz et al., 2014), and thermal imaging (Jose Blaya-Ros et al.,

2020). However, these measurements have low sensitivity and poor

accuracy in practical applications, limiting their utility for rapid

detection in the field. Furthermore, the concentration of substances

in the leaves had already changed before DS caused changes in leaf

traits. Recently, HSI has been widely used as a mainstream, rapid,

and nondestructive measurement method in agriculture to obtain

plant biological information reflecting metabolic changes (Zhao
BA

FIGURE 6

Pearson’s correlation between the reflectance images of EWs in young (A) and mature (B) leaves.
TABLE 3 Classification results of tomato plant DS based on spectroscopy-image combination.

Strategy Categories

Methods/Accuracy (%)

SVM RF DenseNet

ACCC ACCP ACCC ACCP ACCC ACCP

Spectra of EWs + image features
Young leaves 94.09 91.57 80.90 70.52 90.45 89.47

Mature leaves 96.36 93.68 99.09 87.36 98.18 90.52
fr
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TABLE 4 Classification results of tomato plant DS based on subsample fusion.

Methods Classes Accuracy (%)
Prediction Set

Precision (%) Recall (%) F1-score (%)

SVM

Well-watered

ACCC=95.90
ACCP= 95.78

97.06 97.06 97.06

Reduced-watered 93.75 93.75 93.75

Deficient-watered 96.55 96.55 96.55

RF

Well-watered

ACCC= 96.81
ACCP= 88.42

88.24 88.24 88.24

Reduced-watered 84.38 84.38 84.38

Deficient-watered 93.10 9310 93.10

DenseNet

Well-watered

ACCC= 97.27
ACCP= 94.73

94.12 94.12 94.12

Reduced-watered 93.55 90.62 92.06

Deficient-watered 96.67 100.00 98.31
F
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FIGURE 7

Confusion matrices and ROC curves of (A, B) SVM, (C, D) RF, and (E, F) DenseNet. Classes 0–2: well-watered, reduced-watered, and deficient-
watered tomato plants, respectively.
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et al., 2020). Elvanidi et al. applied HSI to the detection of changes

in the spectral reflectance of tomato plants under varying irrigation

regimes to estimate plant water status under a controlled

environment (Elvanidi et al., 2018), demonstrating the feasibility

of HSI for nondestructive observation in tomato plant DS.

3.5.2 Utilization of spatial information
However, the utilization of spectra alone cannot show the

imaging advantage of HSI in many spectral technologies, and the

lack of spatial information leads to unsatisfactory results.

Spectroscopy-image combination can fully use the information in

the HSI images and effectively avoid information loss. Few previous

studies have discussed the spectroscopy-image combination to

identify DS in tomato plants. The superiority of the spectroscopy-

image combination in this study may be due to the fusion of

internal and external attributes in tomato leaves. However, most

studies only applied wavelength selection methods to gain RIS

(Weng et al., 2021), ignoring the relevancy degree between

reflectance images. Wavelength selection methods rely on the

reflectance values obtained by averaging all the pixels of the

reflectance image. Correlation analysis directly considers the

global information of the image. RIS was screened by

comprehensively considering the spectral attributes and

correlations between the images in this study. Simultaneously,

image features were generally extracted by image statistical

methods, such as GLCM, local binary pattern, and color moment

(Xie et al., 2015; Lu et al., 2019). Sachar et al. summarize some

methods for leaf image feature extraction without mentioning deep

neural networks (Sachar and Kumar, 2021). Feature extraction

using deep neural networks was proved feasible by Yang et al.

and Zheng et al. (Yang W, et al., 2021; Zheng et al., 2022). Thus,

LeNet-5 was used to extract image features automatically using the

flexible network structure, avoiding complex mathematical analysis.

The classification accuracy values of the spectroscopy-image

combination models were ACCC = 94.09% and ACCP = 91.57%

for young leaves and ACCC = 96.36% and ACCP = 93.68% for

mature leaves, which were better than those of the model based on

the spectra or the image features alone (Table S8). During the DS

analysis of the plant, the possible reasons for the poor results

obtained by relying only on images to distinguish DS degree are

the insignificant differences in the appearance of tomato leaves with

different stress levels, the influence of noise, and the low spatial

resolution of the HSI images. Combining spectral and spatial

information would be an effective solution for the first reason.

Then, the noise can be removed by suitable supplemental lighting or

by developing algorithms. In addition, super-resolution image
Frontiers in Plant Science 10
reconstruction techniques are considered for enhancing the

spatial resolution and improving the sensitivity of DS response.

3.5.3 Fusion strategy
The leaves at different growth stages of the same plant have

different responses to DS. Other studies may point to the differences

between young and mature leaves, but the data fusion approach for

promoting DS analysis has rarely been applied. Subsample fusion,

integrating the spectra and image features of young and mature

leaves, can provide the differential information of multiple types of

samples and reduce generalization error. The classification accuracy

of the subsample fusion model was further improved, with ACCC =

95.90% and ACCP = 95.78%. Consequently, subsample fusion can

supply holistic information about the tomato plant and enhance DS

expression to fulfill the accurate analysis of tomato plant DS.

Manually distinguishing the leaves at different growth stages is a

laborious and time-consuming task. The algorithms must be

developed to distinguish leaves at different growth stages

automatically by texture, color, and morphological information

from an image.

3.5.4 Effects of blue light on imaging
Besides, HSI systems using halogen lamps tend to have inferior

SNR in the blue region (400–500 nm) of the electromagnetic

spectrum, because a minimal amount of light is divided into the

visible region for the HSI spectrometer with high spectral resolution

(Mahlein et al., 2015). Previous works determined that low light

intensity causes a dark current noise effect in the spectral profile of

HSI images (Manea and Calin, 2015; Zhang et al., 2019). Moreover,

the spectral curves in the 400–500 nm range, which depend on the

amount of light absorbed by leaf pigments (chlorophyll,

carotenoids, and anthocyanins), can reflect the physiological

health information of plants (Zhao et al., 2016). DS affects

metabolic reactions and the synthesis of photosynthetic pigments

in the plant, and the response mechanism suggests that the visible

light region is particularly sensitive to DS (Ihuoma and

Madramootoo, 2019; Ihuoma and Madramootoo, 2020). High-

frequency noise is suppressed by adding blue lights, and SNR is

ameliorated effectively.

3.5.5 Challenges, improvements,
and developments

The detection of tomato plant DS still faces many challenges.

For example, Susič et al. and Žibrat et al. indicated that both root-

knot nematodes (biotic stress) and water deficiency (abiotic stress)

lead to similar drought symptoms in plants (Susic et al., 2018; Zibrat
TABLE 5 Significance of results.

Points Significance

Supplement blue light Suppress high-frequency noise and improve imaging quality effectively

Variable selection Reduce computational cost and optimize classification performance

Spectroscopy-image combination Synthesize multidimensional (spectral and spatial) information and improve information utilization

Subsample fusion Integrate heterogeneous information and enhance classification model recognition ability
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et al., 2019). In the actual planting environment, the accurate

differentiation of the biotic stress with similar symptoms of DS

can contribute to the prevention of misidentification and

inappropriate preventive measures affecting plant survival rate.

Alordzinu et al. reported that plant responses to water stress are

articulated by various physiological and biophysical changes and

soil properties, they also assessed the water stress of tomato plants at

different growth periods under different soils (Alordzinu et al.,

2021). The mechanisms of resistance to tomato plant DS at different

growth periods need to be further determined. Soils faced with

widely cultivated tomato plants will be the focus of our future

research. The specific effects of nutrients in the soil on the plant also

need to be explored. Burnett et al. considered that spectroscopy can

detect DS by investigating the potential biochemical changes before

visual differences are observed, and metabolic responses to DS can

be detected by HSI (Burnett et al., 2021). We should pay attention to

the changes in the internal components of tomato leaves under DS,

such as chlorophyll, soluble protein, catalase and so on. Moreover, it

was shown that chlorophyll content, protein content decreased

under DS, and the deeper the stress degree is, the lower the

content is. The enzymatic activity of superoxide dismutase is

significantly enhanced under severe DS, whereas catalase has a

slight enhancement (Zgallai et al., 2006). We will attempt to

estimate quantitatively the leaf metabolite concentrations pointing

to tomato plant DS and achieve the early identification of DS. Two

different types of leaves may be insufficient for estimating the

physiological state of the plant system. The stress-induced

changes in the physiological, biochemical, and molecular

attributes of different plant organs need to be investigated. In this

way, the health status, stress tolerance, and complex adaptation

mechanisms of plant can be comprehensively assessed.

Additionally, some other aspects also need to be improved. (1)

With the application of HSI in a greenhouse or a field, the

uncontrollable lighting, complex background (soil, weeds, etc.), and

mutual interference between plants can lead to incorrect DS analysis.

Therefore, image correction and background segmentation should be

considered. (2) In our work, the deep learning recognition models

exhibited a barely prominent performance owing to the lack of

training samples. Increasing the sampling data may improve the

identification. Simultaneously, tomato plants with diverse stresses,

including diseases and pests, various varieties, and different growth

periods need to be further researched. Novel modeling algorithms

deserve to be developed to accommodate heterogeneous samples and

optimize classification performance. (3) Hyperspectral sensors can be

mounted on the unmanned aerial vehicle (UAV) to perform large-

scale DS detection and timely management. The trajectory, cycle, and

height for the flight of the UAV, as well as the speed and range for the

lens scanning of the HSI spectrometer, should be further explored.

During plant protection management, it is necessary to consider

not only improving the accuracy of DS identification in plants, but

also raising the adaptability of the plants to DS. Plant growth

depends on the absorption of water from the soil and its transfer

from roots to other plant parts. Therefore, understanding drought-

induced changes to root anatomical traits is important to enhance

plant drought adaptation (Alagoz et al., 2022). Different plant
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growth regulators respond differently to plant DS. Studying the

effects of different plant growth regulators on plant physiological

and biochemical processes can also help to promote the drought

resistance of plants (Ghassemi et al., 2018). Along with the research

on DS, the influence of fertilizer application on plants growth and

biodiversity should also be discussed (Li et al., 2022). The use of

chemical fertilizers remains controversial, so finding alternatives to

chemical fertilizers for ecological sustainability is one of the

pressing issues in modern agriculture (Sun et al., 2022). Overall,

modern agricultural management aims to improve plant resistance

while identifying stresses accurately and intervening scientifically.
4 Conclusion

In this work, the identification of tomato plant DS was

performed using the multi-features of HSI and subsample fusion.

The addition of blue lights removed the high-frequency noise in the

400–500 nm region. The reflectance spectra extracted from the HSI

images showed that reflectance increased with the severity of

tomato plant DS. Moreover, the image features extracted from the

RIS by LeNet-5 positively affected the improvement of the model

performance. Spectroscopy-image combination obtained good

results with ACCC = 94.09% and ACCP = 91.57% for young

leaves and ACCC = 96.36% and ACCP = 93.68% for mature

leaves, which are superior to the identification accuracy values of

the modeling by spectra or image features alone. Moreover, the

classification accuracy of the subsample fusion model was further

improved with ACCC = 95.90% and ACCP = 95.78%. In summary,

the multi-features of HSI and the subsample fusion yielded an

accurate identification of tomato plant DS under the supplementary

illumination of blue lights. Applying HSI in complex environments,

adding sample types and sample size, optimizing modeling

algorithms, and utilizing of UAV equipped with an HSI

spectrometer should be considered in future explorations to

establish a stable, precise, and comprehensive classification model

for various stress types and stress degrees.
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