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Under global warming, the gradual pattern of spring phenology along elevation

gradients (EG) has significantly changed. However, current knowledge on the

phenomenon of a more uniform spring phenology is mainly focused on the effect

of temperature and neglected precipitation. This study aimed to determine

whether a more uniform spring phenology occurs along EG in the Qinba

Mountains (QB) and explore the effect of precipitation on this pattern. We used

Savitzky-Golay (S-G) filtering to extract the start of season (SOS) of the forest from

the MODIS Enhanced Vegetation Index (EVI) during 2001-2018 and determined

the main drivers of the SOS patterns along EG by partial correlation analyses. The

SOS showed a more uniform trend along EG in the QB with a rate of 0.26 ± 0.01

days 100 m-1 per decade during 2001-2018, but there were differences around

2011. A delayed SOS at low elevations was possibly due to the reduced spring

precipitation (SP) and spring temperature (ST) between 2001 and 2011.

Additionally, an advanced SOS at high elevations may have been caused by the

increased SP and reduced winter temperature (WT). These divergent trends

contributed to a significant uniform trend of SOS with a rate of 0.85 ± 0.02 days

100 m-1 per decade. Since 2011, significantly higher SP (especially at low

elevations) and rising ST advanced the SOS, and the SOS at lower altitudes was

more advanced than at higher altitudes, resulting in greater SOS differences along

EG (0.54 ± 0.02 days 100 m-1 per decade). The SP determined the direction of the

uniform trend in SOS by controlling the SOS patterns at low elevations. A more

uniform SOS may have important effects on local ecosystem stability. Our findings

could provide a theoretical basis for establishing ecological restoration measures

in areas experiencing similar trends.
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1 Introduction

Vegetation phenology is a natural phenomenon with an annual

cycle that is formed by long-term adaptation to seasonal

environmental changes (Liu et al., 2014; Ganjurjav et al., 2020;

Cheng et al., 2021). Such phenomena often display a clear gradual

pattern with increasing elevation. For example, the dates of leaf

unfolding or senescence in many places show gradual

postponement or advancement (Piao et al., 2011; Wu et al., 2021).

This gradual variation in phenological characteristics presents a

fascinating natural landscape (Gao et al., 2019). Moreover, this

gradual pattern of vegetation phenology along elevation gradients

(EG) plays a key role in maintaining the stability of ecosystem

structure, such as carbon and nitrogen cycling, species distribution,

climate feedback, and ecosystem service functions (Cong et al., 2012;

Tao et al., 2018a; Shen et al., 2020; Sun et al., 2022).

However, a under climate warming, significant changes are

occurring in phenological characteristics and their interactions

(Shen et al., 2014; Wolf et al., 2017; Zhang et al., 2021a). For

example, the reduction in chilling units due to warming could offset

the increase in forcing units, and the negative impact of a higher

temperatures on the start of the season (SOS) could be

counterbalanced by higher precipitation (Li et al., 2020a; Wang

et al., 2021). This interaction leads to a constant or delayed a SOS

in some areas (Wolkovich et al., 2012; Meng et al., 2019). There is

growing concern that this progressive pattern of elevation-induced

phenological shifts may be changing. For instance, Chen et al. (2018)

found that the spring phenology is becoming more uniform at

different elevations in Europe. Temperature is generally considered

the primary control of spring phenology (Piao et al., 2006; Li et al.,

2016; Tao et al., 2018b). Specifically, winter warming may reduce

chilling exposure at low elevations and increase spring forcing

accumulation for leaf unfolding; the low temperatures at high

elevations and relative increases in effective chilling accumulation

may reduce the forcing requirement (Fu et al., 2015a; Asse et al., 2018;

Vandvik et al., 2018). These divergent trends of leaf unfolding

between high and low elevations contribute to a more uniform

spring phenology.

However, the impact of temperature on the SOS is a nonlinear

process, and warming (cooling) in winter will offset the advanced

(delayed) SOS caused by warming (cooling) in spring to some extent

(Cong et al., 2017; Piao et al., 2019; Ettinger et al., 2020; Fu et al.,

2020). The SOS patterns along EG may not be fully explained

temperature alone. Furthermore, recent studies suggest that

precipitation may play a key role in spring phenology (Yuan et al.,

2020; Sun et al., 2021; Gong et al., 2022). Precipitation somewhat

determines the light and heat use efficiency of vegetation and then

affects the spring phenology. More importantly, shifts in temporal

trends of precipitation may directly alter the intensity of water stress

on vegetation growth and change the sensitivity of vegetation to

precipitation (Li et al., 2021b; Henry et al., 2022), especially in

mountainous areas with high precipitation variability. Therefore,

investigation of how the temporal trends in precipitation interact

with SOS patterns is urgently needed. At present, relatively few

studies have examined the more uniform spring phenology

phenomenon. Moreover, these studies were mainly based on the
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assumption that temperature plays the dominant role (Chen et al.,

2018; Vitasse et al., 2018; Dai et al., 2021), neglecting the effect of the

temporal trends in precipitation on spring phenology. Therefore, the

impact of the temporal trends in precipitation on a more uniform SOS

along EG needs to be examined in depth.

As a north-south transition zone and a large-scale east-west

ecological corridor in China, the Qinba Mountains (QB) has been a

hot spot for ecological change research because of its high geographic

complexity, biodiversity, and climate sensitivity (Xia et al., 2019;

Zhang and Liang, 2020). With the warm-dry climate, the water stress

on vegetation growth may be further enhanced, which may affect the

progressive pattern of spring phenology along EG in the QB. To

answer this question, it is necessary to deeply explore the role of

precipitation intensity (water stress) in controlling the spring

phenology patterns along EG in the QB. In this study, we

compared the differences in the temporal trends in SOS along EG

over the period 2001-2018 based on the MOD13Q1 Enhanced

Vegetation Index (EVI) dataset. Partial correlation analysis was

applied to identify the main controlling factors influencing the SOS

patterns along EG. We aimed to answer the following questions: (1)

whether there is a more uniform SOS along EG in the QB; (2) how do

temperature and precipitation control the SOS patterns along EG; (3)

what is the effect of temporal trends of precipitation on the SOS

patterns along EG. A more uniform SOS may cause species to migrate

along EG to adapt to environmental changes. This may impact species

distribution and compromise the serviceability of mountain

ecosystems (Inouye et al., 2000; Lenoir et al., 2008; Wolf et al.,

2017). Therefore, addressing these issues is important for

understanding and predicting vegetation patterns and their

ecosystem functions under climate change.
2 Material and methods

2.1 Study area

The QB, which runs through Central China between 102°54′
~112°40′E and 30°50′~34°59′N, is an important climatic and

geographical boundary between northern and southern China

(Figure 1). The entire region consists of three parts, namely, the

Qinling Mountains, the Daba Mountains and the Jianghan Valley

(Liu et al., 2016). The terrain clearly undulates, with an average

annual precipitation of 700-1500 mm and an average annual

temperature of 12-16 °C (Zhang and Liang, 2020). As the area is

located in the transitional zone between the warm temperate zone and

northern subtropical zone, vegetation types are clearly differentiated

along EG, and their response to climate change is more sensitive

(Deng et al., 2019; Qi et al., 2021).
2.2 Extraction of spring phenology

The SOS in the QB was extracted from the MOD13Q1 EVI

dataset provided by the official NASA website (https://ladsweb.

modaps.eosdis.nasa.gov/search/) for the period 2001-2018 with a

spatial resolution of 250 m and a temporal resolution of 16 days.
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Due to the influence of the sensors themselves and other external

factors, there were missing data or outliers, resulting in differences

between the EVI time series curves and the real vegetation growth

patterns (Qi et al., 2021). Therefore, we used Savitzky-Golay (S-G)

filtering based on Timesat 3.3 software to eliminate noise that

deviated from the normal growth trend line. By comparing the

results of multiple calculations, we set the window size to 5, the

envelope iterations to 2, and the adaptation strength to 8 to

reconstruct the EVI time series of the QB from 2001 to 2018. Then,

we defined the SOS as the date when the EVI increased to 20% of the

seasonal amplitude (Wu et al., 2021). To reduce the uncertainty from

the outliers, we excluded pixels with SOS earlier than the 30th day of

the year or later the 180th day of the year.
2.3 Climate data

The Chinese meteorological forcing dataset (CMFD) is widely

used for its continuous time coverage and consistent quality (http://

data.tpdc.ac.cn/zh-hans/), with an accuracy between meteorological

observation data and satellite remote sensing data, and a spatial

resolution of 0.1° × 0.1° (Yang et al., 2010; He et al., 2020).

Therefore, we selected temperature and precipitation datasets from

the CMFD during 2000-2018 and analysed the temporal trends in

winter temperature (WT, from the previous November to the

beginning of greening in March), spring temperature (ST, from the

beginning of greening in March to the end of greening in June), and

spring precipitation (SP, from the beginning of greening in March to

the end of greening in June) along EG in the QB at 100 m

altitude intervals.

Considering the low spatial resolution of the CMFD dataset, the

number of pixels in the QB is relatively small, and there may be errors

based on pixel statistical analysis. To this end, we used a geographically

weighted regression (GWR) model to downscale the WT, ST, and SP

data to a spatial resolution of 0.01° (Lu et al., 2018; Lu et al., 2019). We

selected the EVI and elevation as influencing factors and downscaled

theWT, ST, and SP data by three levels with an intermediate resolution

of 0.05° (Figure S1) (Zhang et al., 2020; Zhang and Cheng, 2020; Xu and

Cheng, 2021). The values were calculated as follows:
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yi = b0 ui, við Þ + b1 ui, við Þxi1 + b2 ui, við Þxi2 + ϵi (1)

Where (ui,vi) . denotes the spatial coordinates at a spatial position

i, xi1 and xi2 . present the values of elevation and EVI, respectively.

b0, b1, and b2 . present the constant terms, the regression coefficients

of elevation and the regression coefficient of EVI at raster

i, espectively.
2.4 DEM and land use data

The digital elevation model (DEM) data were obtained from the

90 m resolution SRTM product provided by the Geospatial Data

Cloud (https://www.gscloud.cn/). Land Use Data, derived from Globe

Land Cover in 2010 (http://www.globallandcover.com/), were used to

extract the distribution of the forest vegetation in the QB. The DEM

and Land Use Data were resampled to 250 m to match the resolution

of the EVI by using ArcMap 10.3.
2.5 Statistical analysis

The slope of SOS along EG for each year from 2001 to 2018 was

used to compare the difference in SOS along EG among different years

(Table S1). The smaller the slope was, the smaller the difference in

SOS along EG. The quadratic curve fitting method based on Origin

2018 was used to detect abrupt changes in the slope of SOS along EG.

The year corresponding to the point where the slope line of the curve

intersected with the 0 slope line was considered an abrupt change

point. Then, Theil-Sen trend analysis was used to analyse the

temporal trends of SOS, WT, ST, and SP in the QB from 2001 to

2018 and before and after the abrupt years, and the significance of

trends was tested by the Mann-Kendall (M-K) statistical test by using

MATLAB R2016a (Sen, 2012; Liu et al., 2016). This value was

calculated as follows:

b = mean
xj − xi
j − i

� �
∀ j > i (2)

where b is the temporal trend of the SOS; j and i denote the time

series; and xj and xi denote the SOS at times j and i, respectively. b > 0

indicates that the temporal trend of the SOS has a delayed trend, and

b< 0 indicates an advanced trend.

Partial correlation analysis based on MATLAB R2016a was used

to analyse the relationship between SOS and WT, ST, and SP. The

degree of association between the two variables was measured by the

partial correlation coefficient after excluding the effects of other

control variables (Shen et al., 2020). The climate factors (WT, ST,

and SP) were used as independent variables, and the SOS was the

dependent variable. Statistical significance was determined at a level

of P< 0.05 based on a two-tailed t-test. Additionally, the temporal

trend and partial correlation coefficient patterns in SOS and the

climate factors patterns along EG were analysed at 100 m altitude

intervals. Considering the rarity of forest pixels at high elevations,

regions with fewer than 100 pixels along EG were excluded, and only

the regions below 3100 m were analysed in the QB.
FIGURE 1

Location and elevation map of the Qinba Mountains.
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3 Results

3.1 Spatial distribution of SOS from
2001 to 2018

The mean SOS from 2001 to 2018 was early in the valleys and late

on the mountains. Among them, 89.71% of the mean SOS were

concentrated around 73-105 days. Along EG, the mean SOS was

significantly (P< 0.001) delayed by 1.7 days per 100 m increase

(Figure 2A). The temporal trends of delayed SOS (48.96% of total

pixels) were mainly distributed in the valley and at marginal low

elevations, and the magnitude of delay was concentrated around 0-0.8

days·a-1 (Figure 2B). Significant delayed (P< 0.05) were mainly

distributed in the northeastern low elevation regions of the QB

(Figure S2A). The advanced SOS (51.04%) was mainly distributed

at high elevations, and the magnitude of advance was concentrated in

0-0.8 days·a-1 (Figure 2B). Significant advanced (P< 0.05) were mainly

distributed in the western, northern, and southern alpine regions

(Figure S2A). Along EG, the temporal trends in delayed SOS

gradually decreased with increasing elevation (below 1000 m), and

the advanced SOS gradually increased (above 1000 m). These

divergent trends in SOS between high and low elevations showed a

more uniform trend of SOS along EG in the QB.
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3.2 Temporal trends in the SOS before and
after 2011

The change in slope of SOS along EG from 2001 to 2018

decreased by 0.26 ± 0.01 days 100 m-1 per decade (P = 0.06), the

differences in SOS along EG decreased continuously, and the SOS

showed a more uniform trend along EG (Figure 3B). Furthermore,

2011 was identified as a year of abrupt change according to the change

in the SOS slope along EG from 2001 to 2018 based on the quadratic

curve fitting method (Figure 3A). The change in the SOS slope along

EG significantly (P = 0.001) decreased by 0.85 ± 0.02 days 100 m-1 per

decade between 2001 and 2011. Since 2011, the change was reversed

by 0.54 ± 0.02 days 100 m-1 per decade.

The temporal trends in SOS before 2011 mainly showed a delayed

trend (67.54%) that was distributed in the regions below 1500 m, and

the magnitude decreased with increasing elevation (Figures 4A–D).

Significant delayed (P< 0.05) were mainly distributed at low

elevations in the eastern and southern regions (Figure S2B). While

the advanced SOS (32.46%) was mainly distributed at high elevations

above 1500 m, and the magnitude was increased (Figures 4A–D).

Significant advanced (P< 0.05) were mainly distributed in the western,

northern, and southern alpine regions (Figure S2B). These divergent

trends showed a more uniform trend of SOS along EG in the QB.
B

A

FIGURE 2

Spatial distribution of mean the start of season (SOS) (A) and temporal trends in SOS (B) during 2001-2018. The shaded area represents the standard
deviation.
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However, the temporal trends in SOS after 2011 mainly showed an

advanced trend (73.38%) at all elevations, and the magnitude decreased

by 0.06 days·a -1 for each 100 m increase (Figures 4B–D). Significant

advanced (P< 0.05) were mainly distributed in the eastern and southern

regions (Figure S2C). The advanced SOS (53.97%), which changed from

a delayed SOS before 2011, was mainly distributed at low elevations

(Figure S3), and the magnitude was stronger than that at high elevations.

The difference in SOS gradually widened along EG. Shifts in the

temporal trend of SOS at low elevations determined the direction of

the uniform trend in SOS along EG.

3.3 Temporal trends in WT, ST and SP
around 2011

The results of the trend analysis showed that the temporal trends

in WT before 2011 mainly showed a cooling trend (79.82%), which
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was mainly distributed in marginal low elevation regions (Figure 5A,

C). Significant decreased (P< 0.05) were mainly distributed in the

eastern high elevation regions (Figure S4A). Along EG, the temporal

trends in WT decreased by 0.02°C·(10a) -1 for each 100 m increase

(Figure 5D). After 2011, the temporal trends in WT mainly showed a

warming trend (87.47%), which was mainly distributed in the

marginal low elevation areas (Figures 5B, C). Significant increased

(P< 0.05) were mainly distributed in the eastern and southern high

elevation regions (Figure S4D). Along EG, the temporal trends in WT

increased by 0.05°C·(10a) -1 for each 100 m increase (Figure 5D).

The temporal trends in ST before 2011 mainly showed a cooling

trend (60.26%), which was mainly distributed in high elevation

regions (Figures 6A, C). Significant decreased (P< 0.05) were

mainly distributed in the northern and eastern high elevation

regions (Figure S4B). While the warming ST (39.74%) was

concentrated in the marginal low elevation regions and the central
B

C

D

A

FIGURE 4

Spatial distribution of temporal trends in SOS during 2001-2011 (A) and 2011-2018 (B). (C) The proportion of temporal trends in SOS. The redcolumns
represent the proportion of SOS during 2001-2011,the blue columns represent the proportion of SOS during2011-2018. (D) The slope of trends in SOS
along EG. The redline represent 2001-2011, the blue line represents 2011-2018.
BA

FIGURE 3

Slope change and curve slope of SOS along EG from 2001 to 2018. (A) The binomial curve of the slope of SOS along EG. The red line represents the
binomial curve, the blue line represents the slope of the binomial curve. (B) The change in slope of SOS along EG from 2001 to 2018. The black
linerepresents the change during 2001-2018, the red line represents 2001-2011, and the blue line represents 2011-2018.
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Daba Mountains (Figure 6A). Along EG, the temporal trends in ST

decreased by 0.02°C·(10a) -1 for each 100 m increase, and the

temporal trends in ST showed a slight increase below 800 m and

then cooled (Figure 6D). After 2011, the temporal trends in ST mainly
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showed a warming trend (73.85%), which was mainly distributed in

the central and western regions. While the cooling ST (26.15%) was

concentrated in the eastern low elevation regions (Figures 6B, C), with

a significant decreased (P< 0.05) in the northeastern regions (Figure
B

C

D

A

FIGURE 6

Temporal trends in spring temperature (ST) before and after 2011. (A) The temporal trends in ST during 2001-2011. (B) The temporal trends in ST during
2011-2018. (C) The proportion of temporal trends in ST. The red columns represent the proportion of ST during 2001-2011, the blue columns represent
the proportion of ST during 2011-2018. (D) The slope of trends in ST along EG. The red line represents 2001-2011, the blue line represents 2011-2018.
B

C

D

A

FIGURE 5

Temporal trends in winter temperature (WT) before and after 2011. (A) The temporal trends in WT during 2001-2011. (B) The temporal trends in WT during
2011-2018. (C) The proportion of temporal trends in WT. The red columns represent the proportion of WT during 2001-2011, the blue columns represent the
proportion of WT during 2011-2018. (D) The slope of trends in WT along EG. The red line represents 2001-2011, the blue line represents 2011-2018.
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S4E). Along EG, the temporal trends in ST increased by 0.09°C·(10a)
-1 for each 100 m increase, and the temporal trends in ST showed a

decrease below 500 m and then warmed (Figure 6D).

The temporal trends in SP before 2011 increased on average by

0.45 mm·a-1. Among them, the increased regions (59.4%) were mainly

distributed at high elevations, while the decreased regions (40.6%)

were distributed at marginally low elevations. The temporal trends in

SP were of low amplitudes and mainly concentrated around 0-1

mm·a-1 (Figures 7A, C). Along EG, the temporal trends in SP

increased by 0.18 mm·(10a)-1 for each 100 m increase (Figure 7D).

After 2011, the temporal trends in SP increased by 4.41 mm·a-1 on

average, which was approximately 10 times higher than that before

2011. Among them, the increased regions (96.45%) were mainly

concentrated around 2-8 mm·a-1 (Figures 7B, C), with a significant

increased (P< 0.05) in the eastern low elevation regions (Figure S4F).

Along EG, the temporal trends in SP decreased by 0.29 mm·(10a)-1 for

each 100 m increase (Figure 7D).
3.4 Relationship between SOS and its
potential drivers

Based on the results from the partial correlation analysis, we found

that the SOS and WT were mainly negatively partially correlated

(76.18%) in the QB before 2011, with a significant negative partial

correlation (P< 0.05) in the central and eastern low elevation regions

(Figure S5A), while the regions with a positive partial correlation

(20.18%) were concentrated in the western and southern high

elevation areas (Figure 8A). Along EG, the negative partial
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correlation coefficient gradually weakened with increasing elevation

(below 2100 m), and the positive correlation coefficient continued to

increase (above 2100 m) (Figure 8D). The SOS before 2011 showed a

partial negative correlation with ST (75.36%), with a significant

negative partial correlation (P< 0.05) in the central and eastern low

elevation regions (Figure S5B), while the regions with a positive partial

correlation coefficient (24.64%) were concentrated in the western and

southern high elevation areas (Figure 8B). Along EG, the negative

partial correlation coefficient significantly weakened (P< 0.001) with

increasing elevation (Figure 8E). The SOS showed a partial negative

correlation with SP (57.91%), with a significant negative partial

correlation (P< 0.05) in the eastern low elevation regions and the

western and southern high elevation regions (Figure S5C), while the

regions with a positive partial correlation coefficient (42.09%) were

distributed within all elevation gradients (Figure 8C). Along EG, the

negative partial correlation coefficient did not change much (P = 0.28)

with increasing elevation (Figure 8F).

For 2011-2018, the SOS and WT were mainly positively partially

correlated (63.81%), with a significant positive partial correlation (P<

0.05) in the eastern low elevation regions and the central and western

regions (Figure S5D), while the regions with a positive partial correlation

(36.19%) were concentrated in the northeastern and southern high

elevation areas (Figure 9A). Along EG, the positive partial correlation

coefficient significantly increased (P< 0.001) with increasing elevation

(Figure 9D). The SOS showed a partial negative correlation with ST

(74%), with a significant negative partial correlation (P< 0.05) in the

eastern low elevation regions and the central and western regions

(Figure S5E), while the regions with a positive partial correlation

coefficient (26%) were concentrated in the northeastern and southern
B

C

D

A

FIGURE 7

Temporal trends in spring precipitation (SP) before and after 2011. (A) The temporal trends in SP during 2001-2011. (B) The temporal trends in SP during
2011-2018. (C) The proportion of temporal trends in SP. The red columns represent the proportion of SP during 2001-2011, the blue columns represent
the proportion of SP during 2011-2018. (D) The slope of trends in SP along EG. The red line represents 2001-2011, the blue line represents 2011-2018.
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high elevation areas (Figure 9B). Along EG, the negative partial

correlation coefficient significantly increased (P< 0.001) with

increasing elevation (Figure 9E). The SOS showed a partial negative

correlation with SP (67.52%), with a significant negative partial

correlation (P< 0.05) in the eastern low elevation regions and the

western and southern high elevation regions (Figure S5F), while the

regions with a positive partial correlation coefficient (32.48%) were

sporadically distributed within all elevation gradients (Figure 9C). Along

EG, the negative partial correlation coefficient significantly weakened (P

= 0.03) with increasing elevation (Figure 9F).
4 Discussion

4.1 SOS response to driving factors

In this study, we found a decreased WT and a slightly increased

ST below 500 m in the QB from 2001 to 2011, which somewhat

provides more sufficient accumulation of chilling and forcing for the

onset of spring phenology (Fu et al., 2015a; Ettinger et al., 2020; Pan et

al., 2022). However, the SOS in this region was delayed (Figure 4D).

Temperature alone did not sufficiently explain the SOS patterns in

this region. Moreover, the reduced SP in this region (Figure 7D)
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somewhat limited the utility of water and heat conditions and offset

the advanced SOS that would have been caused by the decreased WT

and increased ST (Jewaria et al., 2021; Zheng et al., 2021), resulting in

a delay in SOS. Hence, the decreased SP was the predominant

controlling factor for the delayed SOS in this region. Similarly, at

elevations of 500-1500 m, the decreased WT and increased SP

somewhat facilitated the accumulation of chilling and the water

demand for vegetation growth (Shen et al., 2015; Ettinger et al.,

2020), which would have advanced the SOS. However, this advance

would have likely been counteracted by reduced forcing as a result of

the reduced ST (Figure 6D), which better explained why the SOS in

this region was delayed (Piao et al., 2019; Ganjurjav et al., 2020). The

decreased ST may have a stronger impact on SOS relative to the

decreased WT and the increased SP. Meanwhile, at elevations above

1500 m, the decreased ST reduced the accumulation of forcing and

delayed the SOS. Moreover, the decreasedWT and the increased SP in

this region (Figures 5D, 7D) somewhat increased the accumulation of

chilling and satisfied the water demand for the advanced SOS (Lin

et al., 2022; Wang et al., 2022). The SOS response to reduced ST may

have been less than that to the reduced WT and increased SP,

resulting in the advanced SOS in this region. This showed that the

joint control of the reduced WT and increased SP, rather than the ST,

was the driving factor for the advanced SOS.
B
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FIGURE 8

Partial correlation coefficient between SOS and its potential drivers during 2001-2011. (A–C) are correlations of SOS with WT, ST, and SP, respectively.
(D–F) are the distributions of coefficients along EG corresponding to (A–C), respectively. The shaded area indicates the 95% confidence interval.
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For 2011-2018, the increased WT and the reduced ST at

elevations below 500 m were not conducive for more chilling and

forcing accumulation (Yu et al., 2010; Wang et al., 2020a), which

somewhat delayed the SOS. However, this delay was counteracted by

the increased water demand as a result of the increased SP (Figure 7D)

and led to the advance of SOS (Shen et al., 2015). The advanced SOS

below 500 m was influenced by the increased SP rather than

temperature. Similarly, at elevations above 500 m, the increased

WT may reduce chilling accumulation and delay the SOS (Wang

et al., 2020b; Jewaria et al., 2021). However, this delay was offset by the

increased water demand and forcing accumulation (Figures 6D, 7D),

resulting in the advanced SOS (Piao et al., 2019; Li et al., 2021a). The

effects of increased ST and SP on SOS were stronger than those of

increased WT. The present results suggest that the SP also plays a

crucial role in controlling the patterns of SOS along EG, and analyses

conducted from the perspective of temperature alone may not fully

elucidate the intrinsic mechanism of these patterns in SOS.
4.2 Effect of precipitation in controlling
a more uniform SOS

Our research demonstrated that the magnitude of SOS response

to SP gradually decreased and the response to temperature gradually
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increased with increasing elevation, which was consistent with

previous studies in the QB (Liu et al., 2016; Chen et al., 2019). The

SOS at high elevations, where the SP showed a consistent increase

from 2001 to 2018 (Figure 7D), was less sensitive to SP. In other

words, sufficient SP at high elevations resulted in less water stress on

vegetation growth (Jennifer and Florence, 2018; Gupta et al., 2020),

and larger amounts of SP would not advance SOS. Along with this

was the potential for greater temperature sensitivity of SOS to

maximise thermal benefits (Shen et al., 2015; Fu et al., 2021). This

hypothesis was further supported by the weaker advance of SOS in the

context of stronger precipitation after 2011 and the stronger partial

correlation between SOS and temperature (Figures 4D, 9). In contrast,

at low elevations, where the SP showed a decrease from 2001 to 2011

(Figure 7D), maximised water usage led to the stronger sensitivity of

SOS to SP (Shen et al., 2015; Chen et al., 2019). Stronger water stress

led to a delayed SOS even under better temperature conditions

(Figures 5D, 6D). In addition, we speculated that the SOS would

advance if more rainfall occurred after stronger water stress, even if

the temperatures were less optimal. This hypothesis was confirmed by

the significant advance of SOS at low elevations under the significant

increase in SP after 2011 (Figure 4D, Figure 7D). This result showed

that the temporal trends in SP played a crucial role in controlling the

patterns of SOS at low elevations, which determined the direction of

the uniform trend in SOS along EG.
B
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FIGURE 9

Partial correlation coefficient between SOS and its potential drivers during 2011-2018. (A–C) are correlations of SOS with WT, ST, and SP, respectively. (D–F)
are the distributions of coefficients along EG corresponding to (A–C), respectively. The shaded area indicates the 95% confidence interval.
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Recent research has predicted that by the end of this century, the

climate in east-central China will have a continuous warm-dry trend

(Ma et al., 2019; Zhang et al., 2022), which may enhance water

evaporation at low elevations in the QB. In addition, the structural

overshoot due to the warm winter may further increase the water

stress during the growing season (Bastos et al., 2020; Zhang et al.,

2021b), thus strengthening the uniform trend of SOS along EG in the

QB. Therefore, the sensitivity of SOS to precipitation may be further

enhanced, and future changes in the spatiotemporal distribution of

precipitation, rather than temperature, are likely to have a stronger

control on the direction of the uniform trend in SOS. Since a more

uniform SOS along EG may compromise the stability and

serviceability of mountain ecosystems (Inouye et al., 2000; Lenoir

et al., 2008; Wolf et al., 2017), it is crucial to improve the water-use

efficiency of vegetation at low elevations. Previous studies have shown

that a higher species diversity could notably enhance drought

resistance (Grossiord, 2020; Liu et al., 2022), and different tree

species have different strategies and abilities to cope with water

stress (Anderegg et al., 2018; Li et al., 2020b). In the new round of

ecological restoration projects, conversion of the current monoculture

to mixed-species tree plantations and the planting of resilient tree

species with a high water-use efficiency could relieve potential water

stress in the future.
4.3 Comparison with other studies

In this study, we confirmed that the SOS extracted by the

MOD13Q1 EVI can be used to accurately trace the spring

phenology in the QB. This conclusion was predominantly based on

the strong consistency with previous studies in related areas that were

based on different data sources (Table S2). In addition, our findings

demonstrated that the SOS showed a more uniform trend along EG

between 2001 and 2018 in the QB. These divergent trends of SOS

between low and high elevations led to a uniform trend of SOS along

EG in the QB, which was consistent with the patterns of SOS in the

Alps (Vitasse et al., 2018). However, the driving mechanisms of the

more uniform SOS in the QB were different from those reported in

the Alps. Vitasse et al. (2018), based on the hypothesis that

temperature plays the dominant role, found that the reduced

chilling accumulation at low elevations caused by the warming WT

moderated the magnitude of SOS advance compared to high

elevations. The SOS was more advanced at higher altitudes than at

lower altitudes, resulting in a more uniform trend of SOS along EG. In

this study, we added the effects of SP and found that the SP, rather

than temperature, determined the direction of the uniform trend in

SOS by controlling the SOS patterns at low elevations. These

differences may have been due to potential mechanisms playing

diverse roles across different areas.

In addition, the results demonstrated negative relationships

between ST, SP and SOS during 2001-2018 and a positive

relationship between WT and SOS between 2011 and 2018, which

was consistent with most previous phenological studies (Piao et al.,

2006; Zheng et al., 2021). However, the WT was negatively correlated

with SOS below 2100 m during 2001-2011 and the cooling WT delayed

the SOS in the QB. The simultaneous reduction of ST between 500 and
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2100 m and the SP below 500 m may have counteracted the advance of

SOS caused by decreased WT (Cong et al., 2017; Asse et al., 2018),

possibly explaining why the SOS was delayed under a cooling WT.

In contrast to our results, Gao et al. (2019) found that there were

no prevalent trends of elevational homogenization of SOS in most

regions worldwide over the last 30 years. This discrepancy was likely

due to the difference in the main drivers of vegetation growth at

different spatial scales. For example, the stronger water stress in arid

areas results in a greater sensitivity of SOS to precipitation, but the

sensitivity of SOS to temperature and precipitation may change at a

larger scale (Cleverly et al., 2016; Cong et al., 2021). In addition, the

magnitudes and even the directions of the response to climate change

are largely different among vegetation types (Lesica and Kittelson,

2010; Fu et al., 2015b). The proportion of vegetation types at different

spatial scales varies, which may lead to differences in the variation

patterns of SOS.
4.4 Uncertainty analysis

First, using different abrupt change tests may lead to different

results. We used the M-K test, sliding t-test, and quadratic curve

fitting test to detect abrupt changes in the slope of SOS along EG from

2001 to 2018 (Figure S6). We found that the abrupt change years were

approximately 2003, 2008, and 2011 in the M-K test, sliding t test, and

quadratic curve fitting test, respectively. Moreover, previous research

has shown that the vegetation coverage reversed in 2010 in the QB

during 2001-2014 (Liu et al., 2016). Chen et al. (2021) found that 2010

was the significant acceleration point for gross and net primary

production variations in China during 2001-2018. Therefore, using

the quadratic curve fitting test, we defined 2011 as an abrupt change

year. Second, since the CMFD dataset was reanalysis data, the

temperature and precipitation data already contained elevation

information (He et al., 2020). Downscaling by selecting the EVI

and elevation as influencing factors may overestimate the effect of

elevation on temperature and precipitation, which somewhat impacts

the downscaling results. Finally, different vegetation types have

different responses to climate change. As the dividing line between

north subtropical and temperate forests, vegetation types in the QB

are diverse and have an obvious altitudinal differentiation (Deng et al.,

2019; Qi et al., 2021). Therefore, the patterns of SOS along EG on

vegetation types and the north and south slopes need to be

further studied.
5 Conclusions

The variation patterns of SOS along EG in the QB from 2001 to

2018 were explored. We found that the SOS showed a more uniform

trend along EG in the QB. Furthermore, this uniform trend of SOS

along EG was not completely continuous and reversed around 2011.

The ST and SP were, in general, negatively partially correlated with

SOS, and WT was positively partially correlated with SOS (except for

regions below 2100 m during 2001-2011). Before 2011, the decreased

ST and SP led to a delayed SOS at low elevation and the increased SP
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and decreased WT led to an advanced SOS at high elevation. These

opposite SOS trends at high and low elevations led to a more uniform

SOS along EG. After 2011, increased SP and ST led to a much greater

advance of SOS at low elevations than at high elevations, resulting in a

gradual widening of the difference in SOS along EG. Moreover, the

temporal trends in SP played a crucial role in controlling the SOS

patterns at low elevations, which determined the direction of the

uniform trend in SOS along EG. Our study deepens the

understanding of the altitudinal sensitivity of SOS under climate

change and provides a theoretical basis for regions that experience a

uniform trend of SOS along EG to develop appropriate ecological

measures to mitigate its adverse effects.
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