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China has the second-largest grassland area in the world. Soil organic carbon

storage (SOCS) in grasslands plays a critical role in maintaining carbon balance

and mitigating climate change, both nationally and globally. Soil organic carbon

density (SOCD) is an important indicator of SOCS. Exploring the spatiotemporal

dynamics of SOCD enables policymakers to develop strategies to reduce carbon

emissions, thus meeting the goals of “emission peak” in 2030 and “carbon

neutrality” in 2060 proposed by the Chinese government. The objective of this

study was to quantify the dynamics of SOCD (0–100 cm) in Chinese grasslands

from 1982 to 2020 and identify the dominant drivers of SOCD change using a

random forest model. The results showed that the mean SOCD in Chinese

grasslands was 7.791 kg C m−2 in 1982 and 8.525 kg C m−2 in 2020, with a net

increase of 0.734 kg C m−2 across China. The areas with increased SOCD were

mainly distributed in the southern (0.411 kg C m−2), northwestern (1.439 kg C

m−2), and Qinghai–Tibetan (0.915 kg C m−2) regions, while those with decreased

SOCD were mainly found in the northern (0.172 kg C m−2) region. Temperature,

normalized difference vegetation index, elevation, and wind speed were the

dominant factors driving grassland SOCD change, explaining 73.23% of total

variation in SOCD. During the study period, grassland SOCS increased in the

northwestern region but decreased in the other three regions. Overall, SOCS of

Chinese grasslands in 2020 was 22.623 Pg, with a net decrease of 1.158 Pg since

1982. Over the past few decades, the reduction in SOCS caused by grassland

degradation may have contributed to soil organic carbon loss and created a

negative impact on climate. The results highlight the urgency of strengthening

soil carbon management in these grasslands and improving SOCS towards a

positive climate impact.
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1 Introduction
The soil organic carbon (SOC) pool is the largest organic carbon

pool in terrestrial ecosystems and the backbone of soil health,

contributing greatly to soil fertility and quality and the

functionality of various ecosystems (Lal, 2004; Zhao et al., 2018).

Even a small reduction in SOC can lead to large amounts of CO2

emissions, and exacerbate global warming (Fan et al., 2008; Wang

et al., 2011). Soil organic carbon density (SOCD) is an important

index to measure soil organic carbon storage (SOCS) (Wu et al.,

2019). Information on the spatiotemporal variability of SOCD is

critical for understanding the global carbon budget and adjusting

land-use management policies, around CO2 emission reduction and

global warming mitigation (Wu et al., 2019). Grasslands store

approximately 34% of the total soil carbon and 10% of SOC in

global terrestrial ecosystems (Scurlock et al., 2002; Corona et al.,

2016; Yuan et al., 2021). With a mean SOCD of 7.6–14.1 kg C m−2

and SOCS of 278.9–591.5 Pg, global grasslands have strong carbon

sequestration potential and play a critical role in regulating the

global carbon cycle and climate (King et al., 1997; Prentice et al.,

2001; Piao et al., 2009; Wei and Fang, 2009; Yang et al., 2021).

China has the second-largest grassland area in the world,

accounting for 6%–8% of the global grassland area and 41% (3.95

× 106 km²) of China’s total territory (Fan et al., 2008; Deng et al.,

2017; Yang et al., 2021). Understanding the dynamics of SOCD in

Chinese grasslands not only enables the assessment of the carbon

budget at a national scale but also helps to evaluate the contribution

of Chinese grasslands to global grasslands’ soil carbon balance

(Zhang et al., 2016). Process-based biochemical models and data-

driven empirical models are two common methods for simulating

and assessing SOCD dynamics. Biochemical models, such as the

Rothamsted Carbon (RothC) model, the CENTURYmodel, and the

denitrification–decomposition (DNDC) model are typically used

for SOCD dynamic assessment (Stockmann et al., 2013; Lee and

Viscarra Rossel, 2020), but differences in model mechanisms and

input parameters could lead to diverse results (Li H et al., 2022).

Empirical models are built on the soil-forming factors equation,

which generally requires sufficient field survey data to establish

relationships between SOCD and climatic, biological, soil,

topographic, and other soil-forming factors (McBratney et al.,

2003; Zhang Y et al., 2022). In practice, the accuracy of this

method depends on the amounts of field survey data, while the

availability of sufficient field survey data remains limited by various

conditions (Yang et al., 2016). In recent years, machine learning

algorithms (e.g., classification and regression tree, artificial neural

network, and random forest) have been used extensively to build

empirical models and simulate SOCD (Yang et al., 2016; Wadoux

et al., 2020). Many researchers have employed the space-for-time

substitution processes to simulate SOCD dynamics by constructing

empirical models based on machine learning algorithms (Szatmári

et al., 2019; Zhang W et al., 2022). Based on a certain number of

observed samples, the spatiotemporal dynamics of SOCD can be

simulated using time-varying covariates, which can reduce

challenges in obtaining measurement data historically. The

random forest (RF) model can effectively handle non-linear
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relationships, can reduce overfitting, and has shown good

predictive power in many studies (Breiman, 2001; Singh et al.,

2017; Keskin et al., 2019; Zhu et al., 2023). Therefore, it has been

often used for modeling and mapping SOCD (Yang et al., 2016; Li H

et al., 2022).

Climate, elevation, soil texture, and human activities are key

factors driving SOCD change and are often used as input into

models to assess and predict SOCD dynamics (Hartley et al., 2021;

Zhang Y et al., 2022; Liang et al., 2019; Li H et al., 2022). For

example, the increased temperature can accelerate the SOC

decomposition rate and decrease SOCD (Ofiti et al., 2021).

Furthermore, it can promote microbial activity and accelerate the

accumulation of microbial assimilative synthesis products,

promoting the formation of stable soil carbon (Hao et al., 2021).

Changes in precipitation can control litter input and soil respiration

by influencing soil water content and soil microbial activity, which

further affects the accumulation of SOC (Zhang et al., 2016). It is

reported that wind speed, sunshine duration, and humidity also

affect SOCD (Lu et al., 2013; Lei et al., 2019; Huang et al., 2022). As

an important anthropogenic factor, grazing and its intensity

(standard sheep unit ha−1 year−1) can disturb the carbon balance

in ecosystems by affecting SOCD (Zhang et al., 2016; Zhou G et al.,

2017; Li B et al., 2022). For example, slight and heavy grazing

intensity may result in SOC loss, while moderate grazing intensity

probably promoted SOC accumulation (Jiang et al., 2020; Zhang M

et al., 2018; Xie and Wu, 2016). The net primary production (NPP)

of plants and normalized difference vegetation index (NDVI) can

drive SOCD change. NPP is a major determinant of terrestrial

carbon sinks and an important regulator of the ecosystem carbon

cycle (Zhang et al., 2016). NDVI reflects vegetation growth and

biomass, and the influence of vegetation on SOCD changes (Zhang

C et al., 2021; Liu et al., 2019). Overall, SOCD dynamics are

regulated by the long-term equilibrium state of biophysical and

chemical processes (Plante et al., 2014). These processes are closely

linked to and interact with climate change, vegetation growth,

environmental change, and human activities, which make SOCD

vulnerable to external factors (Jobbágy and Jackson, 2000; Gaitan

et al., 2019; Li H et al., 2022).

The overall objective of this study was to explore the

spatiotemporal dynamics of SOCD over the past four decades in

Chinese grasslands and to identify the dominant factors driving

SOCD change. Specifically, a total of 15 factors, comprising mean

annual temperature (MAT), mean annual precipitation (MAP),

NPP, NDVI, elevation, aspect, sand, silt, clay, mean annual wind

speed (MAWS), evapotranspiration (ET), sunshine hours (SH),

relative humidity (RH), large livestock population (LLP), and

sheep population (SP), were used to establish the relationship

with SOCD using an RF model. The relationship was then used

to quantify the spatiotemporal variation of SOCD in Chinese

grasslands from 1982 to 2020. Dominant factors driving SOCD

change were then identified based on their relative importance. We

hypothesized that (i) the SOCD of Chinese grasslands showed a net

increasing trend during 1982–2020, and (ii) the SOCS of Chinese

grasslands gradually increased over time as a response to the

conservation programs implemented over the past decades to

control grassland degradation (Lu et al., 2018). The information
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can provide the basis for land-use adjustments and ecological

projects and facilitate the realization of China’s ambitious

national emissions reduction targets.
2 Materials and methods

2.1 Grasslands in China

According to the bulletin of the third national land survey, in

2020, Chinese grasslands covered an area of 2.645 × 106 km2, of

which 80.59% were natural pastures and 0.22% were cultivated

grasslands. Grasslands in China are mainly distributed in six

provinces (Tibetan Autonomous Region, Inner Mongolia

Autonomous Region, Xinjiang Uygur Autonomous Region,

Qinghai Province, Gansu Province, and Sichuan Province),

accounting for 94% of the total grassland area. China is a vast

country with complex and diverse climate types, and SOCD is

unevenly distributed (Zhang Y et al., 2022). To better investigate the

distribution and variation of SOCD, based on climate conditions,

Chinese grasslands were divided into four regions in this study:

northwestern, northern, southern, and Qinghai–Tibetan regions

(Figure 1). The northern and southern regions are in the north and

south of the monsoon climate zone, respectively. The northwestern

region is in the non-monsoon climate zone, and the Qinghai–

Tibetan region is a unique geographical area with a distinctive

climate type (Zhang Y et al., 2022).
2.2 Data and processing

2.2.1 Soil measurement sample data
We obtained a total of 552 measured grassland SOCD data (0–

100 cm) from “A dataset of carbon density in Chinese terrestrial

ecosystems (2010s)” for RF modeling (Xu et al., 2019). Each data

point contained ecosystem type, location (longitude and latitude),

the value of SOCD, sampling time, data type, and data source. There

are two types of soil data: (a) Direct data, referring to SOCD data
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obtained directly from experimental tests, and SOCD and other

relevant parameters (soil bulk density, SOC content, and soil depth)

from literature. Among these, for soil depth< 100 cm, the SOCD of

0–100 cm was calculated according to the actual depth, and for

those samples with depth > 100 cm, only 0–100 cm was selected. (b)

Indirect data, which means there are no SOCD data in the

experiments or literature, and the relevant parameters are

incomplete, thus needing some deductions.

SOCD information from indirect data was derived according

to the following rules (Xu et al., 2019): (a) Soil samples lacking

bulk density were calculated using a pedotransfer function. (b) For

soil samples without SOC, but with soil organic matter content, a

conversion factor of 0.58 was used to convert soil organic matter

to SOC. (c) For soil samples without gravel content, the mean

value of known soil types was used instead. Detailed collection

and calculation processes on SOCD can be found in Xu

et al. (2019).

The dataset was subjected to strict quality control in the process

of literature selection, data extraction, and collation to make the

data reliable. We selected 552 sample values for the sampling period

between 2009 and 2014 representing the soil data year 2010 for

subsequent RF model construction. In addition, we selected 100 soil

samples collected between 2000 and 2005 to validate the temporal

accuracy of simulated SOCD data. The spatial distribution of soil

samples used for modeling is shown in Figure 1.
2.2.2 Land-use datasets
To identify the area and distribution of Chinese grasslands in

various years, we collected land-use data for 1980, 1990, 2000,

2010, and 2018 from the Resource and Environment Science and

Data Center (https://www.resdc.cn/). The original spatial

resolution of the land-use data was 1:100,000, and we resampled

them to 30 × 30 m in raster formats for further analysis. To match

the time of our study, we treated the land-use data of 1980 as the

land-use data in 1982, and the land-use data of 2018 as the land-

use data in 2020. The land-use data were divided into six primary

types, namely, woodland, farmland, grassland, water body, built-

up land, and unused land. It should be noted that gobi, sandy

land, swampland, gravel and rock, bare land, and other unused

land in the original land-use data were uniformly classified as

unused land.
2.2.3 Data for SOCD modeling
We used a total of 15 factors (MAT, MAP, NPP, NDVI, MAWS,

ET, SH, RH, elevation, aspect, sand, silt, clay, LLP, and SP) to model

SOCD in this study. Details of the data source for all modeling

factors are presented in Table 1. These factors represented climate,

topography, soil texture, vegetation, and anthropogenic factors. Of

these, we considered topography factors (elevation and aspect) and

soil texture factors (sand, silt, and clay) as static factors and the rest

as dynamic factors. We resampled all the data at 1-km spatial

resolution using the ArcGIS 10.2 software in the Albers_WGS_1984

coordinate system.

The MAT and MAP data from 1982 to 2020 were derived

from a 1-km monthly temperature and precipitation dataset for
FIGURE 1

Spatial distribution of soil samples across Chinese grasslands.
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China. We used MATLAB to synthesize the month-by-month data

into annual data by calculating the mean value of 12 months for

each raster in a year. SH, RH, and MAWS data for 1982–2015 were

obtained from the 1-km resolution annual relative humidity,

sunshine hours, and mean wind speed datasets for China, while

for 2016–2020, they were generated based on meteorological station

data and then interpolated in ArcGIS 10.2 using ordinary kriging.

The ET data for 1982–2015 were from the spatial–temporal

continuous dataset of the transpiration-to-evapotranspiration

ratio in China. Based on the meteorological station data, we

calculated ET for 2016–2020 using the Penman–Monteith

formula and then interpolated it to the study area.

The vegetation factors include NDVI and NPP. The NDVI data

ranged from 1982 to 2020 with a raw spatial resolution of 0.05° and

a temporal resolution of 1 day. It was prepared by averaging the data

for the first 15 days and the last 15 days of each month and then

using the maximum value synthesis method to generate monthly

average NDVI data for China. We collected NPP data for 1982–

2018 from the global NPP/GPP dataset and NPP data for 2019–

2020 from the MODIS product dataset.

LLP and SP are anthropogenic factors. Based on the data

recorded in the Statistical Yearbook from 1982 to 2020, we

converted the LLP and SP data to a raster format using the

“Polygon to Raster” tool and resampled it to a spatial resolution

of 1 km using ArcGIS 10.2 software.

Topography data included elevation and aspect data, and we

obtained them from the Shuttle Radar Topography Mission

(DEM). The aspect data were calculated from DEM data in
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ArcGIS 10.2. Soil texture was obtained from Resource and

Environment Science and Data Center and consisted of sand,

silt, and clay.
2.3 Methods

2.3.1 Random forest model
RF model, one of the most popular methods for simulating

SOCD spatiotemporal dynamics, has a consistent predictive power

even in complex situations (Yang et al., 2016; Wadoux et al., 2020).

It is created by using bootstrap samples of training data and random

feature selection of the tree and has been effectively used for

numerical prediction. It can also handle multivariate interactions

and non-linear relationships as well as can estimate uncertainties in

sparse samples and marginal regions, thus improving the prediction

accuracy (Sreenivas et al., 2014; Vaysse and Lagacherie, 2017;

Gyamerah et al., 2020). Due to the limitations of obtaining

historical data on soil samples, we used time-varying factors as

predictors to simulate SOCD in various years. This is a method of

the space-for-time substitution being commonly used in a previous

study concerning long-term SOC dynamics modeling (Padarian

et al., 2022).

In the RF model running, we tested the model by setting three

parameters (the maximum depth of trees, the random state, and the

number of estimators). To further assess the accuracy of the model

predictions, we used 10-fold cross-validation procedures to

calculate the coefficient of determination (R2) and root mean
TABLE 1 Data sources for the modeling factors.

Variable Data Source Original resolu-
tion

Final resolu-
tion

NDVI Growing-season NDVI over China during 1982–2020 Wang (2021) 0.05° 1 km

NPP
Global annual GPP/NPP dataset (1982–2018) Yuan et al. (2010) Zheng et al. (2019) 0.05° 1 km

MODIS products (2019–2020) (https://www.nasa.gov/) 1 km 1 km

MAT, MAP
Monthly temperature and precipitation dataset for China
(1982-2020)

Peng et al. (2019) 1 km 1 km

MAWS, RH,
SH

Annual data of basic meteorological stations (1982–2015)
Daily dataset of Chinese terrestrial climate data V3.0
(2016–2020)

Sun et al. (2014); Sun et al. (2015); Sun
et al. (2016)

1 km 1 km

(http://data.cma.cn/wa) 1 km 1 km

ET

The transpiration-to-evapotranspiration ratio data (1982–
2015)

Niu et al. (2020) 1 km 1 km

Daily dataset of Chinese terrestrial climate data V3.0
(2016–2020)

(http://data.cma.cn/wa) 1 km 1 km

LLP, SP National Bureau of Statistics of China (1982–2020) (http://www.stats.gov.cn/) Vector 1 km

Elevation Shuttle Radar Topography Mission (DEM) (https://www.resdc.cn/) 1 km 1 km

Aspect Shuttle Radar Topography Mission (DEM) Calculated from elevation 1 km 1 km

Sand, silt, and
clay

Data of soil texture in China (https://www.resdc.cn/) 1 km 1 km
NDVI, normalized difference vegetation index; NPP, net primary production; MAT, mean annual temperature; MAP, mean annual precipitation; MAWS, mean annual wind speed; SH, sunshine
hours, RH, relative humidity; LLP, large livestock population; SP, sheep population.
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square error (RMSE) (Yang et al., 2020). The detailed description of

the 10-fold cross-validation process and the calculation equations of

R2 and RMSE can be found in Zhu et al. (2019).

2.3.2 Mann–Kendall test
The Mann–Kendall (MK) trend test is suitable for testing linear

trends and nonlinear trends (i.e., the rate of change in each period

has obvious change, as well as a certain regularity) (Shadmani et al.,

2012). The Z-value and p-value are important parameters in

measuring the trend. Z > 0 is an upward trend and the opposite

is a downward trend (Yang et al., 2017). The p-value represents the

significance of the trend (Shadmani et al., 2012; Yang et al., 2022). It

is calculated as follows (Tosǐć, 2004):

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p ,     S>0

        0,   S = 0

S+1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p ,     S<0

8>>><
>>>:

(1)

where S is the test statistic and Var(S) is the variance of the statistic

S, which can be described as:

S = o
n−1

i=1
o
n

i=i+1
sgn(xj − xi) (2)

where xj and xi are the time series values for years j and i,
respectively; sgn is the sign function.

sgn(xj − xi) =

1, xj − xi>0

0, xj − xi = 0

−1, xj − xi<0

8>><
>>:

(3)
2.3.3 Calculation of soil organic carbon storage
SOCS can be calculated using the following formula (He et al.,

2021):
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SOCS = SOCD� Area (4)

where SOCD is the mean soil organic carbon density of grasslands

in each geographic region; Area is the area of grassland in each

geographic region.
2.4 Modeling and testing

The basic flow of SOCD simulation modeling and subsequent

analysis are presented in Figure 2. Based on 552 observed data and

the modeling factors, we built a grassland SOCD prediction model

using an RF model. During the training run, the model was adjusted

for 200 iterations, and we used 10-fold cross-validation to evaluate

the accuracy of the model training results. After the model training,

we input 15 modeling factor layers and simulated SOCD on each

raster to obtain the national SOCD layers of 1982, 1990, 2000, 2010,

and 2020. At the same time, we calculated the interquartile (the

difference between the 75th and 25th percentiles) of 200 iterations

of simulated SOCD for each raster, which was used to represent the

uncertainty of the simulated SOCD (Ding et al., 2016)

(Supplementary Figure 1). The Chinese grassland SOCD layers

were extracted by mask using the Chinese grassland vector layers.

Following Liang et al. (2019), we examined the spatial simulation

performance and validated the spatial accuracy of the grassland

SOCD generated from the RF model using 100 measured samples

from the original data and their corresponding values from the 2010

grassland SOCD layer. As there were few measured samples for a

single year to be obtained, the temporal accuracy of the grassland

SOCD generated from the RF model was validated as follows: we

selected the measured samples between 2000 and 2005 (n = 100)

and treated these soil samples as the measured samples in 2000.

Then, we extracted the values of grassland SOCD layer in 2000 and

their corresponding measured samples to test the performance of

the model following Li H et al. (2022).
FIGURE 2

Framework diagram of this study. SOCD, soil organic carbon density; SOCS, soil organic carbon storage.
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The observed data were used as the initial data to determine

the contribution of each factor to grassland SOCD using the RF

model. The factors with cumulative contributions larger than 70%

were the dominant factors driving grassland SOCD change. For

the dominant dynamic factors, using the grassland vector layers,

we mask-extracted these factor layers to obtain the factor layers

for the grassland section and used the zonal statistics (mean value

calculation) to calculate the mean values of factors for the four

regions (northwestern, northern, southern, and Qinghai–Tibetan

regions). Then, we examined the trends of these factors over the

past 39 years in four regions using the MK test. The mask

extraction and zonal statistics were carried out on ArcGIS 10.2.

The RF model and MK trend test were run on the R platform

(R version 4.1.2, R Core Team, 2022), using the “randomForest”

(Liaw and Wiener, 2002) and the “trend” (Pohlert, 2020)

package, respectively.
3 Results

3.1 Random forest regression and factors’
contribution ranking

The accuracy of the RF model training dataset and the results of

10-fold cross-validation are shown in Figure 3. The R2 of the

training dataset was 0.923 and the RMSE was 3.384 kg C m−2

(Figure 3A). The results of the 10-fold cross-validation showed that

the R2 of the model was 0.674 and the RMSE was 7.096 kg C m−2

(Figure 3B). These results indicated a good correlation between

observed SOCD and predicted SOCD. The R2 and RMSE of the

spatial accuracy of the grassland SOCD prediction are shown in

Figure 4A, where the R2 and RMSE were 0.239 and 13.302 kg C m−2,

respectively. The temporal accuracy of the grassland SOCD

prediction is presented in Figure 4B, with an R2 of 0.256 and an

RMSE of 6.063 kg C m−2. According to the contribution ranking of

the RF model, we considered the top 4 factors (cumulative

contribution > 70%) as the dominant factors driving changes in
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grassland SOCD, and they were MAT, NDVI, elevation, and

MAWS (Table 2).
3.2 Spatial and temporal characteristics of
SOCD (0–100 cm) in grasslands from 1982
to 2020

At the national level, grassland SOCD simulated by the RF

model was low in the west and north and high in the east and south

(Figure 5). The high SOCD values were distributed in the eastern

Qinghai–Tibetan region and near the Tianshan Mountains of the

Xinjiang Uygur Autonomous Region, while the low SOCD values

were mainly located in the western Qinghai–Tibetan region and

central northwestern region. In the southern and northern regions,

the values of grassland SOCD generally ranged from 4 to 12 kg C

m−2. In the northwestern region, the SOCD values were relatively

high in the eastern Inner Mongolia and northern Xinjiang (greater

than 4 kg C m−2), and relatively low in the rest of this region (less

than 4 kg C m−2). The spatial heterogeneity of grassland SOCD in

the Qinghai–Tibetan region was large, showing a gradual increase

from northwest to southeast. In this region, SOCD values were

higher than 12 kg C m−2 in southern Tibet, southern Qinghai, and

western Sichuan, and the values were lower than 12 kg C m−2 in the

rest of the region. During the period 1982–2020, the largest net

increase of SOCD occurred in eastern Inner Mongolia, with an

increase over 4 kg C m−2. Conversely, the SOCD decreased the most

in southern Tibet where the reduction was greater than 4 kg C m−2.

During the study period, the mean grassland SOCD increased in

each period with respect to 1982 across China, with a net increase of

0.734 kg C m−2 from 1982 to 2020 (Table 3). However, variation in the

mean grassland SOCD among regions was different over time. In the

northern region, the mean grassland SOCD first decreased and then

increased, and it was 9.471 kg C m−2 in 1982 and 9.299 kg C m−2 in

2020, decreasing by 0.172 kg C m−2. The mean grassland SOCD in the

northwestern, Qinghai–Tibetan, and southern regions showed a net

increase of 1.440 kg C m−2, 0.915 kg C m−2, and 0.411 kg C m−2,
BA

FIGURE 3

Accuracy evaluation of the model training dataset (A) and 10-fold cross-validation (B) on the comparisons between the model’s observed and
predicted values for SOCD (0–100 cm) of grasslands. SOCD, soil organic carbon density; R2, the coefficient of determination; RMSE, root of mean
square error.
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respectively. In the three regions, the grassland SOCD of each period

showed varying degrees of increase compared to 1982.
3.3 Changes in grassland area and SOCS
(0–100 cm) from 1982 to 2020

Chinese grassland area showed a decreasing trend between 1982

and 2020, with a decrease of 3.985 × 105 km² (Table 4). The most
Frontiers in Plant Science 07
evident decrease in grassland area was in the Qinghai–Tibetan

region, with a decrease of 2.494 × 105 km². The least decrease in the

area was observed in the southern region, with a reduction of 1.318

× 104 km². Over the whole study period, an area of 8.549 × 105 km²

of grassland was mainly converted to unused land (58.14%),

woodland (20.22%), and cropland (14.82%) (Table 5). In

addition, there was also a small proportion of grassland converted

to water body and built-up land.

The total SOCS of Chinese grasslands showed a change

featuring first an increase and then a decrease (Table 6). The

increase of grassland SOCS was obvious during 1982–1990 with

an increase of 1.352 Pg, then gradually decreased by 2.509 Pg during

1990–2020. During the study period, the net decrease of 1.158 Pg in

grassland SOCS was mainly caused by the reduction from 1990 to

2020. In four regions, from 1982 to 2020, grassland SOCS of the

northwestern region showed an overall upward trend, with a net

increase (0.950 Pg), and it showed a net decrease in the southern

(0.005 Pg), northern (0.618 Pg), and Qinghai–Tibetan regions

(0.923 Pg), respectively. Among these three regions, grassland

SOCS in the southern and Qinghai–Tibetan regions increased

slightly during 1982–2000 and then decreased until 2020, while

the northern region experienced a gradual decrease from 1982

to 2020.
4 Discussion

4.1 Reasons for differences in grassland’s
SOCD among different regions

Chinese grassland SOCD was high in the east and south, and

low in the west and north (Figure 5), a similar observation reported

by Liu et al. (2022). Generally, SOCD is influenced by biological

productivity and organic matter mineralization, as well as

controlled by hydrothermal conditions (Duchaufour, 1983; NSSO,

1998). In the southern region of the study area, the climate is more

humid due to monsoonal circulation (Zhang, 1991; Wu and Peng,

2003). On the contrary, in the northwestern region, the climate

condition is arid due to the far distance from the ocean and the
TABLE 2 Ranking of the contribution of modeling factors based on the
random forest model.

SOCD

Contribution (%)

MAT 44.00

NDVI 13.45

Elevation 10.62

MAWS 5.16

LLP 4.43

Clay soil 4.30

aspect 2.95

Sand soil 2.91

ET 2.88

NPP 2.34

SH 2.25

RH 1.61

MAP 1.43

Silt soil 1.28

SP 0.39
SOCD, soil organic carbon density; MAT, mean annual temperature; NDVI, normalized
difference vegetation index; MAWS, mean annual wind speed; LLP, large livestock population;
NPP, net primary production; ET, evapotranspiration; SH, sunshine hours; MAP, mean
annual precipitation; RH, relative humidity; SP, sheep population.
BA

FIGURE 4

(A) is the validation result of 100 measured samples in 2010 with the corresponding simulated values of the mean grassland SOCD in 2010; (B) is the
verification results of 100 measured samples (from 2000 to 2005) and their corresponding simulated values of the mean grassland SOCD in 2000.
SOCD, soil organic carbon density; R2, the coefficient of determination; RMSE, root mean square error.
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A

FIGURE 5

Spatial distribution of Chinese grassland average SOCDs in 1982 (A), 1990 (B), 2000 (C), 2010 (D), and 2020 (E). SOCD was divided into five classes
(SOCD<2 kg C m−2, 2–4 kg C m−2, 4–8 kg C m−2, 8–12 kg C m−2, and >12 kg C m−2). (F) is the net change of SOCD from 1982–2020, divided into
four classes (<−4 kg C m−2, −4–0 kg C m−2, 0–4 kg C m−2, and >4 kg C m−2). SOCD, soil organic carbon density. The spatial distribution maps of
Chinese grassland mean SOCD and the 25th and 75th percentile SOCDs in Chinese grasslands for each year are shown in Supplementary Figure 1.
TABLE 3 Estimated mean grassland SOCD (with interquartile range) (0–100 cm) (kg C m-2) for the four major geographic divisions in 1982, 1990,
2000, 2010, and 2020.

1982 1990 2000 2010 2020

Southern region
8.892

(6.125–11.234)
9.056

(6.310–11.363)
9.086

(6.340–11.392)
9.213

(6.457–11.515)
9.303

(6.553–11.613)

Northern region
9.471

(6.949–11.647)
9.403

(7.029–11.407)
8.804

(6.524–10.751)
9.496

(7.118–11.516)
9.299

(7.021–11.216)

Northwestern region
5.504

(4.139–6.644)
6.924

(5.085–8.451)
5.907

(4.510–7.087)
6.395

(4.783–7.733)
6.943

(5.160–8.417)

Qinghai–Tibetan region
8.181

(5.506–10.445)
8.200

(5.579–10.436)
8.855

(6.092–11.212)
9.656

(6.683–12.180)
9.097

(6.277–11.483)

China
7.791

(5.529–9.710)
8.257

(5.898–10.244)
7.993

(5.753–9.891)
8.517

(6.136–10.521)
8.525

(6.152–10.516)
F
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blockage of the Qinghai–Tibetan plateau (Wu and Peng, 2003). In

the southern and northern regions with a warm climate and

abundant precipitation, improved vegetation growth and high

primary productivity promote the accumulation of SOC and

contribute to higher grassland SOCD (Ontl and Schulte, 2012). In

northwestern China, the western part is mainly covered by desert,

while the eastern part is mostly covered by grasslands. The dry

climatic conditions and scarce precipitation are not conducive to

vegetation growth and high NPP, which might contribute to

relatively low SOCD in the western part (Li et al., 2004; Ontl and

Schulte, 2012; Zhang et al., 2016). The Qinghai–Tibetan region has

unique climatic conditions, and the elevation of this region is high

in the west and low in the east (Zhang Y et al., 2022; Liu et al., 2019).

The cold and relatively humid conditions promoted the

accumulation of soil organic matter in the southeastern of the

Qinghai–Tibetan region, resulting in higher SOCD (Piao et al.,

2011; Zhong et al., 2012).
4.2 Dominant factors determining SOCD

The mean SOCD of Chinese grasslands was 7.791 kg C m−2 in

1982 and 8.525 kg C m−2 in 2020, showing a net increase of 0.734 kg

C m−2 (Table 3). This was consistent with our hypothesis that

grassland SOCD showed a net increasing trend. The results from

the RF model suggested that MAT, NDVI, elevation, and MAWS

were the main factors driving the variation in grassland SOCD

across China, with MAT being the most important factor,

explaining 44.00% of the total variation, followed by NDVI,
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elevation, and MAWS, explaining 13.45%, 10.62%, and 5.16%,

respectively (Table 2).

4.2.1 Effects of MAT on SOCD
In the northern region of China, MAT showed an increasing

trend, resulting in a net decrease in SOCD in the region (Table 3;

Figure 6B). This is due to the fact that (i) the fine and coarse root

mass quantity and quality reduced with increased temperature, and

the decline in root mass was an important cause of the loss in soil

organic matter (Rasse et al., 2005; Ofiti et al., 2021), and (ii) the

temperature rise would accelerate the decomposition of soil organic

matter and thus reduce SOCD (Duan et al., 2013; Lv et al., 2020; Li

B et al., 2022). However, in the southern, northwestern, and

Qinghai–Tibetan regions, the climate warming seemed to increase

SOCD (Table 3; Figures 6A, C, D). This was probably because, on

the one hand, although an increased temperature accelerated the

release of soil carbon into the atmosphere (Davidson and Janssens,

2006; Leblans et al., 2017), on the other hand, it contributed to a

longer growing season (Leblans et al., 2017) and stimulated plant

productivity and thus increasing litter input into the soil (Piao et al.,

2006). When the rate of soil carbon input exceeds the rate of soil

carbon decomposition, SOCD will gradually increase (Chen et al.,

2016; Nie et al., 2019).

4.2.2 Effect of vegetation cover on SOCD
NDVI is an important indicator of vegetation cover. Changes in

NDVI represent the changes in vegetation cover, which plays an

important role in SOC accumulation (Zhang C et al., 2021; Wang

et al., 2018). In the southern, northwestern, and Qinghai–Tibetan

regions, NDVI gradually increased over the years (Figures 7A, C,

D), resulting in a net increase in SOCD in these regions (Table 3).

With a gradual increase in NDVI, the vegetation cover also

increased (Tian et al., 2022). Studies have proven that an increase

in vegetation cover could facilitate soil carbon accumulation and

thus increase SOCD (Smith, 2008; Don et al., 2011; Gong et al.,

2017). This can be ascribed to (i) an increase in NPP of plant roots

(Smith, 2008; Gong et al., 2017), (ii) a reduction in the loss of SOC

by effectively blocking wind erosion (Don et al., 2011), and (iii) the

accumulation of litter on the soil surface (Li et al., 2020). However,

in the northern region, NDVI gradually increased, while SOCD

showed a net decrease (Figure 7B; Table 3). Generally, increase in

vegetation is followed by an increase in the litter (Tian et al., 2022).

As the organic matter from the litter input to the soil increases, it

may result in a “priming effect”. That is to say, soil microbes are

supposed to be incentivized by readily decomposable organic
TABLE 4 Chinese grassland area from 1982 to 2020 (km2).

1982 1990 2000 2010 2020

Southern region 2.851×105 2.867×105 2.824×105 2.714×105 2.720×105

Northern region 2.774×105 2.688×105 2.551×105 2.329×105 2.160×105

Northwestern region 1.020×106 1.019×106 1.004×106 9.468×105 9.454×105

Qinghai–Tibetan region 1.470×106 1.469×106 1.468×106 1.221×106 1.220×106

China 3.052×106 3.044×106 3.009×106 2.672×106 2.654×106
fron
TABLE 5 Transformed grassland area from 1982 to 2020 (km2).

Transformed area
(km2)

Percentage
(%)

1982–2020

Grassland–Built-up
Land

1.521×104 1.78

Grassland–Farmland 1.267×105 14.82

Grassland–Woodland 1.728×105 20.22

Grassland–Water Body 4.312×104 5.04

Grassland–Unused
Land

4.970×105 58.14

Total changed area 8.549×105 100
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matter, and CO2 emission from soil increases disproportionately,

resulting in the loss of SOC (Kuzyakov et al., 2000; Heimann and

Reichstein, 2008; Sayer et al., 2011). In summary, the relationship

between NDVI and SOCD is complicated and needs further study.

4.2.3 Effect of MAWS on SOCD
Annual variation in wind speed directly affects wind erosion

intensity (Wu et al., 2021). Wind erosion is a natural process that

affects ecosystems and is more pronounced in arid and semi-arid

regions (Shao et al., 2011; Lei et al., 2019). It can cause loss of

organic carbon by transferring soil organic matter from the soil

surface to the atmosphere (e.g., dust) (Zhang W et al., 2022; Lal,

2003; Borrelli et al., 2017). In the northwestern region, a significant

decreasing trend in MAWS led to a reduction in wind erosion

intensity, promoting the accumulation of SOCD in the region

(Table 3; Figure 8C; Wu et al., 2021). In addition, studies showed
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that adequate wind speed will promote intercellular CO2 exchange,

resulting in an increase in intercellular CO2 concentration and

accelerating the rate of net phosphate synthesis in plants, thereby

increasing plant NPP (Xu et al., 2017) and the accumulation of

organic matter in the soil. This might be the reason that SOCD

increased in the southern region (Table 3; Figure 8A). In the

Qinghai–Tibetan region, SOCD showed a net increase (Table 3).

This can be attributed to two aspects: (i) wind erosion is positively

correlated with wind speed, and reduced MAWS weakened the

power of wind erosion (Figure 8D; Wu, 2003; Zhang C et al., 2018);

(ii) a range of ecological projects (such as Returning Grazing Land

to Grassland Program) that have been implemented on the

Qinghai–Tibetan Plateau helped improve vegetation cover and

soil fertility, thereby mitigating wind erosion (Li et al., 2016b;

Chen et al., 2014). The northern region is in a semi-humid

climate where 70% of the annual precipitation falls in summer,
TABLE 6 Soil organic carbon storage (with interquartile range) (Pg) in Chinese grasslands (0–100 cm) from 1982 to 2020.

1982 1990 2000 2010 2020

Southern region
2.536

(1.746–3.203)
2.596

(1.809–3.258)
2.565

(1.790–3.217)
2.500

(1.752–3.125)
2.530

(1.782–3.158)

Northern region
2.627

(1.927–3.230)
2.527

(1.889–3.066)
2.246

(1.664–2.743)
2.211

(1.658–2.682)
2.009

(1.517–2.423)

Northwestern region
5.614

(4.222–6.778)
7.056

(5.182–8.612)
5.928

(4.525–7.112)
6.054

(4.529–7.321)
6.564

(4.879–7.957)

Qinghai–Tibetan region
12.023

(8.092–15.350)
12.049

(8.197–15.335)
13.000

(8.943–16.460)
11.788

(8.158–14.869)
11.100

(7.660–14.013)

China
23.780

(16.875–29.637)
25.132

(17.952–31.181)
24.051

(17.311–29.765)
22.757

(16.395–28.110)
22.623

(16.326–27.907)
B

C D

A

FIGURE 6

Trends in mean annual temperature from 1982 to 2020 in the southern (A), northern (B), northwestern (C), and Qinghai–Tibetan (D) regions. Z > 0
or Z< 0 indicates an increasing or decreasing trend, respectively. p< 0.01 indicates a significant increasing or decreasing trend.
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resulting in frequent flooding and reduced vegetation growth

(Zhang Y et al., 2021). As a result, although there was a

significant downward trend of MAWS in the northern region,

SOCD decreased s ignificant ly over the past decades

(Table 3; Figure 8B).
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4.2.4 Effects of elevation on SOCD
In general, topographic factors do not directly influence SOC

accumulation, but they can influence vegetation types and soil

hydrothermal conditions by regulating climate, which, in turn,

affects vegetation productivity and soil organic matter
B

C D

A

FIGURE 7

Trends in NDVI from 1982 to 2020 in the southern (A), northern (B), northwestern (C), and Qinghai–Tibetan (D) regions. Z > 0 or Z< 0 indicates an
increasing or decreasing trend, respectively. p< 0.01 indicates a significant increasing or decreasing trend. NDVI, normalized difference vegetation index.
B

C D

A

FIGURE 8

Trends in mean annual wind speed from 1982 to 2020 in the southern (A), northern (B), northwestern (C), and Qinghai–Tibetan (D) regions. Z > 0 or
Z< 0 indicates an increasing or decreasing trend. p< 0.01 indicates a significant increasing or decreasing trend, respectively.
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decomposition (Cao et al., 2020; Tian et al., 2022). As elevation

increases, the decrease in temperature leads to a reduction in the

decomposition rate of soil organic matter, which facilitates SOC

accumulation and thus increases SOCD (Chen et al., 2013).

However, it was also found that in warmer areas at low latitudes,

SOC increased with elevation, while in colder areas at high latitudes,

SOC decreased with elevation (Yin et al., 2022). This implies that

the effect of elevation on SOCD is complex and requires

further study.
4.3 Grassland area change effects on soil
organic carbon storage

Grassland SOCD and grassland area are important factors

influencing changes in grassland SOCS. A reduction in grassland

area would lead to the loss of grassland SOCS and make grasslands a

source of greenhouse gas emissions. Between 1982 and 2020, the

Chinese grassland area declined severely, with a total reduction of

3.985 × 105 km2, resulting in a 1.158 Pg reduction in grassland

SOCS (Tables 4 and 6). This was contrary to our hypothesis that

SOCS of Chinese grasslands increased between 1982 and 2020. The

transfer of grasslands to unused lands was the main reason for the

reduction in grassland area, accounting for 58.14% of the total

changed area (Table 5; Figure 9). Various factors, such as

population growth, overgrazing, emphasis on livestock over grass,

frequent droughts, insects, and other natural disasters, accelerate

the process of grassland degradation and desertification (Bardgett

et al., 2021; Li et al., 2021). These led to the conversion of some

grasslands to unused lands (gobi, sandy land, swampland, gravel

and rock, bare land, and other unused lands) and resulted in the loss

of SOCS. Furthermore, the cultivation of grassland, the

construction of reservoirs, and the development of urban areas

led to the conversion of some grasslands to croplands, water bodies,

and built-up lands (Bardgett et al., 2021; Chang et al., 2022; Li et al.,

2016a). Different land types have different SOCDs, and it is

generally accepted that woodlands have the highest SOCD,
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followed by grasslands, croplands, and built-up lands (Li Y et al.,

2022; Lin et al., 2021; Zhu et al., 2021). Therefore, the conversion of

grasslands to woodlands with high SOCD usually promoted the

accumulation of SOCS. In contrast, the conversion of grasslands to

land types with low SOCD (e.g., croplands, water bodies, and built-

up lands), resulted in a loss of SOCS, leading to significant CO2

emission to the atmosphere and accelerating global warming.
4.4 Countermeasures and suggestions

As mentioned above, the SOCD of grasslands in China

gradually increased during the study period. This implies that

more carbon can be sequestrated into the soil of grasslands.

However, due to the reduction in grassland area caused by

degradation and conversion, grassland SOCS decreased across

China in general. Therefore, taking certain measures to mitigate

the decline in grassland areas appears to be crucial in increasing

grassland SOCS.

To do this, China has implemented several ecological

restoration projects since the 1980s, including the Grain to Green

Program introduced in 1999 and the Returning Grazing Land to

Grassland Program introduced in 2003 (Li et al., 2016a; Zhou W

et al., 2017). These programs were aimed to convert agricultural

lands into forests and grasslands (Ferraro and Kiss, 2002) and to

relieve grazing pressure on degraded grasslands through grazing

bans, fallow grazing for grass, fencing, and rotational grazing (Tong

et al., 2004). It was shown that the carbon sequestration amount due

to these programs’ implementation since 2001 and 2010 was 0.200

Pg and 0.118 Pg, respectively (Lu et al., 2018). Various grassland

protection programs, such as banning grassland reclamation and

private conversion and destruction of grasslands, were also enforced

(Xing, 2016). These measures not only were effective in alleviating

the degradation of grasslands and the reduction of SOCS due to

grassland area decrease (Li et al., 2016a; Zhou W et al., 2017), but

also enhanced the grassland’s ability against wind erosion through

increasing vegetation cover (Shao et al., 2016).

Besides this, as temperature and altitude influenced grassland

SOCD change, additional work should be done in the future. For

example, we should pay more attention to temperature or altitudes

that caused a decrease in SOCD. We should try to restrict change

from carbon sources to pools in such areas by implementing proper

ecological engineering or adopting measures such as water and soil

conservation and regulating grassland use practices. However,

rarely has any study looked at the improvement of grassland

SOCD in specific temperatures and altitudes.
4.5 Uncertainty and limitation of the study

The RF model has been used extensively for modeling. For

example, Li H et al. (2022) and Sreenivas et al. (2014) used it to

quantify the dynamics of SOC in China and SOCD in southern

India, respectively. Their findings demonstrated the feasibility of the

model in predicting SOC dynamics. In this study, the results also

indicated that the RF model has good spatiotemporal predictive
FIGURE 9

The spatial distribution of grassland transformed from 1982 to
2020 (km2).
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power (Figure 4). However, there are still some uncertainties in

the model.

First, there may be more factors that contribute to SOCD

changes but were not included in our RF model. These factors

include litter quality, nitrogen deposition, and CO2 enrichment

(ZhangW et al., 2022; Sumiyoshi et al., 2017). Future studies should

focus on including more factors in the model and intensive

sampling in sparsely sampled areas to reduce the uncertainty of

model predictions (Liang et al., 2019). Second, the data sources are

not consistent. For example, the data sources of some modeling

factors used to predict grassland SOCD in 2020 were not consistent

with the previous data sources, which may affect the model

prediction results (Zhang et al., 2017). Third, we only have the

observed soil samples data in 2010 to build a model, which may

cause some uncertainty in the results over a long time series of

simulations. Fourth, while the datasets containing 552 samples

across the study area are large enough to increase the

performance of the model and extrapolability of the results,

assessment of the spatial coverage of samples was not carried out

and is beyond the scope of the study objective. Therefore, in future

studies, assessment of spatial coverage of sample locations to

capture the variability of environmental conditions within the

four regions (e.g., the southern, northern, northwestern, and

Qinghai–Tibetan regions) should be considered to increase the

extrapolability of the results.
5 Conclusions

From 1982 to 2020, the spatial distribution of SOCD (0–100

cm) in Chinese grasslands showed little change, with low SOCD in

the west and north and high SOCD in the east and south. The

absolute quantity of Chinese grassland SOCD showed a net increase

during the study period. The grassland SOCD showed a net

decreasing trend in the northern region, and a net increasing

trend in the southern, northwestern, and Qinghai–Tibetan

regions. The MAT was the most important factor driving the

variation in SOCD (its contribution rate accounting for 44.00%)

of Chinese grasslands, followed by NDVI, elevation, and MAWS.

Due to the reduction in grassland area over the last 39 years, the

total organic carbon storage of Chinese grassland soils was 22.623

Pg in 2020, a net decrease of 1.158 Pg compared to that in 1982.

Land-use change is the reason for the decline in grassland area, and

the conversion of grasslands to other land types such as croplands,

built-up lands, and unused lands usually leads to large amounts of

CO2 emission into the atmosphere, exacerbating global warming.

Therefore, there is an urgent need to protect grasslands, and to

prevent grasslands from degradation and insist on the

implementation of ecological restoration programs. In addition,

the conversion of grasslands to other land types should be avoided

as far as possible to reduce the release of soil carbon.
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