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On-farm sorting and transportation of postharvest fruit include sorting out

defective products, grading them into categories based on quality, distributing

them into bins, and carrying bins to field collecting stations. Advances in artificial

intelligence (AI) can speed up on-farm sorting and transportation with high

accuracy and robustness and significantly reduce postharvest losses. The primary

objective of this literature review is to provide an overview to present a critical

analysis and identify the challenges and opportunities of AI applications for on-farm

sorting and transportation, with a focus on fruit. The challenges of on-farm sorting

and transportation were discussed to specify the role of AI. Sensors and techniques

for data acquisition were investigated to illustrate the tasks that AI models have

addressed for on-farm sorting and transportation. AI models proposed in previous

studies were compared to investigate the adequate approaches for on-farm sorting

and transportation. Finally, the advantages and limitations of utilizing AI have been

discussed, and in-depth analysis has been provided to identify future research

directions. We anticipate that this survey will pave the way for further studies on the

implementation of automated systems for on-farm fruit sorting and transportation.

KEYWORDS

deep learning, precision farming, machine vision, postharvest handling,
infield transportation
Introduction

On-farm sorting involves the removal of damaged, diseased, and rotten produce, and

then categorizing the produce into bins or trays based on size, color, maturity, and ripening

stage (Majeed and Waseem, 2022). The bins and trays are carried from the picking point to

the collection center, which is usually at the end of a row or field. On-farm transportation is

the operation of transporting bins and trays to the collection center. For large fruit-

producing companies, the operations of sorting and transporting fruit for packing are

conducted in the sorting line of the factory. However, in small farms that lack an integrated

production line, these tasks may be conducted in the field or warehouse. On-farm sorting
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and transportation are important for small commercial farms and

orchards because the produce is sorted and separated into bins on-

site and directly delivered to storage before being sold in the fresh

market. The operations of on-farm sorting and transportation are

shown in Figure 1.

Producers are often reluctant to utilize manual on-farm sorting

approaches because of higher labor costs and lower efficiency. High

profits would be hard to achieve without on-farm sorting operations

to remove products such as overripe, rotten, and defective fruit that

are unsuitable for the fresh market. Manual on-farm transportation

is a repetitive task that requires pickers to walk in the field carrying

full and empty trays and bins between the picking location and the

collection station. With the development of artificial intelligence

(AI) technology, automated on-farm sorting and transportation

have been used as an alternate and viable method to replace manual

sorting and transportation of fruits. In recent years, AI-based

systems have progressively been employed for on-farm sorting

and transportation tasks, greatly improving the production

efficiency of agriculture. The deployment of AI can speed up

post-harvest handling processes and significantly reduce post-

harvest losses and the chance of mechanical injury (Idama and

Uguru, 2021). Additionally, it enhances the facility and safety level

of human tasks for handling fresh horticultural produce (Bader and

Rahimifard, 2020).

A number of AI solutions have been provided for maintaining

the quality of fresh fruit products at the on-farm and post-harvest

stages. In the last few years, significant reviews attempts have been

devoted to the development of automated agricultural systems that

are capable of efficiently performing tedious field tasks such as fruit

yield estimation (Maheswari et al., 2021), shoot thinning (Majeed

et al., 2020; Majeed et al., 2021), non-destructive defect detection

(Nturambirwe and Opara, 2020), and mechanical harvesting

(Zhang et al., 2020) by using AI applications. However, available

reviews lack information on the advancement of AI techniques such

as computer vision, machine learning, and deep learning for on-

farm fruit sorting and transportation. Thus, a literature review is

needed to determine the applications of AI for on-farm sorting and

transportation of fruits, identify the challenges faced by these

technologies and discuss their prospects and opportunities. On-

farm sorting and transportation for small commercial farms tend to

be low-cost, reliable, and miniaturized to work in conditions of

machine vibration and uneven terrain, which is different from

factory sorting lines and transportation. Hence, we excluded the
Frontiers in Plant Science 02
studies on AI models for fruit quality detection for factory sorting

lines and narrowed the scope to the techniques that are suitable for

on-farm sorting lines and transportation, making the paper more

relevant to the topic.

This paper reviews the studies on advanced technologies that

have been applied to on-farm fruit sorting and transportation. Key

findings related to data acquisition sensors, the use of AI models,

and their benefits for on-farm sorting and transportation are

presented. In addition, it addresses knowledge gaps regarding the

use of AI in on-farm sorting and transportation and suggests future

research directions to overcome these gaps.
Applications of AI for on-farm sorting
and transportation

Applications of AI for on-farm sorting

Conventional fruit sorting methods are based on visual

assessment. Various factors such as ripeness, quality, decay,

disease, and injury are considered for sorting (Wendel et al.,

2018; Gabriëls et al., 2020; Kang and Gwak, 2021). On-farm

sorting requires a considerable amount of labor and low

productivity is prone to human fatigue, and is biased by inspector

experience, resulting in product variability and failure to meet

quality standards (Rysz and Mehta, 2021). Given these challenges,

recent studies have focused on the application of AI models to on-

farm sorting to increase harvest automation and reduce labor costs.

Table 1 shows examples of on-farm sorting tasks solved by

AI models.

On-farm sorting tasks that can be addressed by AI models

mostly include maturity evaluation, quality identification, injury

detection, and decay and disease detection for fruits such as apples,

mangoes, coconuts, blueberries, etc. (Kuzy et al., 2018; Caladcad

et al., 2020; Gabriëls et al., 2020; Kang and Gwak, 2021). On-farm

sorting aims to remove fruit that is defective and not suitable for the

fresh market and to grade fruit immediately after harvest so that it

can be stored differently to achieve cost savings. AI systems have

been deployed to replace human workers, overcoming visual

variability, inaccuracy, and fatigue in quality grading. Machine

vision is a potentially viable solution for improving harvest

efficiency by providing an alternative way to automatically and

non-destructively grade harvested fruits in the field. The sorting
FIGURE 1

Flow diagram of operations involved in on-farm sorting and transportation.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1082860
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1082860
machine is highly dependent on an integrated mechanism, which is

mainly composed of an image processing unit, a fruit conveyor, a

paddle, and a bin filler, as shown in Figure 2. Implementing a

computer-controlled hydraulic system for on-farm sorting

machines has been greatly beneficial to achieve significant cost

savings and meet commercial needs.
Applications of AI for
on-farm transportation

Pickers spend a considerable amount of time walking to carry

full containers, i.e., trays and bags, to the collection center at the end

of the row and walking back with the empty container to resume
Frontiers in Plant Science 03
picking. Workers who use the conventional manual picking method

are at risk of musculoskeletal problems due to carrying heavy loads

and repetitive hand and upper body activities. Faced with the

challenges of labor costs, low harvesting efficiency, and

occupational injuries, harvesting aids such as on-farm

transportation co-robots (Figure 3) have been introduced to assist

in harvesting fruits such as apples, strawberries, and grapes (Ye

et al., 2018; Faheem et al., 2021; Peng et al., 2021; Lu et al., 2022).

Previous research on on-farm transportation has focused on co-

robot scheduling, maneuvering strategies, and minimizing damage

to products during transportation. With the goal of developing a co-

robot to carry trays and transport fruit in the harvest field, human-

robot collaboration models that include picking and walking have

been investigated for co-robot scheduling and dispatching policies
A B

FIGURE 2

Schematic of a sorting machine: (A) image processing unit, fruit conveyor, and paddle; (B) bin filler (Lu et al., 2022).
TABLE 1 On-farm sorting tasks solved by AI model.

Objectives On-farm Handling Problems References

Defect detection

Classifying rotting and fresh fruits Kang and Gwak (2021)

Internal browning in mangoes Gabriëls et al. (2020)

Internal bruise detection in blueberries
Internal defect detection in mangoes

Kuzy et al. (2018);
Raghavendra et al., (2021)

Content detection

Detection of soluble solids in “Medjool” dates
Chlorophyll degradation and anthocyanin detection in cherries
Determination of soluble solids, starch pattern index, and Streif Index in apples
Determination of soluble solids in apples

Ben-Zvi et al. (2017)
Overbeck et al. (2017);
Çetin et al. (2022);
Wang et al. (2022)

Maturity and ripeness detection

Kiwi firmness classification Torkashvand et al. (2017)

Philippine coconut maturity grading Caladcad et al. (2020)

Firmness identification in avocadoes Jaramillo-Acevedo et al. (2020)

Cherry ripeness detection Overbeck et al. (2017)

Mango ripeness estimation Wendel et al. (2018)

Quality (size, mass, and color) evaluation

Mass grading of mangoes Momin et al. (2017)

Infield grading and sorting system for apples Zhang et al. (2021)

Developing bin filler and on-farm sorting machine for apple harvesting Zhang et al. (2017)
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(Seyyedhasani et al., 2020; Peng et al., 2021; Rysz and Mehta, 2021).

Faced with the challenges of bin handling in commercial orchards,

navigation, and maneuvering strategies for bin carriers have been

proposed to achieve autonomous navigation between tree rows to

perform bin handling tasks (Ye et al., 2018; Blok et al., 2019). A fleet

of robotic N-trailer vehicles has also been introduced to assist with

crop transportation as an alternative to the ultimate mechanization

of manual harvesting activities to improve field efficiency (Guevara

et al., 2021). To minimize the mechanical damage induced by

vibration during post-harvest handling, the vibration mechanism

of hanging grape clusters was analyzed to achieve low vibration of

the fruit during on-farm transportation (Faheem et al., 2021).
Data acquisition sensors and
techniques for on-farm sorting
and transportation

Data acquisition sensors and techniques
for on-farm sorting

Multiple sensors have been used for image acquisition in on-farm

sorting and transportation, including a red-green-blue (RGB) camera,

a charge-coupled device (CCD) camera, a hyperspectral camera, a

near-infrared (NIR) sensor, visible and near-infrared spectroscopy,

and a thermal camera. According to previous studies, the RGB

camera is currently the most widely employed for on-farm sorting,

especially for surface damage detection, color grading, mass and

volume estimation of apples, and ripeness of avocados (Jaramillo-

Acevedo et al., 2020; Lu et al., 2022; Mansuri et al., 2022). A CCD

camera was utilized for the size and color grading of apples and mass

grading of mangoes (Momin et al., 2017; Zhang et al., 2021). A

thermographic imaging system combining a thermal camera (7.5–13

µm) with heat lamps was built for internal bruise detection in

blueberries (Kuzy et al., 2018). A hyperspectral camera mounted on

a ground-based mobile platform was used to detect ripeness in

mango and apples (Wendel et al., 2018; Çetin et al., 2022; Wang
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et al., 2022). A NIR spectrometer (850–1,888 nm) was used for

spectral measurements to determine the total soluble solid content in

“Medjool” dates to predict fruit quality (Ben-Zvi et al., 2017). VNIR

spectroscopy (200–1,000 nm and 673–1,100 nm) was employed for

internal browning in mangoes (Gabriëls et al., 2020; Raghavendra

et al., 2021). In addition to imaging and spectral techniques, a tapping

system using an omnidirectional microphone to record the tapping

sound was developed for ripeness detection in coconuts (Caladcad

et al., 2020). Table 2 represents the key instruments required for data

acquisition for on-farm fruit sorting.

The RGB camera is the most employed sensor for automated

on-farm sorting and grading. It should be noted that using a

machine vision-based AI algorithm to sort and grade fruits and

vegetables need high-quality and decipherable images. Hence, an

RGB camera is the most appropriate sensor for the job. RGB

cameras are low-cost and can be used to measure texture, color,

geometric shape, and defects in fruits and vegetables. The main

disadvantage of an RGB camera is its sensitivity to changes in

illumination under different lighting conditions. Besides RGB

cameras, CCD cameras are also widely used for on-farm sorting

because of their low cost. Hyperspectral, NIR, and thermal cameras

are more expensive sensors and provide different spectral ranges

from visible light, which are universally utilized for internal defect

and ingredient detection due to their sensitive spectral range for

internal damage and composition. Hyperspectral imaging includes

a large amount of spectral data, providing more information for

defect and contaminant detection in on-farm sorting. However, the

cost is the major drawback of hyperspectral cameras.
Data acquisition sensors and techniques
for on-farm transportation

With regards to cameras and sensors employed for on-farm

transportation, LiDAR sensors, and positioning systems are more

commonly used than vision-based sensors due to their robustness

for robot localization and navigation in outdoor environments. A

2D LiDAR scanner was placed on the front of the orchard transport

robot to observe tree growth on each side (Blok et al., 2019).

Positioning systems such as GNSS, GPS, RTK-GNSS, and RTK-

Global Positioning System (RTK-GPS) were used to obtain ground

truth position information and schedule the path for the bin-

handling machines (Ye et al., 2018; Blok et al., 2019; Peng and

Vougioukas, 2020; Peng et al., 2021). An inertial measurement unit

(IMU) was employed for the measurement of the location and

heading angle of on-farm harvesting-aid robots (Ye et al., 2018;

Blok et al., 2019). A wheel encoder was used to measure wheel

odometry (Blok et al., 2019). A load cell was used to sense the load

on the tray to calculate the amount of fruit collected for

transportation path scheduling (Anjom and Vougioukas, 2019;

Peng and Vougioukas, 2020; Peng et al., 2021). A uniaxial force

sensor was inserted between the grape clusters to calculate the peak

hanging force and realize the vibrations generated in the grape

clusters during postharvest handling (Faheem et al., 2021). Table 3

shows the key instruments required for data acquisition during on-

farm transportation.
FIGURE 3

Co-robot for on-farm transportation of strawberries: (A, B) control
boxes, (C) GPS antennas, (D, G) DC motors, (E) return button, (F) and
(H) steer-driving system, (I) emergency button.
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In previous studies, LiDAR sensors have been most commonly

used for on-farm transportation. They have been widely used for

yield estimation and geometric measurements of canopy value at

the harvest stage due to their ability to be unaffected by illumination

(Westling et al., 2020; Chen et al., 2022; Yu et al., 2022). For on-farm

transportation, the main ability of LiDAR is that it can directly

deliver 3D localization data to co-robots navigating in the field and

orchard. Positioning systems such as GNSS, GPS, RTK-GNSS, and

RTK-GPS have been employed to obtain the locations of co-robots

for bin and tray scheduling. Other sensors, such as the IMU, wheel

encoder, load cell, and force sensor, have been adopted to control

on-farm vehicles and quantify harvesting efficiency for co-robot

route planning. The accuracy of the sensors is crucial to the

localization and navigation of on-farm transport vehicles. With

the development of sensor technology, the accuracy of LIDAR

scanners and positioning systems has been limited to the

centimeter level, which is within the tolerance of precision

agriculture (Ye et al., 2018; Blok et al., 2019). The accuracy of the

IMU used to measure the heading angle of the on-farm vehicle was

0.1–5°. The accuracy and details of other sensors, such as wheel

encoders, load cells, and force sensors, employed to evaluate harvest

efficiency were not mentioned in the relevant literature, but they
Frontiers in Plant Science 05
can be considered suitable for on-farm vehicles based on the

efficiency of the experimental results.
AI models for on-farm sorting
and transportation

AI models for on-farm sorting

AI models have been used for on-farm sorting along with the

significant development of machine learning, deep learning, and

machine vision techniques. On-farm grading is mostly aimed at

identifying the size, mass, ripeness, surface and internal defects, and

diseases in fruit for further transportation, storage, and packaging.

Surface and internal defect detection for fruit classification is useful

to improve product quality and boost profits. Moreover, on-farm

defect detection could analyze product degradation and damage

and take preventative actions to halt the deterioration process. Fruit

firmness analysis can assist in improving the packaging process by

maintaining consistency. AI-based techniques provide a solution

for automatically unloading graded fruit into bins to improve

harvesting efficiency.
TABLE 3 Key instruments required for on-farm transportation data acquisition.

Key Instruments Cultivar and application References

Force sensor Hanging force analysis for grape clusters during on-farm transportation Faheem et al. (2021)

Positioning system

Navigation system for bin transportation in the orchard
Navigation system for bin transportation in the orchard
Navigation system for tray transportation in strawberry fields

Ye et al. (2018);
Blok et al. (2019);
Peng and Vougioukas (2020);
Peng et al. (2021)

LiDAR
Obstacle detection for bin-handling robot in the orchard
Fruit detection of apples
Tree segmentation

Blok et al. (2019);
Geno-Mola et al. (2019);
Wendel et al. (2018)
TABLE 2 Key instruments required for on-farm sorting data acquisition.

Key Instruments Cultivar and application References

RGB camera and depth camera

Freshness classification of apples, bananas, oranges, lemons, pears, and
strawberries
Mass and volume detection in apples
Ripeness detection in avocadoes
Rot detection in strawberries

Kang and Gwak (2021);
Mansuri et al. (2022);
Jaramillo-Acevedo et al.
(2020);
Lu et al. (2017)

CCD camera
Mass determination in mangoes
Size and color grading in apples

Momin et al. (2017);
Zhang et al. (2021)

(Visible) NIR spectrophotometer
Determination of the total soluble solids content in “Medjool” dates
Internal browning measurement in mangoes
Internal defect detection in mangoes

Ben-Zvi et al. (2017);
Gabriela et al. (2020);
Raghavendra et al. (2021)

Thermal camera Bruise detection in blueberries Kuzy et al. (2018)

Hyperspectral camera

Ripeness estimation of mangoes
Determination of soluble solids content, starch pattern index, and Streif
Index in apples
Determination of soluble solids content and firmness in apples

Wendel et al. (2018);
Wang et al. (2022);
Wang et al., (2021)

Penetrometer and refractometer (to measure dissolved solids
and firmness)

Kiwi firmness detection Torkashvand et al. (2017)

Microphone (to record acoustic signals) Ripeness detection in coconuts Caladcad et al. (2020)
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Various image processing methods and deep learning models

have been introduced to achieve automated on-farm sorting.

Artificial neural network (ANN) and support vector machine

(SVM) models have been developed to estimate the mass and

volume of apples and mangoes (Utai et al., 2019; Mansuri et al.,

2022). Classification of bruises in blueberries was performed using

linear discriminant analysis, SVM, random forest (RF), K-nearest-

neighbors, and logistic regression classifiers (Kuzy et al., 2018).

ANN, RF, SVM, convolutional neural network (CNN), multiple

linear regression (MLR), and partial least squares (PLS) were used

to classify the ripeness and firmness levels of apple, coconut, kiwi,

and mango (Torkashvand et al., 2017; Torkashvand et al., 2017;

Wendel et al., 2018; Caladcad et al., 2020; Wang et al., 2022). ANN

and PLS were used for identifying browning and total soluble solids

in “Medjool” dates and mangoes for quality measurement (Ben-Zvi

et al., 2017; Gabriëls et al., 2020). The performance of the AI models

is presented in Table 4.

Spectroscopy techniques such as hyperspectral spectroscopy

and visible and near-infrared spectroscopy, which include large

amounts of data, have been used for the chemical detection of

various fruits due to their sensitivity to nutritional and constituent

content that can be detected by external inspection (Ben-Zvi et al.,

2017; Jaramillo-Acevedo et al., 2020; Çetin et al., 2022). ANN

models, which are robust for pattern recognition in a large
Frontiers in Plant Science 06
amount of data, are used for hyperspectral imaging analysis in

chemical detection, such as total soluble solids content, mineral

nutrient content, and dry matter content for mangoes, bananas,

blueberries, etc. Visible image size and external defects. ANN

models have shown great potential in grading, which are superior

to other models such as PLS, SVM, and RF (Wendel et al., 2018;

Gabriëls et al., 2020). Visible imaging has been employed to

determine physical features such as size, mass, color, and external

defects and bruises in fruits. CNN models have been introduced to

replace manual inspection in fruit sorting by extracting physical

features from images and using them to detect the size, mass, color,

and external defects and bruises (Wendel et al., 2018; Kang and

Gwak, 2021). ANN and CNN models provide solutions for making

quality decisions and improving postharvest efficiency through on-

farm sorting, which will be soon widely adopted for automated on-

farm sorting systems, especially in small commercial farms

and orchards.
AI models for on-farm transportation

Workers’ picking speeds vary based on fruit distribution and the

individual’s work pace. To address this issue, crop transport

harvesting-aid robots have been developed to manage full and
TABLE 4 Accuracy of the AI models for on-farm handling.

AI Models Objectives Best Accuracy Achieved References

ResNet-50, ResNet-101 Freshness classification for apples, bananas, oranges, lemons,
pears, and strawberries

98.50% Kang and Gwak
(2021)

PLS Detection of soluble solid content in “Medjool” dates RMSE = 0.9 Ben-Zvi et al. (2017)

ANN Kiwi firmness detection RMSE = 0.539
R2 = 0.724

Torkashvand et al.
(2017)

ANN, RF, SVM, Determination of ripeness level in coconuts ANN of premature coconut = 38%
RF of premature coconut = 25%
SVM of premature coconut = 38%
ANN of mature coconut = 44%
RF of mature coconut = 59%
SVM of mature coconut = 38%

Caladcad et al. (2020)

ANN
ANN

Internal browning measurement in mangoes
Determination of soluble solid content and firmness in apples

Over 80%
R2 = 0.724 for firmness detection
R2 = 0.724 for soluble solid content
detection

Gabriëls et al. (2020)
Çetin et al., 2022

SVM, RF, LAD, KNN, logistic
regression

Bruise detection in blueberries Accuracy (Farthing cultivars with logistic
regression) = 90%
Accuracy (Meadowlark cultivars with RF) =
80%

Kuzy et al. (2018)

ANN Ripeness classification in avocadoes Classification accuracy = 88% Jaramillo-Acevedo
et al. (2020)

SVM Apple size and volume estimation R2 = 0.955 for size estimation
R2 = 0.965 for volume estimation

Mansuri et al. (2022)

ANN Mass grading of mangoes Accuracy (diameter) =97%
Accuracy (perimeter) = 79%
Accuracy (roundness) = 36%

Utai et al. (2019)

CNN, PLS Ripeness estimation of mangoes RMSE (CNN) = 1.08%
RMSE (PLS) = 1.17%
F1 (CNNandPLS) >0.97

Wendel et al. (2018)
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empty bins/trays as harvesting aids to increase the productivity,

safety, and aesthetics of manual harvesting (Fei and Vougioukas,

2021; Guevara et al., 2021). Since harvesting-aid robots are subject

to the constraints of space between crop rows and the cooperation

with pickers, maneuvering strategies are required to determine the

transport path and operation to deliver full and empty bins in the

field. Modeling frameworks for the combined tasks of manual

harvesting and robot-assisted crop transport have been proposed

to support specialty crops that require labor to distribute and pick

fruit. Models describing the interactions between robots and

humans during fruit harvesting, such as deterministic predictive

dynamic scheduling (Peng and Vougioukas, 2020), a stochastic

model (Seyyedhasani et al., 2020), and a risk-averse optimization

approach (Rysz and Mehta, 2021), have been utilized to identify

optimal harvester servicing policies. Evaluating the efficiency of

pickers is vital for scheduling co-robots to transport empty and full

bins in the field. Mechanistic gray box models were addressed to

predict the time when a picker will fill up the tray being currently

harvested to calculate tray transport request time, with the goal of

increasing harvesting efficiency (Anjom and Vougioukas, 2019).

Field navigation is another core feature for on-farm transport

harvesting-aid robots, which includes co-robot localization, a

vehicle steering scheme, and path scheduling. Probabilistic

localization algorithms, i.e., the Kalman filter and the particle

filter using a 2D light detection and ranging (LiDAR) scanner,

were developed for in-row robot navigation in orchards (Blok et al.,

2019). Maneuvering strategies were created for four steering

vehicles to complete different bin-handling tasks in commercial

orchards (Ye et al., 2018). To support cooperation between pickers

and harvesting-aid robots, cooperative navigation strategies were

used to generate a feasible path to arrange and allocate vehicles and

trailers for transporting empty and full trays between field rows

(Guevara et al., 2021; Peng et al., 2021).

Small crews of harvesting-aid robots that assist big picking

crews by transferring full and empty trays can boost harvesting

efficiency by minimizing pickers’ unproductive walking times. The

study of robotic postharvest handling can benefit specialty fruits

such as blueberries, lychees, grapes, and cherries. Harvesting-aid

robots have been used in conjunction with pickers, following the

departure times, harvesting sequence, computed vehicle routes, and

the number of trailers as guidelines. Harvesting-aid robots can

handle the transport of empty and full bins and trays between the

collection stations and the pickers, thus improving harvesting

efficiency by decreasing the unproductive walking times of the

pickers in the field. A good maneuvering strategy for a four-wheel

independently steered robotic bin-handling machine can effectively

accomplish the navigation of bin transport on the desired

trajectories without damaging fruit trees or hitting bins. Hanging

force analysis for grape clusters during on-farm transportation is

helpful to realize the low vibration of fruit clusters, which provides

the theoretical basis for reducing berry drop during on-farm

transportation (Faheem et al., 2021).
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and transportation

Challenges and future directions for AI
models in on-farm sorting
I. The most common sensors used for on-farm sorting are

RGB and CCD cameras. However, RGB and CCD cameras

can only detect surface and superficial appearance

parameters such as shape, color, and size. There is a need

for sensors that meet the requirements for high throughput

function and low cost before this technology is more widely

adopted for small farms and orchards. Automated sorting

and grading systems using sensors such as hyperspectral

cameras, lasers, and NIR for defect detection have been

developed for factory sorting lines. To improve the

performance of internal disease and defect detection in

the factory line, more advanced sensors, and techniques

could be adopted and modified to identify surface and

internal diseases and defects of fruits and vegetables for the

on-farm sorting system.

II. AI models have been more universally developed to

determine maturity level by fruit shape, size, mass, and

nutritional substance for harvesting than for in-field sorting

and grading. Accordingly, AI models for harvesting have

achieved better performance than the ones for on-farm

sorting. To improve the performance of on-farm sorting to

address this problem, research such as that on ripeness and

quality detection (Overbeck et al., 2017; Halstead et al.,

2018) for fruit and vegetable harvesting could be introduced

and modified. Furthermore, AI models and systems for on-

farm sorting need to be further optimized based on the

factory sorting line to meet the requirements of working in

field conditions, which requires systems that are reliable

and prone to being functional to work with machine

vibrations and uneven terrain with a high sorting

throughput.

III. Another limitation is the dataset used for the AI model of

on-farm sorting. In previous studies, datasets were mostly

built for individual research using limited varieties and

cultivars. Fruit samples were randomly selected to ensure

the diversity of the dataset, and the fruit quality used as a

reference for the AI models was manually checked and

classified by experts (Caladcad et al., 2020; Mansuri et al.,

2022; Wang et al., 2022). These data collections to build

datasets were conducted for individual research, which

could lead to tendencies of model overfitting and reduce

the accuracy of the AI model. Additionally, AI models may

be biased as data collection was conducted either indoors or
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outside, with varying environmental conditions affecting

illumination. As a result, the diversity of datasets for on-

farm sorting has not been fully developed. Hence, it is

suggested that we use additional data samples, including

more diverse production circumstances and different

cultivars, to improve the generalization ability of AI

models. Open-source image datasets could be another

solution for expanding the samples to avoid overfitting in

AI model training. Furthermore, a findable and accessible

dataset that includes more fruit types and varieties

conducted in different environmental conditions would be

beneficial to expand the dataset for generalization and

development of AI algorithms and to prompt the on-farm

sorting industry for small farms and orchards.

IV. On-farm post-harvest processing of fruit comprises a series

of operations, including sorting and grading, bin filling,

cleaning, and waxing. Most of the studies have focused on

the on-farm processing of sorting, grading, and bin filling.

There are few studies related to the on-farm cleaning and

waxing of fruit. Small farms and orchards usually skip the

process of cleaning and waxing and deliver the produce

directly to the market due to the lack of low-cost cleaning

and waxing machinery. Without cleaning and waxing, the

shelf life of the fruit would be greatly compromised during

storage, which would ultimately affect the quality and profit

of the fruit. Low-cost on-farm cleaning and waxing

machinery could be a solution for small farms and

orchards. The development of on-farm cleaning and

waxing machinery integrated with sorting and grading

systems can be an opportunity to improve the robustness

and efficiency of on-farm handling on small farms and

orchards.

V. Studies of on-farm handling of vegetables are rarely found

in the published literature. This is because most vegetables

are less profitable than fruits, so farms would rather invest

less in AI and robotics for the on-farm sorting of vegetables

to balance inputs and outputs. However, organic vegetables,

which are more dependent on skilled management, have

become popular in the fresh market, providing an

opportunity for the development of AI in the on-farm

sorting of specialty vegetables such as tomatoes, peppers,

and cucumbers. We anticipate that there will be more

demand for AI applications in the on-farm sorting of

vegetables in the near future.

VI. Initially, researchers only focused on the AI models for the

sorting lines of big commercial producers, and the AI

models tended to be developed for sorting the produce

that was directly transported from farms and orchards to

factories, rather than for the on-farm stage that occurs

before transportation (Nasiri et al., 2019; Yang et al., 2022).

Small farms and orchards had limited access to automated

fruit sorting lines due to their high cost. The development

of sensor technology and AI models has opened up the

potential for automated fruit sorting in small farms and

orchards. In recent years, customer demand for high-
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quality produce has promoted the on-farm management

of small farms and orchards. Consequently, small

producers have gradually realized the importance of

replacing costly labor with automated sorting systems to

save costs and improve efficiency, whereupon AI models for

on-farm sorting systems have been introduced. However,

AI models for on-farm sorting are still less focused on

researchers compared to those for big factories. The

limitation of factory sorting used for on-farm sorting is

that the AI models and sensors may not be efficient for the

on-farm environment due to operational demands such as

lighting, working conditions, and throughput requirements.

As a matter of fact, the purpose of factory and on-farm

sorting is the same: to sort and grade produce and remove

unwanted items. Therefore, an on-farm fruit sorting system

could adopt the AI models developed for factory sorting

lines due to their prevalence and effectiveness, but it should

be modified and fine-tuned to meet the requirements and

environmental conditions of an on-farm operation.

Meanwhile, the development of flexible and low-cost

sorting lines for on-farm sorting could provide solutions

for reducing the costs for big factories. Hence, it is

anticipated that the development of AI models for fruit

sorting would be beneficial for both factory and on-farm

sorting.
Challenges and future directions for AI
models in on-farm transportation
I. Harvesting-aid robots have been introduced to transport

empty and full trays between picking crews and the

collection station at the end of the field. Collaboration

models between pickers and robots have been studied for

harvesting-aid robot scheduling to increase harvest

efficiency. Reactive scheduling has been replaced by

predictive scheduling because it can reduce or eliminate

the wait time for the robot to move to the pickers’ location.

Using co-robot scheduling models, harvesting-aid robots

for fragile fruits such as strawberries and table grapes have

been introduced as prototypes and simulated using manual

harvest data. However, most of the on-farm transporting

harvesting-aid robots have not been practically applied in

commercial farms or orchards. Mechanizing harvesting-aid

robots, which can be practically used for transporting

empty and full trays in commercial fields, constitutes one

of the biggest challenges for on-farm transportation.

Harvesting-aid robots integrate technologies such as

automatic navigation, localization, wireless data

transmission, and maneuvering strategies. Further work

will involve combining these technologies to improve the

practicality of harvesting-aid robots. The core part of on-

farm harvesting-aid robots is route planning. Advanced

computing technologies such as search algorithms have
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been developed to meet the requirements of the logistics

industry. The search algorithm can find the best solutions

for the desired goal by searching for all the possible

alternatives, which is achieved in two phases, i.e., problem

definition and search space exploration. The search

algorithm has shown its efficiency and accuracy in multi-

robot navigation and cooperation (Xu et al., 2020; Sahu

et al., 2023). AI models based on search algorithms can

potentially be used for on-farm harvesting-aid robots to

minimize the energy cost and time taken in complex on-

farm tasks.

II. Safety and collision issues are another concern for on-farm

transport as most transport robots adopt route planning

strategies for navigation. Obstacle and headland detection

are crucial for orchard robots to avoid endangering humans

and obstacles on the navigation path. In addition, they need

to turn or stop when encountering extreme terrain and at

the edge of the road. However, this problem has not been

previously addressed and needs to be further investigated

for on-farm transport robots. Although positioning systems

such as RTK-GNSS have been utilized to identify

environmental scenarios in farming vehicles, the tree

canopies close to the vehicles can obstruct the satellite

signals and degrade the accuracy. This can be addressed

by better-utilizing sensors such as 3D LiDAR and RGB-

depth cameras and integrating them with AI models to

classify objects, areas, and paved and unpaved roads in

orchards. The implementation of automatic driving and

obstacle avoidance for on-farm transport could improve

human safety and prevent collisions between robots and

vehicles. Promisingly, on-farm transport robots integrated

with positioning systems and machine vision systems for

inter-vehicle coordination and safe navigation will be the

focus of research in the near future.

III. Mechanical damage induced by the vibration of produce

during bin filling and on-farm transportation can reduce

the quality and shelf life of fruits and vegetables. Bruising

and abrasions can be exacerbated by overweight bins and

bumps in the uneven terrain of fields and orchards. Only a

few studies have focused on bin management to overcome

mechanical damage during bin filling and on-farm

transport. On-farm bin fillers, which are usually

incorporated with on-farm sorting and grading platforms,

play an important role in evenly distributing fruits and

vegetables to reduce bruising and abrasion. Sensors such as

an IR sensor and a Hall-effect sensor have been used for bin

fillers to measure the fall distance between the fruit and the

filler for bruise prevention during catching and distributing

the fruit into bins (Peng et al., 2022). However, it can only

detect the distance between the filler and the area directly

below the sensor, resulting in inaccuracy in the distance and

distribution evaluation of fruits and vegetables. This

problem can be addressed by introducing AI techniques

using sensors such as a depth camera or 3D LiDAR, which
tiers in Plant Science 09
provide a wider field of view of the fruit load distribution

and thus better control the position of the bin filler,

preventing mechanical damage during bin filling.

IV. Previous studies have focused on on-farm bin handling from

the perspective of maneuvering strategies and vehicle

positioning. The decision-making process for storage and

transportation at the post-harvest stage plays a crucial role in

the long-term stability of produce. To achieve the goal of

planning post-harvest storage and transportation, farmers,

and distributors need to monitor the on-farm harvesting

process. Bin monitoring is one of the main ways to monitor

the harvesting process, but it has rarely been studied in the

literature. Load cells have been used to measure the number

of trays to track the picking speed of strawberries for

transport co-robot arrangements, which could alternatively

be applied to measure the quantity of bin weight to

determine the harvesting speed. Furthermore, smart bins

equipped with sensors that can detect the condition of fruits

and vegetables inside the bins, such as temperature,

humidity, ethylene, and carbon dioxide production, can be

a powerful tool to make appropriate decisions for storage and

transportation at the post-harvest stage.
Conclusion

Advanced technologies in AI are increasingly being used to

automate a variety of on-farm sorting and transportation

operations. In recent years, AI approaches have proven to be

useful and effective for automated fruit sorting and transportation

at the on-farm post-harvest stage. This paper focused on

determining the applications of AI for on-farm fruit sorting and

transportation, identifying the challenges faced by these

applications, and discussing the prospects and opportunities. Key

findings related to data acquisition sensors, the use of AI models,

and their merits are presented. Limitations and future research

directions have been elaborated to provide an overview and in-

depth analysis of potential applications of AI for on-farm sorting

and transportation. We believe that these investigations will help

direct future research toward building autonomous systems for on-

farm sorting and transportation. In the context of increasing labor

costs and the demand for better-quality produce in the fresh

market, there will be a great need for AI-based systems for on-

farm sorting and transportation. Given the rapid advancement of

AI technologies, it is predictable that the use of AI for on-farm

sorting and transportation will have a widespread application in

precision agriculture in the near future.
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