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Near-infrared spectroscopy for
early selection of waxy cassava
clones via seed analysis

Massaine Bandeira e Sousa 1, Juraci Souza Sampaio Filho 2,
Luciano Rogerio Braatz de Andrade 1† and
Eder Jorge de Oliveira 1*

1Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil, 2Universidade Federal do Recôncavo
da Bahia, Cruz das Almas, Bahia, Brazil
Cassava (Manihot esculenta Crantz) starch consists of amylopectin and amylose,

with its properties determined by the proportion of these two polymers. Waxy

starches contain at least 95% amylopectin. In the food industry, waxy starches are

advantageous, with pastes that are more stable towards retrogradation, while

high-amylose starches are used as resistant starches. This study aimed to associate

near-infrared spectrophotometry (NIRS) spectra with the waxy phenotype in

cassava seeds and develop an accurate classification model for indirect selection

of plants. A total of 1127 F2 seeds were obtained from controlled crosses

performed between 77 F1 genotypes (wild-type, Wx_). Seeds were individually

identified, and spectral data were obtained via NIRS using a benchtop NIRFlex N-

500 and a portable SCiO device spectrometer. Four classification models were

assessed for waxy cassava genotype identification: k-nearest neighbor algorithm

(KNN), C5.0 decision tree (CDT), parallel random forest (parRF), and eXtreme

Gradient Boosting (XGB). Spectral data were divided between a training set (80%)

and a testing set (20%). The accuracy, based on NIRFlex N-500 spectral data,

ranged from 0.86 (parRF) to 0.92 (XGB). The Kappa index displayed a similar trend

as the accuracy, considering the lowest value for the parRF method (0.39) and the

highest value for XGB (0.71). For the SCiO device, the accuracy (0.88−0.89) was

similar among the four models evaluated. However, the Kappa index was lower

than that of the NIRFlex N-500, and this index ranged from 0 (parRF) to 0.16 (KNN

and CDT). Therefore, despite the high accuracy these last models are incapable of

correctly classifying waxy and non-waxy clones based on the SCiO device spectra.

A confusion matrix was performed to demonstrate the classification model results

in the testing set. For both NIRS, the models were efficient in classifying non-waxy

clones, with values ranging from 96−100%. However, the NIRS differed in the

potential to predict waxy genotype class. For the NIRFlex N-500, the percentage

ranged from 30% (parRF) to 70% (XGB). In general, the models tended to classify

waxy genotypes as non-waxy, mainly SCiO. Therefore, the use of NIRS can

perform early selection of cassava seeds with a waxy phenotype.

KEYWORDS

amylopectin, amylose, classification models, Manihot esculenta Crantz, portable NIRS
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1089759/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1089759/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1089759/full
https://orcid.org/0000-0001-7887-9543
https://orcid.org/0000-0003-3356-370X
https://orcid.org/0000-0003-4752-1164
https://orcid.org/0000-0001-8992-7459
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1089759&domain=pdf&date_stamp=2023-01-23
mailto:eder.oliveira@embrapa.br
https://doi.org/10.3389/fpls.2023.1089759
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1089759
https://www.frontiersin.org/journals/plant-science


Sousa et al. 10.3389/fpls.2023.1089759
1 Introduction
Cassava (Manihot esculenta Crantz) is one of the most accessible

and consumed sources of carbohydrates, being widely used as

processed products and in its natural form as animal and human

food. In Brazil, cassava has recently increased its value due to its

different available applications, especially in the food industry. Starch

is the main storage carbohydrate in plants, with its biosynthesis

occurring in seeds, tubers, fruits, roots, and leaves. It is essential not

only in the life cycle of plants but also in human nutrition as it

provides large amounts of energy (Li et al., 2019). Along with corn,

potato, wheat, and rice, cassava is one of the main commercial sources

of starch globally (Agama-Acevedo et al., 2019).

Cassava starch comprises two types of glucose polymers, amylose

and amylopectin, whose composition ranges from 15−27% amylose,

with an average of 21% (Sánchez et al., 2009; Santos et al., 2021).

Waxy starch comprises at least 95% amylopectin, and this is

associated with certain advantages, including less starch

retrogradation and syneresis from starch pastes during freeze/thaw

cycles; this prevents the reduction of sensory quality and shelf life of

processed foods (Demiate and Kotovicz, 2011; Wang et al., 2015;

Morante et al., 2016). The waxy starches of roots and tubers, such as

cassava and potato, compared to cereal waxy starches provide clearer

gels, with a mild or neutral flavor (Koehorst-van Putten et al., 2012),

and different, higher viscosity gel textures (Sánchez et al., 2010).

Additionally, they are used in food products, such as nuggets, to

provide crunchiness and prevent excessive oil penetration during

preparation, and in the gummies industry, they provide 25−50% of

the total starch used in the formulations (Cai et al., 2010; Li

et al., 2019).

Developing cassava varieties with waxy starch has become an

important goal for cassava breeders. However, the recessive nature of

the trait and the long reproductive cycle of cassava make the selection

of waxy genotypes relatively complex. The introgression of recessive

traits requires multiple generations of recombination to reduce the

linkage drag of unwanted alleles of the parental genotype that contain

the waxy mutation(s), such as low dry matter content and root yield

(Karlström et al., 2016). A crossing between an elite non-waxy and a

waxy variety, which contains many undesirable genes besides the

starch mutation, is expected to have a 100% frequency of non-waxy

genotypes (wild-type, Wx_) in the F1 generation and segregation of

3:1 (non-waxy:waxy) in the F2 generation. Nonetheless, due to the

high heterozygosity present in the population and the little variability

between the waxy starch sources, the selected genotypes have lower or

similar yield potential and lower starch content than the parental

genotypes (Karlström et al., 2016; Rojanaridpiched et al., 2020;

Ceballos et al., 2021). This result is a consequence of inbreeding

depression caused by the increased frequency of homozygous genes,

often deleterious, whose expressions are repressed in their

heterozygous form. Currently, there are efforts to increase

recombination cycles to maintain the waxy gene in homozygosity

and break undesirable genetic linkage or even increase heterozygosity

for loci associated with important agronomic attributes in cassava.
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Genomic studies have enabled the identification of target genes

that control amylose and amylopectin synthesis and enabled the

selection of markers associated with these genes with potential use

in marker-assisted selection (MAS) (Aiemnaka et al., 2012; Carmo

et al., 2020). Starch biosynthesis is genetically controlled by target

genes, including granule-bound starch synthases (GBSS), soluble

starch synthases (SSS), starch branching enzyme (SBE or BE),

debranching enzyme (DBE), and protein targeting to starch (PTST)

(Zeeman et al., 2010; Bahaji et al., 2014; Seung et al., 2015; Seung et al.,

2017). The SSS, BE, and DBE genes are involved in amylopectin

synthesis, and GBSS and PTST are enzymes related to amylose

biosynthesis in plants, including cassava (Zhao et al., 2011; Bull

et al., 2018).

GBSSI-related SNP markers have not proven useful for MAS in

populations with different genetic backgrounds (Aiemnaka et al.,

2012; Carmo et al., 2020). Alternatively, the phenotypic

identification between waxy and non-waxy genotypes is usually

determined by staining the roots with iodine, which is a chemical

method. Non-waxy, starchy roots stain dark blue due to the presence

of amylose, and waxy phenotypes stain reddish brown (Ceballos et al.,

2007). However, the screening of waxy clones by the iodine method

requires the presence of tuberous roots, and for this reason, in most

genetic breeding programs, the selection is conducted during or close

to harvest, 10 months after planting. Thus, an evident disadvantage of

this process is the difficulty of the early selection of waxy clones.

Therefore, the development of rapid methodologies to identify the

waxy phenotype, regardless of the genetic origin of the mutation, can

help optimize the selection process.

Near-infrared spectroscopy (NIRS) technologies have been used

with great accuracy as auxiliary tools in the phenotyping process,

aiming to accelerate the selection steps. The performance of NIRS is

comparable to other analytical chemistry methods with advantages

including shorter analysis time, early evaluation, bulk sample analysis

per day, and non-destruction of samples (Ikeogu et al., 2017). Near-

infrared (NIR) electromagnetic region radiation (700−2500 nm) is

absorbed by water and organic compounds, including carbohydrates,

proteins, lipids, or alcohols (Agelet and Hurburgh, 2014). Therefore,

NIRS can serve as an important predictor of these compounds in

organic substances.

Carmo et al. (2019) evaluated Fourier-transform near-infrared

spectroscopy (FT-NIRS) for indirect, early identification of waxy

starch cassava genotypes by screening samples of dried, macerated

leaves. In this study, the distribution between the classes of waxy and

non-waxy genotypes was similar, and the results showed high

accuracy, deeming it a potential technique for the classification of

waxy genotypes. However, despite this analysis being earlier than the

analysis of iodine in tuberous roots, it is still necessary to germinate a

large batch of seeds in the greenhouse, collect and identify leaf

samples, dry macerate, and perform screening via NIRS.

Considering the typical segregation of genes with recessive

inheritance, only 25% of the F2 seeds will be classified as waxy and,

therefore, most of the investments in germination and sampling for

evaluation via NIRS were conducted in unwanted samples. Thus, the

development of waxy and non-waxy seed classification models allows
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for an early, non-destructive seed selection that saves time and

resources, ensuring only waxy seeds followed in the selection pipeline.

In fact, NIRS has been used as an efficient tool for classifying and

predicting seed germination capacity, quality, and vigor (Al-Amery

et al., 2018; Medeiros et al., 2020; Mortensen et al., 2021). This approach

allows for the selection and classification of seeds according to specific

traits without damaging or changing seed properties. Analyses in the

endosperm of waxy, normal, and sweet corn varieties have

demonstrated the ability to detect differences between amylopectin

and amylose structures, shape, and size of starch granules as starch is

synthesized within amyloplasts (Yu et al., 2015). This is useful for the

selection of plants of interest in breeding programs.

With the interest in early selection of waxy genotypes, this study

aimed to associate near-infrared spectrophotometry spectra with the

waxy phenotype in cassava seeds and develop an accurate

classification model for indirect selection of plants soon after the

performance of the crossing’s blocks.
2 Material and methods

2.1 Obtaining seeds and collecting spectra
using NIRS

Two generations of recombination were performed to obtain

segregating populations for the waxy gene. The genotypes were

cultivated in a two-crossing blocks field located in the experimental

area of Embrapa Cassava and Fruits in Cruz das Almas, Bahia, Brazil

(12°39′25″ S, 39°07′27″W, 226 m altitude). The parent plants of the F1
and F2 populations were planted from 2016−2017 and 2018−2019,

respectively. The weather conditions are hot, humid, and tropical

(Aw/Am, according to the Koppen classification) with a photoperiod

throughout the year of approximately 12 hours (Souza et al., 2020).

Cuttings (16–20 cm long) with 5–7 buds were grown under rainfed

conditions in plots containing two rows with eight plants each, spaced

1.20 m between rows and 0.80 m between plants. All cultivation

practices were adopted by Souza et al. (2016).

The F1 population was achieved through crossing a waxy (wxwx)

genotype (Cassava-7909) with three non-waxy (wild-type, Wx _)

genotypes (BGM-0131, BGM-0728, and BGM-0935). For the F2
population, controlled crosses were randomly performed among 77

F1 genotypes (wild-type, Wx_) to produce F2 seeds. These parents

were generated through crosses from three different F1 families, with

13, 35, and 28 genotypes each. Overall, 39 genotypes were used as

both male and female parents, while 69 and 46 were used only as

female or male parents, respectively. In total, 197 F2 families and 1127

F2 seeds were obtained.

To prevent insect pollination, the female flowers were protected by

a voile-type fabric bag 24 hours before anthesis, which is easily

identifiable by experienced field workers. Male flowers, immediately

following anthesis, were collected from 7–9 a.m., and the crosses were

performed between 9 a.m. and 4 p.m. by distributing pollen grains on

stigmas. One male flower was used to pollinate up to three female

flowers, depending on the amount of pollen available. The female

flowers were protected again, as previously described, shortly after

pollination. One cross was defined as a single pollination event. After

identifying female flowers ready for pollination, crosses were performed
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in one to four flowers per inflorescence, and the remaining flowers were

removed. The protection bag covered the inflorescence until the seeds

were released and collected, which occurred approximately 2−3 months

post pollination. Each seed was labelled with the family information

and the seed number, and they were individually stored in plastic bags

in a refrigerator (10 ± 2°C) until further analysis.

Seed spectra were obtained in a laboratory at a room

temperature of 22°C through ultraviolet-visible and near-infrared

spectrophotometry using a benchtop NIRFlex N-500 spectrometer

(Büchi, Flawil, Switzerland) and a portable SCiO (Consumer Physics,

Tel-Aviv, Israel). The spectra were obtained by placing the samples

(one whole seed at a time), directly at the output of the infrared source

of the device. Four measurements were taken per seed using the

NIRFlex N-500, with a wavelength ranging from 800–2500 nm

(12500–4000 cm−1). The NIRFlex N-500 was operated in diffuse

reflectance mode at a spectral resolution of 8 cm-1, interpolated at 4

cm-1, resulting in 1501 data points per spectrum. For the SCiO

portable device, three measurements were collected per seed

(N=334) in diffuse reflectance mode with wavelengths ranging from

740–1070 nm (13.514–9.346 cm−1). This device has a set of 12

photodiode detectors, each with a separate optical filter. The

average spectral resolution of SCiO was 13 cm−1, with the lowest

resolution (18 cm−1) found in the highest wavenumbers and the

highest resolution (9 cm−1) in the lowest wavenumbers. The SCiO™

Lab online app (Consumer Physics Inc., Tel-Aviv, Israel) was used for

data collection, storage, and analysis.
2.2 Seedling trial and phenotypic
data collection

After collecting the spectral data, the 1127 F2 seeds were sown in

290 cm3 plastic tubes and placed in trays in a greenhouse at 32 ± 3°C.

The tube substrate comprised vermiculite and washed sand (1:1 ratio)

in the upper quarter, and the lower three quarters was composed of

vermiculite, sand, and coconut fiber (ratio 1:2:1) as well as 15 mg each

of single superphosphate and ammonium sulfate. The seedlings were

transplanted to the field when approximately 30 cm in height, around

45 days after germination. The cultural treatments were performed

according to Souza et al. (2016).

The harvest was conducted at 10 months of age, and the

evaluation was performed using the 2% iodine staining test (2 g Kl

and 0.2 g I2 in distilled water); stain was applied to the cross section of

at least three roots of the seedlings for the identification of the type of

starch (Karlström et al., 2016; Morante et al., 2016). A dark blue color

in the treated root indicated the presence of amylose (non-waxy

genotype), and a reddish-brown color indicated no or low amylose

content (waxy genotype) (Denyer et al., 2001).
2.3 Discriminant analysis of
principal components

The population structure of the genotypes was determined by

principal component discriminant analysis (DAPC) (Ivandic et al.,

2002), using the adegenet package (Jombart, 2008) of the R software

version 4.1.3 (R Core Team, 2021). The find.clusters() function was
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used in detecting the number of clusters in the population. The function

uses K-means clustering, which deconstructs the total variation of a

variable into components between groups and within the group. The

best number of subpopulations was chosen by the smallest Bayesian

Information Criterion (BIC). The groups were plotted on a scatterplot

of the first and second linear discriminant of the DAPC.
2.4 Pre-processing and adjustment of
classification models

Several pre-processing techniques were evaluated to ensure

spectral data reliability such as: first-order derivative (1st); detrend

(DT); multiplicative scatter correction (MSC) and standard normal

variation (SNV); Combined pretreatment methods, first-order

derivative-detrend (1st-DT); first-order derivative-multiplicative

scatter correction (1st-MSC); detrend-multiplicative scatter

correction (DT-MSC); and first-order derivative with Savitzky–

Golay-detrend (1st-SG-DT). The first-order derivative was used to

substracted the influence of background and baseline drift, DT was

used to eliminate the baseline drift in the spectra, and MSC and SNV

methods were used to eliminate the scattering multiplicative

interferences in the spectral signal.

The spectra were pre-processed for above tecniques and then

smoothed with an N=11 filter at each end of the spectral set for noise

reduction (Savitzky and Golay, 1964). The DT, MSC, SNV, and SG

were implemented by the funct ions detrend() , msc() ,

standardNormalVariate(), and savitzkyGolay(), respectively, from

the prospectr package (Stevens and Ramirez-Lopez, 2022)

implemented in the R software version 4.1.3.

After pre-processing, the spectral data were arranged in an X

matrix (predictors), and the starch type data (waxy and non-waxy)

were allocated in a Y vector (response). Four classification models

were assessed for waxy cassava genotype identification: k-nearest

neighbor algorithm (KNN) (Cover and Hart, 1967), C5.0 decision

tree (CDT) (Freund and Schapire, 1997), parallel random forest

(parRF) (Breiman, 2001), and eXtreme Gradient Boosting (XGB)

(Chen and Guestrin, 2016).

KNN is a commonly used non-parametric algorithm in Machine

Learning. It is mathematically simple and based on the determination

of distances, often Euclidean, between an unknown object and each of

the objects in the training set. Thus, the smallest distance is selected for

assigning the members of a given class. With k representing the number
Frontiers in Plant Science 04
of neighbors, the k-nearest objects of the unknown sample are selected,

and a majority rule is applied: the unknown sample is classified in the

class to which most k objects belong. The choice of k is optimized by

calculating the predictive power with different values of k.

C5.0 is an algorithm based on decision trees (Elsayad et al., 2020),

which involve a set of decision nodes, among which the root and each

internal node are labeled with a question (Pradhan, 2013). The arcs

descend from each root node to leaf nodes, where a solution to the

associated issue is offered. A split is created at each node by taking a

binary decision, which separates a class or multiple classes from the

global dataset.

The RF algorithm is a type of ensemble learning and is a method

that generates several decision trees and combines the result of the

classification from each of them. This combination of models makes it

more powerful than Decision Tree. The algorithm works by growing a

set of regression trees based on binary recursive partitioning, where

the algorithm begins with a number of bootstrap samples from the

predictor space (original data) (Cutler et al., 2012).

XGBoost is a machine learning algorithm based on a gradient

boosting decision tree (GDBT) (Chen and Guestrin, 2016). XGBoost

is an extension of RF (Svetnik et al., 2003), and, as a differential, it can

use a regularization term to further reduce overfitting, improve

prediction accuracy, and decrease the time needed to build decision

trees (Luckner et al., 2017). All data analyses were performed with the

R software version 4.1.3 using the caret package (Kuhn, 2008).

The selection of wavelengths with relative importance was

conducted using the XGB model, as it automatically provides

estimates of the importance of the variables. Variables with relative

importance (≥30%) were selected. For this, the varImp() function

from the caret package of the R software version 4.1.3 was used, which

automatically scales importance scores between 0 and 100.
2.5 Cross-validation and external validation

Data were divided into a training set, for model development

purpose, (80% of the data) and a testing set used as independent

samples to test the classification models (used to obtain the confusion

matrix), both with equitable distribution of genotypes according to the

type of starch. The model performances were evaluated in the training set

based on cross-validation, consisting of 10 repetitions with 5-folds each.

Parameters that provide the best fit to the data were selected for each

model evaluated (Table 1). The overall effectiveness of the classification
TABLE 1 Parameters used in the k-nearest neighbor algorithm (KNN), C5.0 decision tree (CDT), eXtreme Gradient Boosting (XGB), and parallel random
forest (parRF) classification models using all variables and selected variables with relative importance (≥30%) using the XGB model.

Models Parameters
NIRFlex N-500 SCiO

All variables Selected variables All variables Selected variables

KNN K 5 5 7 7

CDT trials, model, and winnow 20, tree, and TRUE 20, tree, and FALSE 20, tree, and FALSE 20, tree, and FALSE

XGB nrounds, lambda, alpha, and eta 150, 1e-4, 0, and 0.3 150, 1e-4, 0.1, and 0.3 50, 0, 0, and 0.3 50, 0.1, 0.1, and 0.3

ParRF mtry* 1459 27 2 2
*number of predictors.
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models was assessed based on mean values of accuracy and Cohen’s

Kappa statistic (unweighted) (Cohen, 1960), obtained in each repetition of

the cross-validation. The accuracy was determined using the equation 1:

Accuracy =
tp + tn

tp + fn + fp + tn
(1)

where tp corresponds to the number of correctly recognized class

examples (true positives), tn is the number of correctly recognized

examples that do not belong to the class (true negatives), fp are

examples that were incorrectly assigned to the class (false positives),

and fn are examples that were not recognized as class examples (false

negatives). The Kappa index is based on the number of concordant

responses defined by equation 2:

Kappa =
po + pe
1 − pe

(2)

where po is the proportion of units that agreed, and pe is the

proportion of units for which agreement is expected by chance. This

index indicates how well the models can correctly classify the two

analyzed classes, and the closer to one, the greater the detection power.

The testing set (20% of the data) consisted of 225 and 67

genotypes for NIRFlex N-500 and SCiO, respectively. The

prediction performance was evaluated with parameters generated

from a confusion matrix. The parameters were accuracy, Kappa

index, sensitivity, and specificity. Sensitivity measures the

probability of the classifier hitting true positives ( tp
tp+fn ) , while

specificity measures the probability of hitting true negatives ( tn
tn+fn ).
3 Results

3.1 Segregation and clustering of clones via
multivariate analysis

Among the 1127 seedlings, 21.3% had waxy starch genotypes. Of

the 197 families, 85 were used to assess the frequency of segregation

for the mutant phenotype (Waxy – wxwx) because they had four or

more individuals per family. As the population originated from the

cross between waxy parents (wxwx) with a known genotype and non-
Frontiers in Plant Science 05
waxy parents (wild-type, Wx_) with unknown genotypes, the

expected frequencies of 3:1 and 1:1 were considered for the two

possibilities of the non-waxy parent. As expected, the observed

distribution of phenotypic classes in 86% of the evaluated families

adjusted to a single-gene Mendelian inheritance (flex Table S1).

Both the spectral data collected by the NIRFlex N-500 (240 waxy

and 887 non-waxy clones) and the SCiO portable NIR (291 waxy and

44 non-waxy clones) were used to assess the potential for classifying

cassava genotypes based on a waxy phenotype. The density

distributions of the waxy and non-waxy clones, were determined

for each NIR equipment (Figure 1). It can be observed from the

density curves that both equipments displayed overlapping curves,

which represent areas of confusion, with the diferentiation between

the groups not being clear by visual analysis.
3.2 Development of classification models

To evaluate the efficiency of the pre-processing techiniques were

used the parameters Accuracy and the Kappa index from the KNN

classification method (Figure S1). In general, according to cross-

validation the results were similar between the pre-processing

techniques, with lower performance when using the raw data

without pre-processing. The 1st and MSC combination was selected

to proceed with the analyses.

Accuracy and the Kappa index were used as parameters to evaluate

the efficiency of the models with the best fit in the classification of waxy

and non-waxy clones. Generally, the classification accuracy using

NIRFlex N-500 spectral data varied among the different models

analyzed. According to cross-validation, the accuracy ranged from

0.86 (parRF) to 0.92 (XGB) (Figure 2; Table 2). The Kappa index

displayed a similar trend as the accuracy, considering the lowest value

for the parRF method (0.39) and the highest value for XGB (0.69).

Regarding the NIRFlex N-500 spectra collected, although the KNN

classification method has presented similar accuracy (0.90) to the XGB

model, the Kappa index was considerably lower (0.64) than the XGB.

Regarding NIRS SCiO, the classification accuracy was similar among

the four models evaluated, with values ranging between 0.87 (CDT) and

0.89 (parRF and XGB). However, the Kappa index was lower than that of
FIGURE 1

Density plot on the first discriminant function showing discriminant analysis of principal components (DAPC) based on near-infrared (NIR) spectral data
obtained by NIRFlex N-500 and SCiO equipment, considering contrasting cassava genotypes for waxy and non-waxy starches.
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the NIRFlex N-500, and this index ranged from 0.05 (CDT) to 0.22

(KNN). These results show that, despite high accuracy values, these

models, especially CDT, are incapable of correctly classifying waxy and

non-waxy clones based on the SCiO device spectra.

Despite high accuracy in classifying the waxy phenotype early

during the seed stage, especially in the NIRFlex N-500 spectra, the

possibility of improving classification accuracy was investigated
Frontiers in Plant Science 06
further considering the selection of variables according to the

importance scores of the spectra based on the XGB model. This

was warranted because spectroscopic techniques tend to generate a

high number of variables (wavelengths) with noise which are highly

correlated, which reinforces the importance of removing non-

informative variables. Thus, the construction of consistent

classification and prediction models is possible, reducing the risk of
TABLE 2 Cross-validation parameters of the k-nearest neighbor algorithm (KNN), eXtreme Gradient Boosting (XGB), C5.0 decision tree (CDT) and parallel
random forest (parRF) classification models obtained through spectral data analysis from the NIRFlex N-500 and SCiO in cassava seeds with waxy and
non-waxy starch.

Models* NIRFlex N-500 SCiO

Accuracy Kappa Accuracy Kappa

All spectra

KNN 0.90 ± 0.01 0.64 ± 0.05 0.88 ± 0.02 0.22 ± 0.14

CDT 0.89 ± 0.02 0.57 ± 0.08 0.88 ± 0.02 0.05 ± 0.15

XGB 0.92 ± 0.01 0.69 ± 0.05 0.89 ± 0.02 0.20 ± 0.12

parRF 0.86 ± 0.01 0.39 ± 0.06 0.89 ± 0.01 0.13 ± 0.10

Selected spectra

KNN_Sel 0.89 ± 0.02 0.61 ± 0.06 0.89 ± 0.02 0.26 ± 0.14

CDT_Sel 0.92 ± 0.01 0.73 ± 0.06 0.89 ± 0.02 0.23 ± 0.17

XGB_Sel 0.95 ± 0.01 0.82 ± 0.04 0.90 ± 0.02 0.37 ± 0.16

parRF_Sel 0.92 ± 0.01 0.72 ± 0.05 0.89 ± 0.01 0.14 ± 0.13
fro
* Sel: models using variables selected according to their relative importance by the xgbLinear model.
D

A B

C

FIGURE 2

Accuracy (A, C) and kappa index (B, D) of cross-validation of classification models based on NIRFlex N-500 and SCiO near-infrared spectra evaluated in
cassava seeds contrasting for waxy and non-waxy starch. KNN, k-nearest neighbor algorithm; CDT, C5.0 decision tree; XGB, eXtreme Gradient Boosting;
parRF, parallel random forest.
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inferences and the computational cost of the analyses. Thirty seven

and 34 wavelengths were selected for the NIRFlex N-500 and the

SCiO, respectively, with relative importance (≥30%) (Figure 3).

Overall, for the NIRFlex N-500, models built on the most

important spectra only resulted in an increase in classification

accuracy and Kappa index estimates compared to models built on

all spectra, excluding the KNN model. The CDT and XGB models
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resulted in an average increase of 3.7% in accuracy, while the parRF

model showed a 7% increase. Furthermore, the Kappa index

significantly increased from 0.57, 0.69, and 0.39 to 0.73, 0.82, and

0.72 for the CDT, XGB and parRF models, respectively (Figure 4;

Table 2). However, in relation to SCiO, the accuracy estimates

remained practically unchanged after the selection of the most

important spectra. Alternatively, the Kappa index increased
FIGURE 3

Relative importance of wavelengths collected by NIRFlex N-500 and SCiO equipment for classification of the waxy phenotype in cassava based on the
eXtreme Gradient Boosting classification model.
D

A B

C

FIGURE 4

Accuracy (A, B) and Kappa index (C, D) of cross-validation of classification models based on NIRFlex N-500 and SCiO near-infrared spectra evaluated in
cassava seeds contrasting for waxy and non-waxy starch. KNN, k-nearest neighbor algorithm; CDT, C5.0 decision tree; XGB, eXtreme Gradient Boosting;
parRF, parallel random forest; Sel, models using variables selected according to relative importance by the XGB model.
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significantly from 0.05 to 0.23 (CDT), and from 0.20 to 0.37 (XGB)

(Figure 4). However, Kappa index estimates are considered very low

(< 0.37) and highly biased in their estimates (Table 2).
Predictive capacity of classification models

The predictive capacity of the models was evaluated based on the

accuracy, Kappa index, sensitivity, and specificity generated from the

confusion matrix obtained by predicting the models in the testing set

(Table 3; Figures 5, 6). Considering the testing population, high

classification accuracy was identified for both NIRSs. The accuracies

ranged from 0.85 (parRF) to 0.95 (XGB _Sel) for the NIRFlex N-500

(Table 3). The Kappa index was high (>0.60), except for the parRF

model with a value of 0.37 (Table 3). Like cross-validation, the

selection of the most important spectra for model calibration

provided an increase in the accuracy values and, more importantly,

in the Kappa index, excluding the KNN model.

Confusion matrix based on the spectra collected by SCiO resulted

in similar values of accuracy and Kappa indices, regardless of whether

the model uses all spectra or only the most important for the

classification of waxy clones. Again, although the SCiO spectra

resulted in high classification accuracies, the capability of reliable

detection among the analyzed classes was null.

Overall, values equal to or close to one were obtained for

sensitivity, indicating that the models were able to predict the true

positives of each class. Specificity values ranged between 0.27−0.74,

for NIRFlex N-500, and were close to zero for SCiO (Table 3). This

result indicates that most models were not efficient in predicting the

true negatives of the evaluated classes. The two classes evaluated

present an imbalance in relation to the number of clones that

comprise each class. Therefore, the differences in sensitivity and

specificity estimates are attributed to this imbalance between the

classes since the confusion matrix considers the non-waxy class as

positive and waxy as negative.

The confusion matrix displays the results of classifying the

different models in the external validation set (Figures 5, 6). For

both NIRSs, the models were efficient in classifying non-waxy clones
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(considered the “positive” class) with hit percentages ranging between

95−100%. However, the NIRSs differ in the prediction potential of the

waxy clone class. For the NIRFlex N-500, the hit percentage ranged

from 27% (parRF) to 74% (KNN and XGB_Sel). In general, the

models tended to classify waxy genotypes as non-waxy, especially for

SCiO equipment.
4 Discussion

4.1 Evaluation of waxy phenotype
classification efficiency

Several studies employ molecular markers to understand the

genetic control of the waxy genotype, which guides the crossing

planning of accessions, since the waxy phenotype is expressed in the

recessive condition (Aiemnaka et al., 2012; Carmo et al., 2020).

However, despite the development of protocols that allow the use

of selection assisted by molecular markers related to the GBSSI

(granule-bound starch synthase I) gene derived from the waxy

starch source AM206-5, there remain obstacles when the

population has a different genetic origin than the AM206-5 source

(Carmo et al., 2020). Therefore, using technologies that allow a faster,

earlier selection of waxy genotypes is desirable in the most diverse

breeding programs.

In the present study, seeds from segregating populations of

cassava for waxy starch were used as sample material for the

identification/classification of waxy and non-waxy genotypes by

near-infrared spectroscopy (NIRS). A previous study using spectral

data collected from leaf tissue allowed the early and accurate

identification of waxy genotypes (Carmo et al., 2019). The NIRS

technique allows capturing differences in the chemical constitution of

plants because of the expression of different genes. Further, leaves are

complex assemblies of organic compounds and may be expected to

exhibit different spectral responses. NIRS can be successfully used for

the characterization of chemical components, like nitrogen, in

different plant tissues (Li et al., 2022). In addition to leaf tissue,

starch samples have been used to identify the waxy genotype based on
TABLE 3 Parameters from confusion matrix associated with grading efficiency of contrasting cassava seeds for waxy and non-waxy starch based on near-
infrared (NIR) spectra collected by NIRFlex N-500 and SCiO equipment in test samples.

Models*
NIRFlex N-500 SCiO

Accuracy Kappa Sensitivity Specificity Accuracy Kappa Sensitivity Specificity

All spectra

KNN 0.92 0.74 0.97 0.73 0.87 0.23 0.96 0.23

CDT 0.90 0.60 1.00 0.49 0.89 0.19 0.99 0.14

XGB 0.93 0.74 0.99 0.65 0.90 0.22 1.00 0.14

parRF 0.85 0.37 1.00 0.27 0.88 0 1.00 0

Selected spectra

KNN 0.89 0.62 0.95 0.63 0.88 0.12 0.99 0.09

CDT 0.94 0.79 1.00 0.71 0.88 0.26 0.97 0.23

XGB 0.95 0.82 1.00 0.74 0.88 0.22 0.98 0.18

parRF 0.93 0.73 1.00 0.63 0.89 0.08 1.00 0.05
f

* KNN, k-nearest neighbor algorithm; CDT, C5.0 decision tree; XGB, eXtreme Gradient Boosting; parRF, parallel random forest; Sel, models using variables selected according to their relative
importance by the XGB model.
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FIGURE 6

Confusion matrix performed in the testing set considering classification models based on near-infrared spectra by SCiO evaluated in cassava seeds
contrasting for waxy and non-waxy starch. KNN, k-nearest neighbor algorithm; CDT, C5.0 decision tree; XGB, eXtreme Gradient Boosting; parRF, parallel
random forest; Sel, models using variables selected according to relative importance by the XGB model.
FIGURE 5

Confusion matrix of the testing set considering classification models based on near-infrared spectra by NIRFlex N-500 evaluated in cassava seeds
contrasting for waxy and non-waxy starch. KNN, k-nearest neighbor algorithm; CDT, C5.0 decision tree; XGB, eXtreme Gradient Boosting; parRF, parallel
random forest; Sel, models using variables selected according to relative importance by the XGB model.
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NIR spectra in species such as wheat (Lavine et al., 2014; Delwiche

and Graybosch, 2016; Delwiche et al., 2018).

The early analysis of greenhouse waxy cassava clones using NIR

spectra in leaf tissues, before field planting, allows the exclusive

selection of desired genotypes with a high probability to plant the

waxy phenotype. Thus, a breeder can avoid planting large populations

that do not contain the desired trait (~75% of individuals). However,

the use of dried and macerated cassava leaves as sample material

requires additional time and resources for the selection process, as it is

necessary to sow seeds and grow plants in a greenhouse until the

collection time of leaf tissues. The results of the present study indicate

that it is possible to classify cassava seeds according to the type of

starch with an accuracy close to 1 through classification models based

on seed spectral data. Among the two evaluated NIRSs equipment, the

NIRFlex N-500 proved to be more accurate, with Kappa values close

to 0.80, compared to the portable NIR SCiO. This was possible as each

device has different wavelength amplitudes, 740−1070 nm for SCiO

and 800−2500 nm for NIRFlex N-500, in addition to the different

sample sizes.

Although the NIRFlex N-500 has a higher cost, there is a better

resolution in obtaining spectra that maximizes the chance of

association with the phenotype of interest (Beć et al., 2022). Due to

its numerous advantages, NIR spectra of 800−2500 nm have been

used to predict several chemical components in plant seeds (Ferreira

et al., 2013). Alternatively, although the SCiO equipment provided

high classification accuracy (0.87−0.89), the Kappa indices were

very low.

The accuracy values indicate that, in both NIRS equipment, there

was a high proportion of correctly classified events in relation to the

total number of samples. Accuracy is one of the most intuitive and

widely used performance metrics for classification. The Kappa index

is a widely used metric to measure classification performance,

considering the probability of obtaining the classification by chance.

Some authors warn that Kappa may be an inadequate estimate when

an unbalanced distribution of classes is involved, where the marginal

probability of a class is much (more or less) greater than the others

(Donker et al., 1993; Forbes, 1995; Andrés and Marzo, 2004; Delgado

and Tibau, 2019). In fact, the dataset evaluated by SCiO showed a

greater imbalance between classes compared to the samples evaluated

by the NIRFlex N-500.

Portable and smaller equipment, such as the SCiO, has a growing

popularity in the agri-food industry. The NIR SCiO is a cost-effective

device that stores data in a “cloud”, and it is affordable because it uses

an LED light source and a simple 12-element Si photodiode detector,

with a configuration matrix of 4 × 3, combined with optical filters on

each pixel to form a 12-channel spectrometer (Beć et al., 2022).

However, these characteristics give it lower optical performance due

to the low number of wavelengths compared to benchtop equipment,

such as the NIRFlex N-500 (Beć et al., 2022). Despite these

limitations, the spectral region covered is sufficient for the

prediction of important parameters related to food quality, such as

total soluble solids, maturity, identification of fruits with a high

concentration of dry matter (Li et al., 2018a), and sugar content

and firmness in tomatoes (Goisser et al., 2018). Additionally, this

equipment makes it possible to classify cultivars of barley, chickpeas,

and sorghum seeds with 86−96% accuracy (Kosmowski and

Worku, 2018).
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The accuracies of cross-validation in training set and from

confusion matrix in the testing set were high among the

classification models analyzed, with emphasis on the XGB

algorithm (>0.92). A recent study demonstrated the effectiveness of

XGB in analyses with spectral data in food quality control (Li et al.,

2018b), in comparison with the Back Propagation Neural Network

and Support Vector Regression models, often used in analysis of

products of vegetal origin. In addition to the high classification

accuracy of waxy clones, the Kappa values obtained by this

algorithm were high, at 0.69 and 0.82, respectively. Probably,

because it is an extension of random forest and uses a

regularization parameter to reduce overfitting, XGB was the

algorithm with the highest detection power, allowing it to correctly

classify the two classes analyzed (Luckner et al., 2017).

Due to the high number of variables (wavelengths) gathered,

mainly by the NIRFlex N-500, the selection of variables makes it

possible to remove noise, or highly correlated and non-informative

variables, to improve computational performance. Therefore, the

classification models were evaluated after selecting the most

important spectra based on the XGB algorithm. Following this

procedure, a slight increase in Kappa values was observed, and

similar classification accuracies was revealed for the different

models compared to the analyses performed with all spectra.

Therefore, the selection of variables proved to be advantageous for

increasing the power of the models to classify waxy cassava clones and

in reducing the computational time for processing the analyses.
4.2 Prospects for the use of NIRS for early
selection in cassava

NIR spectrometry has demonstrated a high potential in predicting

key traits such as carotenoids, starch, and dry matter content in

cassava (Ikeogu et al., 2017; Bantadjan et al., 2020; Maraphum et al.,

2022). The correlation coefficient of prediction was 0.83 for starch

content (Bantadjan et al., 2020), 0.88 for carotenoids, and 0.80 for dry

matter content (Ikeogu et al., 2017), which ensures a sufficient

predictive accuracy of new phenotypes to be generated and

evaluated by the cassava breeding programs.

Furthermore, as it is a non-destructive technique, it can be

incorporated as a new tool for cassava breeders, improving

phenotyping efficiency. When compared to the conventional

laboratory techniques for dry matter and carotenoid content in

cassava breeding, the NIRS technique is rapid and cost-effective

(Ikeogu et al., 2017). The current phenotyping techniques for key

traits are laborious and time-consuming for large-scale screenings.

Additionally, estimates could be influenced by sample preparation,

including weight and number of roots used in the prevalent specific

gravity method (Fukuda et al., 2010). For carotenoid quantification

using color, the intensity could be subjective and inefficient in an

advanced population of biofortified genetic materials (Sánchez et al.,

2006). Moreover, laboratory processes using high-performance liquid

chromatography (HPLC) or a UV-Visible spectrophotometer are

low-throughput, processing less than 10 or 40 samples per day,

respectively (Sánchez et al., 2014).

These results bring advances and new techniques for early

identification of cassava genotypes with waxy starch at the seed stage,
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through non-destructive techniques. This allows cassava breeders to

generate large F2 segregating populations with thousands of individuals.

From these populations, it is possible to select desirable genotypes with

high classification accuracy before planting in the field.

Despite the initial investment to purchase the NIRS equipment,

the economic return is readily apparent in the next seedling trials.

After screening the seeds viaNIRS, it is possible to reduce the planting

area of seedlings by up to 75%. In terms of resource allocation, an

estimated cost with phenotyping of a field plot, with a seedling per

plot, in one environment is 2.20 U.S. dollars. This value was assumed

for a single-plant field plot, including phenotyping with the iodine

test. On average, 8000 seeds are obtained from segregating

populations for waxy starch per year. Screening represents an

average savings of $2.20 x 6000 = $13,200.00/year.
5 Conclusions

NIR spectroscopy in combination with the eXtreme Gradient

Boosting algorithm (XGB) can be used to classify cassava seeds

according to the type of waxy and non-waxy starch and select early

genotypes with the desired phenotype. The methodology using NIRS

techniques showed great potential for applicability, being a fast and

efficient tool for the identification of waxy genotypes for practical use

as an alternative to utilizing molecular markers in cassava

breeding programs.
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