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A highly efficient genetic
transformation system
for broccoli and
subcellular localization

Yongyu Zhao †, Dongxu Yang †, Yumei Liu, Fengqing Han
and Zhansheng Li*

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture,
Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences, Beijing, China
Introduction: Agrobacterium-mediated genetic transformation has been widely

used for the identification of functional genes and regulatory and developmental

mechanisms in plants. However, there are still some problems of low genetic

transformation efficiency and high genotype dependence in cruciferous crops.

Methods: In this study, broccoli, a worldwide Brassica crop, was used to

investigate the effects of genotype, explant type, concentration of hygromycin

B used during seedling selection, overexpression vector type, RNAi and CRISPR/

cas9 on the genetic transformation efficiency. At the same time, two vectors,

PHG-031350 and PHG-CRa, were used for subcellular localization of the

glucoraphanin synthesis-related gene FMOGS-OX5 and clubroot resistance

gene by a PEG-Ca2+-mediated transient transformation system for broccoli

protoplasts. Finally, the Agrobacterium-mediated genetic transformation system

of broccoli was optimized and improved.

Results and Discussion: This study showed that hypocotyl explants are more

suitable for Agrobacterium-mediated transgene and CRISPR/Cas9 gene editing

of broccoli. In contrast to previous studies, we found that 5 mg/L hygromycin B

was more advantageous for the selection of resistant broccoli sprouts, and

genotype 19B42 reached the highest transformation rate of 26.96%, which is

higher than that in Brassica oleracea crops. In addition, the inbred line 19B42

successfully achieved high genetic transformation of overexpression, RNAi and

CRISPR/Cas9 vectors; thus, it is powerful recipient material for the genetic

transformation of broccoli. Subcellular localization proved that the

glucoraphanin metabolism-related gene Bol031350 and clubroot resistance

gene CRa were both expressed in the cytoplasm and nucleus, which provided

a scientific basis for studying the regulation of glucosinolate metabolism and

clubroot resistance in cruciferous crops. Therefore, these findings will provide

new insight into the improvement of the genetic transformation and molecular

breeding of Brassica oleracea crops.
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Introduction

Broccoli (Brassica oleracea L. var italica) is an internationally

popular vegetable, and the planting area of broccoli in China has

recently increased yearly, exceeding 86,000 hm2 in 2019 (Huang

et al., 2021a). Broccoli is known to be rich in vitamin C, proteins,

and minerals and contain the anticancer active ingredient

sulforaphane, which can significantly reduce the risk of a variety

of cancers, cardiovascular and cerebrovascular diseases, Alzheimer’s

disease, myopia, and depression (Fahey et al., 2002; Li et al., 2017;

Bessler and Djaldetti, 2018; Li et al., 2019a; Li et al., 2021b).

At present, genetic engineering has played an important role in

gene functional analysis, and it can also help breeders quickly obtain

target plant traits with homozygous genetic backgrounds, greatly

shortening breeding times. To date, plant genetic transformation

methods generally include the Agrobacterium-mediated method,

pollen tube pathway, particle bombardment, nanomaterial-

mediated transient transformation, and virus-induced gene

silencing (VIGS) (Men et al., 2003; Kant and Dasgupta, 2017;

Wang et al., 2019; Lv et al., 2020; Li et al., 2022). Agrobacterium-

mediated genetic transformation has the characteristics of

universality, wide applicability and simple operation, so it has

been widely used in plants. In 1983, herbicide-resistant transgenic

tobacco was first obtained using Agrobacterium-mediated genetic

transformation (Liu et al., 2018).

The Agrobacterium-mediated genetic transformation system has

been widely used in wheat, rice, maize, tomato, rape and other crops

(Thomzik, 1995; Hu et al., 2003; Li and Li, 2003; Sharma et al., 2009;

Bates et al., 2017; Zhong et al., 2018; Van Eck et al., 2019). Based on

this method, gene silencing, overexpression and gene editing have

been applied in plants, and a number of new germplasm resources

have been improved for resistance to stress (cold resistance, salt

resistance, bolting resistance, etc.) disease (blight, rust, black rot,

virus disease), insects (Helicoverpa armigera, diamondback moth,

cabbage caterpillar, flea beetle), and herbicides (glyphosate,

acetochlor, fomesafen), as well as high nutrition (vitamins, proteins,

phytic acid, g-aminobutyric acid). Regulatory genes related to plant

development have been identified and analyzed, including high yield

(IPA1) and lodging resistance (OsTCP15) in rice (Zhang et al., 2017;

Banerjee and Roychoudhury, 2018), plant height and yield traits in

maize (Luo et al., 2022; Wang et al., 2022a), pod setting and branching

in soybean (Guan et al., 2015; Shim et al., 2019; Su et al., 2022), tomato

flavor traits (Tikunov et al., 2020), and bitterness regulation in

cucumber (Shang et al., 2014). For most cruciferous crops, a

complete genetic transformation system has been established;

However, for a few crop species, these systems have not yet been

perfected. Agrobacterium-mediated transformation and CRISPR/

Cas9 gene editing have been widely applies to rape (Probsting et al.,

2020), cabbage (cry1Ia8, cry1C) (Yi et al., 2016; Yi et al., 2017), and

broccoli (Cry1Ac) (Cao et al., 2002). However, research on

transformation system of Chinese cabbage is lagging behind the

other Brassica crops, such as rapeseeds, cabbage and so on, so VIGS

must be used to identify functional genes (Murata and Orton, 1987).

In 2020, genetic transformation of Chinese cabbage mediated by

Agrobacterium was performed (Zhao et al., 2021), and the CRISPR/

Cas9 gene editing system will provide important support for the
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functional gene identification of Chinese cabbage in the future. At the

same time, the genetic transformation system mediated by

Agrobacterium has shown great differences among different species,

and there is obvious genotype differences. Therefore, genotype is one

of the important factors affecting plant genetic transformation. In

addition, previous studies found that the explant type, concentration

of hygromycin B used during seedling selection and vector type also

affect the genetic transformation efficiency in different plants. Most

studies have shown that in cruciferous crops, hypocotyls are generally

better than cotyledons as explants (Zhao et al., 2021), the

concentration of hygromycin B used during seedling selection differs

across varieties, and the selection concentration of rape is often higher

than that of diploid cabbage, broccoli, cauliflower, and kale (Odell

et al., 1985; Liu et al., 2008; Kumar and Srivastava, 2016). It has been

reported that the efficiency of gene editing is often lower than that of

overexpression and gene silencing, and there are generally no

significant differences between overexpression and gene silencing

results (Htwe et al., 2014; Ali et al., 2016).

At present, research on the genetic transformation of broccoli

has mainly focused on growth and development, nutritional

regulation and resistance (Li et al., 2019b; Han et al., 2021;

Huang et al., 2021b). FMO genes and MYB transcription factors

related to glucosinolate secondary metabolites in broccoli can affect

the synthesis of glucosinolates (Gigolashvili et al., 2007; Wang et al.,

2017; Neequaye et al., 2021; Kim et al., 2022) and positively regulate

the expression of the storage-related gene ClpB1 (Wang et al.,

2022b). For broccoli, an efficient genetic transformation system is

very important. Clubroot caused by Plasmodiophora brassicae is a

major disease of Brassica crops worldwide, and it usually occurs on

rapeseed, cauliflower, broccoli, Brussels sprouts, Chinese cabbage,

and radish. To avoid this disease, breeders must introduce clubroot

resistance (CR) genes from the European turnip into susceptible

crop lines. The CRa gene encoding a TIR-NBS-LRR protein has

been shown to confer specific resistance to the clubroot pathogen

Plasmodiophora brassicae (Xie et al., 2022).

In this study, we optimized a highly efficient Agrobacterium-

mediated transformation system by testing 5 different broccoli

genotypes, 5 vectors, including overexpression, RNAi and CRISPR/

Cas9, 2 explant types, and 4 gradient concentrations of hygromycin B

for seedling selection. Our findings greatly improve the efficiency of

the broccoli genetic transformation system and provide a scientific

basis for the establishment of efficient transgenic and gene editing

technology systems widely used in other cruciferous crops.
Materials and methods

Plant materials

The materials used in this experiment were 5 broccoli inbred

lines: 18LH, 18Y8, 18B3, 19B41, and 19B42 (Figure 1). All the

materials were cultivated by the Institute of Vegetables and Flowers,

Chinese Academy of Agricultural Sciences (IVF-CAAS). This study

was carried out from April 2021 to September 2022.

All the materials were planted and identified in autumn

2021 (Figure 1). 18LH was an inbred line at the F5 generation,
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and it showed an early maturing, semi-open plant type, a solid

stem with few lateral branches (1-3), and a dome-shaped head

with thin buds. 18Y8 was an inbred line at the F6 generation,

and it showed a middle-late maturing, semierect plant type, a

solid stem with no lateral branches, and a dome-shaped head

with medium buds. 18B3 was an inbred line at the F6 generation,

and it showed an early maturing, erect plant type, a solid stem

with many lateral branches (4-6), and a dome-shaped head with

medium buds. 19B41 was an inbred line at the F6 generation,

and it showed an early maturing, erect plant type, a solid stem

with few lateral branches (1-2), and a semidome-shaped head

with medium buds. 19B42 was an inbred line at the F6
generation, and it showed a middle-early maturing, semierect

plant type, a solid stem with no lateral branches (1-2), and a

dome-shaped head with thin buds.
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Plasmid vectors

In total, 5 plasmid vectors were designed and constructed in our

study (Figure 2): the overexpression vectors PHG-031350 and

PHG-CRa, the RNAi vectors PTCK303-029100 and pTCK303-

031350, and the gene editing vector CRISPR/Cas9-Bol (CR-Bol).
Sterilization of seeds and the acquisition
of explants

Broccoli seeds were selected and placed in a 50 mL centrifuge

tube, soaked in 75% alcohol for 3 min and then in 8% sodium

hypochlorite for 8 min, and finally washed 3 times with sterile water

for 3 min. After drying on sterile filter paper, the seeds were placed
FIGURE 1

The genetic information and profiles of 5 broccoli inbred lines. (A, B) Morphology and head image of 18LH genotype broccoli plant. (C, D) Morphology
and head image of 18B3 genotype broccoli plant. (E, F) Morphology and head image of 18Y8 genotype broccoli plant. (G, H) Morphology and head
image of 19B41 genotype broccoli plant. (I, J) Head and plant profiles image of 19B42 genotype broccoli plant.
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on MS medium for 5-7 days. Under sterile conditions, the

hypocotyls of broccoli seedlings were cut into 8-10 mm sections.
Transformation of agrobacterium and
preparation of agrobacterium solution

Agrobacterium (GV3101) stored at -80°C were partially thawed

at room temperature, and a total of 0.5 mg of plasmid DNAwas added

to each 100 mL of bacterial solution. After mixing, the solution was

placed on ice for 5 min and in liquid nitrogen for 5 min, followed by a

water bath at 37°C for 5 min and on ice for 5 min. Then, 700 mL of

antibiotic-free liquid lysogeny broth (LB) was added and incubated

for 2-3 h at 28°C under shaking conditions. After centrifugation at

6000 rpm for 1 min, the supernatant was removed. Approximately

100 mL of supernatant was used to resuspend the Agrobacterium,

which was evenly coated on solid LB containing the appropriate

antibiotics and inverted at 28°C for 36-48 h. Finally, 1 mL of liquid LB

containing the appropriate antibiotics was placed in a 1.5 mL

centrifuge tube, and each colony was inoculated into the centrifuge

tube, shaken at 28°C for 12-15 h and stored at 4°C.

The day before infection, 200 mL of bacterial solution was spread

on solid LB containing the appropriate antibiotics and then cultured

at 28°C for 24 h. During the infection, the Agrobacterium was

resuspended in liquid MS medium, the concentration was adjusted

to an absorbance of 0.4-0.6 at 600 nm, and an appropriate amount of

acetosyringone was added for later use.

The configuration of each medium in the experiment is shown

in Table 1.
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Infection and subsequent culture of
explants

The explants were cultured in the preculture medium for 2 days

and then transferred to a sterile petri dish. Infection solution was

added, the explants were soaked for 10 min, and the excess infection

solution was poured out. The explants were placed on sterile filter

paper to dry and then placed on coculture medium for 36-48 h in

the dark.

After 36-48 h in the dark, the explants were transferred to

delayed medium for 4-5 days and then transferred to selection

medium with different concentrations of hygromycin B for 14 days,

which was repeated three times (n=3). After the resistant sprouts

grew, they were transferred to growth medium.
DNA extraction and PCR identification

Genomic DNA was extracted from broccoli sprouts using the

modified CTABmethod (Chaparro-Encinas et al., 2020). The specific

primer pair P1 (HYG-F: GCTTCTGCGGGCGATTTGTGT; HYG-R:

GGTCGCGGAGGCTATGGATGC) was designed using Primer3

software (California, USA) online (http://primer3.ut.ee/), and all

the transgenic plants were individually amplified and identified.

The PCR program was as follows: predenaturation at 94°C for

3 min; 35 cycles of denaturation at 94°C for 30 s, annealing at 62°C

for 45 s, and extension at 72°C for 1 min; final extension at 72°C for

7 min; and storage at 4°C. The PCR results were detected by 1.2%

agarose gel electrophoresis.
FIGURE 2

Profiles of the vector performance in 19B42 and their structural differences. (A-C) Hypocotyls and sprouts from19B42 with vector CR-Bol
accompanied, and the structure of vector CR-Bol.(D-F) Hypocotyls and sprouts from19B42 with vector PHG-031350 accompanied, and the
structure of vector PHG-031350. (G-I) Hypocotyls and sprouts from19B42 with vector PHG-CRa accompanied,and the structure of vector PHG-
CRa. (J-L) Hypocotyls and sprouts from19B42 with vector PTCK303-029100 accompanied,and the structure of vector PTCK303-029100.(M-O)
Hypocotyls and sprouts from19B42 with vector PTCK303-031350 accompanied,and the structure of vector PTCK303-031350.
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Subcellular localization

The overexpression vectors PHG-CRa and PHG-031350 with

enhanced green fluorescent protein (EGFP) tags were transiently

transformed into broccoli protoplasts by a PEG-Ca2+-mediated

method, which was carried out by Yang’s report (Yang et al.,

2022). Then, temporary glass slides were made for observation

and imaging based on the methods reported by Domozych and Sant

(Domozych et al., 2020; Sant'Ana et al., 2020).
Statistical analysis of the data

Statistical analysis was performed with SPSS 22 software

(IBM, Chicago, USA), and the data are presented as the mean

± S.D. (n=3). One-way ANOVA with Tukey’s test and Student’s t

test was used to determine the different factors influencing the

differentiation rate and genetic transformation efficiency. The

differentiation rate (%) was calculated as the number of explants

with adventitious buds in the total number of explants (× 100).

The genetic transformation efficiency (%) was calculated as the

number of positive plants in the total number of explants

(× 100).
Results

Effect of hygromycin B concentration on
the differentiation rate

Direct selection of hygromycin-B-resistant transformant was

carried out in our experiment, and 4 gradient concentrations were

set (4 mg/L, 5 mg/L, 6 mg/L, and 8 mg/L). We found that there were

significant differences in the differentiation rate among the four

gradients concentrations (p<0.05) (Figure 3). No callus occurred

when the concentration was 8 mg/L, so the differentiation rate of all

materials was 0. When the selection concentration decreased to 6

mg/L, some explants began to differentiate into adventitious sprouts
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with a differentiation rate of 0.96% detected in 19B42. When the

concentration was further reduced to 5 mg/L, the differentiation

rate of all materials ranged from 0.8% to 26.92%, and the genotype

with the lowest rate was 18Y8 (0.8%), while that with the highest

rate was 19B42 (26.92%). When the selection concentration was

reduced to 4 mg/L, the highest differentiation rate declined to 3.90%

(19B42), and the differentiation rate ranged from 3.23% (18B3) to

3.90% (19B42). At the same time, the explants were induced to

differentiate into calli and adventitious roots.
Effect of genotype on the differentiation
rate of adventitious buds

Figure 4 shows that the differentiation rate of 5 different

broccoli genotypes varied greatly when the concentration of

hygromycin B was 5 mg/L, and the differentiation rates of

different vectors were also detected in different genotypes. The

differentiation rates of the 5 vectors in inbred line 19B42 ranged

from 2.03% to 26.92% with an average value of 9.67%, among which

the overexpression vector PHG-CRa showed the highest

differentiation rate of 26.92%. This was followed by the RNAi

vectors PTCK303-029100 and PTCK303-031350 with

differentiation rates of 9.09% and 7.77%, respectively. The

overexpression vector PHG-031350 had the lowest differentiation

rate of 2.03%, followed by the gene editing vector CR-Bol at 2.56%.

Figure 2 shows the different vectors and their structures. When the

transferred vector was PHG-CRa, the broccoli inbred line 19B42

showed the highest differentiation rate of 26.92%, which was higher

than that of genotypes 19B41 (5.26%) and 18LH (4.73%) (Figure 4).

For vector PHG-031350, the differentiation rates of broccoli

genotypes ranged from 2.03% (19B42) to 6.31% (18B3), with an

average value of 3.68%. When the RNAi vector PTCK303-029100

was transferred into the 5 genotypes, as shown in Figure 4, there was

a significant difference in the differentiation rates, ranging from

9.09% and 0.8%. The same difference was also observed for the

RNAi interference vector PTCK303-031350, with differentiation

rates of 7.77% and 2.91% for 19B42 and 18Y8, respectively.
TABLE 1 The medium composition and nutritional components used in this experiment.

MS
Medium

M519
(g/L)

Sucrose
(g/L)

Agar
(g/L)

6-
Benzylaminopurine

(mg/L)

1-Naphthylacetic
acid (mg/L)

Acetosyringone
(mM)

Timentin
(mM)

Hygromycin
B (mg/L)

Nutritional components

Seeding
medium

4.43 28 8 0 0 0 0 0

Premedium 4.43 28 8 1 0.1 0 0 0

Coculture 4.43 28 8 1 0.1 1 0 0

Delay
medium

4.43 28 8 1 0.1 0 3 0

Selection
medium

4.43 28 8 1 0.1 0 3 8-6-5-4

Growth
medium

4.43 28 8 0.2 0.1 0 3 0
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Effect of explant type on the
differentiation rate

Two different types of explants, hypocotyls and cotyledons, were

selected for our study. When hypocotyls were selected as explants, the

different vector types also affected the differentiation rate of the plants

among the 5 different genotypes of broccoli. Differentiation rates ranged

from 2.50% to 2.76% for the gene editing vector CR-Bol, while they

ranged from 3.97% to 26.92% for the overexpression vector PHG-CRa
Frontiers in Plant Science 06
and from 2.03% to 6.31% for the overexpression vector PHG-031350.

The differentiation rates of the RNAi vectors PTCK303-029100 and

PTCK303-031350 were 0.8% - 9.09% and 2.91% - 7.77%, respectively.

In our study, when cotyledons were selected as explants, none of the

vectors were effective in inducing adventitious sprouts, and some genotypes

could induce calli or differentiate into adventitious roots (Figure 3). The

differentiated sprouts were all obtained from hypocotyls, and most of the

cotyledons formed calli or differentiated into adventitious roots and could

not be effectively differentiated to obtain resistant sprouts.
FIGURE 3

The differentiation rate of genotype 19B42 under hygromycin B, and its explants performance. (A) Statistical significance levels are as follows: ns
indicates no significant difference at a level of 0.05, * indicates a significant difference at p<0.05; and ** indicates a significant difference at p<0.01.
(B) Performance of cotyledons (19B42) after 45 days of selective culture. (C-H) Performance of hypocotyls(19B42) in transformation events.
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Identification of genetically transformed
T0 plants

The resistant sprouts were subjected to PCR amplification using

the hygromycin B-specific primer pair P1, and 178 plants had specific

bands (Figure 5). Ultimately, a total of 178 transformed T0 broccoli

plants were obtained in this study, including 24 plants from genotype

18LH, of which 4 were obtained for CR-Bol, 5 were obtained for

PHG-031350, 8 were obtained for PHG-CRa, 3 were obtained for

PTCK303-029100, and 4 were obtained for PTCK303-031350; 21

plants were obtained from genotype1 8Y8, of which 3 were obtained

for CR-Bol, 5 obtained for PHG-031350, 9 were obtained for PHG-

CRa, 1 was obtained for PTCK303-029100, and 3 were obtained for

PTCK303-031350; 24 plants were obtained from 18B3, of which 3

were obtained for CR-Bol, 7 were obtained for PHG-031350, 5 were
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obtained for PHG-CRa, 4 were obtained for PTCK303-029100, and 5

were obtained for PTCK303-031350; 61 plants were obtained from

19B41, of which 4 were obtained for CR-Bol, 6 were obtained for

PHG-031350, 34 were obtained for PHG-CRa, 11 were obtained for

PTCK303-029100, and 6 were obtained forPTCK303-031350; and 48

plants were obtained from 19B42, of which 3 were obtained for CR-

Bol, 6 were obtained for PHG-031350, 14 were obtained for PHG-

CRa, 17 were obtained for PTCK303-029100, and 8 were obtained for

PTCK303-031350 (Figure 6). Figures 5, 6 clearly show the number of

differentiated sprouts and genetically transformed strains.

Subcellular localization

Two overexpression GFP-labeled vectors were transiently

transformed into broccoli protoplasts, and green fluorescence was
FIGURE 5

The identification results of some genetically transformed strains. “M” is the DL2000 DNA marker. Numbers 4, 23, 32, 44, and 58 were all positive
controls. Numbers 1 to 3 represent the CR-Bol gene detected in 19B42, numbers 5-22 represent the PTCK303-031350 gene detected in 19B42,
numbers 24-31 represent the PHG-CRa gene detected in 18LH, numbers 33-40 represent the PTCK303-029100 gene detected in 19B42, numbers
41-43 represent the PTCK303-029100 gene detected in 18Y8, numbers 45-50 represent the PHG-031350 gene detected in 19B42, and numbers
51-57 represent the PHG-031350 gene detected in 18B3.
FIGURE 4

The differentiation rate of 5 vectors detected in different broccoli genotypes. Statistical significance levels are as follows: ns indicates no significant
difference at a level of 0.05, * indicates a significant difference at p<0.05; and ** indicates a significant difference at p<0.01. Different lowercase
letters indicate significant differences at p<0.05.
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obviously observed on the cytoplasm and nucleus under laser

confocal microscopy, as shown in Figure 7. Therefore, this result

indicated that the genes Bol031350, which is related to glucosinolate

metabolism, and CRa, which is related to resistance to clubroot,

were both expressed in the cytoplasm and nucleus, which was

consistent with previous studies (Li et al., 2021a; Abdel-Ghany et al.,

2005; Bai et al., 2014).
Discussion

Agrobacterium-mediated genetic transformation has been

widely used in plants for gene function analysis and regulatory

mechanism research (Nakano and Otani, 2020; Zhang et al., 2021).

It has also been widely used in cruciferous vegetable crops,

including rapeseed, cabbage, broccoli, and kale. However, there

are still some problems with its application to Chinese cabbage. At

the same time, genotype differences also limit the use of this

technology in other crops, and the extremely low transformation
Frontiers in Plant Science 08
efficiency of different genotypes resulting in a lack of transformation

need to be addressed. To optimize and improve the efficiency of

genetic transformation in cruciferous vegetable crops, important

influencing factors, including genotype, vector type, the

concentration of hygromycin B used during seedling selection

and explant type, were thoroughly investigated in this study.

Genotype was the most important factor for Agrobacterium-

mediated genetic transformation, and the genetic vectors could

directly affect genotype to improve genetic transformation

efficiency. The concentration of hygromycin B resistance was the

fundamental factor for obtaining resistant sprouts, and either too

high or too low of a concentration could seriously reduce the

transformation efficiency or increase the probability of false

positives. We have found that hypocotyls are the better choice for

explants during the genetic transformation of broccoli, and almost

no differentiated buds appeared when cotyledons were used due to

lower differentiation, consistent with most previous reports (Metz

et al., 1995; Chakrabarty et al., 2002). Subcellular localization

studies showed that the glucosinolate metabolism-related gene
FIGURE 6

The difference in differentiated sprout numbers among 5 broccoli genotypes.
B

A

FIGURE 7

Subcellular localization of CRa and Bol031350 in broccoli. (A, B) presented PHG-CRa, and PHG-031350 were all located in the cytoplasm and
nucleus and transiently co-expressed in broccoli 19B42 protoplasts; Individual and merged images of GFP and chlorophyll autofluorescence (Chl) as
well as bright field images of protoplasts were shown. Scale bars = 5 mm.
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Bol031350 and the clubroot resistance gene CRa were both

expressed in the broccoli the cytoplasm and nucleus, and these

findings will be useful for studying the regulatory mechanism of

glucosinolate synthesis and clubroot resistance in cruciferous crops

(Hansen et al., 2007; Li et al., 2021).

Producing plants that can overcome the genotype dependence

of genetic transformation is important. In our study, broccoli

genotype 19B42 showed a higher response under all five vectors

across all materials, which indicates that it could be used as a

powerful transformation acceptor for gene functional analysis in the

future; the second-best potential genotype is the inbred line 19B41.

These two important broccoli genotypes meet the prerequisites for

the verification of functional genes in broccoli and other Brassica

crops, which is a very useful for future work in Brassica oleracea

crops (Ramkumar et al., 2020; Sood et al., 2020).

In our study , i t was spec ifica l ly proven that the

concentration of hygromycin B used during seedling selection

is a major factor for effective Agrobacterium-mediated genetic

transformation in broccoli, as has been widely demonstrated in

wheat, maize, tomato, rape, cabbage and other crops (Radchuk

et al., 2000; Chen et al., 2008; Rao et al., 2016; Xu et al., 2018;

Zhou et al., 2020; Krishna et al., 2021). It is clear that the

op t ima l s e l e c t i on conc en t r a t i on o f an t i b i o t i c s i n

Agrobacterium-mediated genetic transformation will greatly

ensure and improve the efficiency of positive plant generation.

In our study, 5 mg/L could not only increase the differentiation

rate of different broccoli genotypes but also ensure a more

efficient acquisition of positive plants. We found that this

concentration is generally different from that in cabbage (8

mg/L), rape (50 mg/L) and other Brassica crops, which may be

correlated with the diversity of plant hormone levels in

differentiated tissues (Radchuk et al., 2000; Kim et al., 2016).

Therefore, it is necessary to select a suitable concentration of

antibiotic for use during seedling selection to improve the

efficiency of obtaining differentiated buds and positive plants.

Furthermore, the explant plays an important role in the

Agrobacterium-mediated genetic transformation system.

Currently, it is reported that immature embryos, mature embryos

and young ears of wheat can be used as explants for genetic

transformation (Hu et al., 2003). Among vegetable crops,

cotyledons are popular explants for tomato and pepper (Van Eck

et al., 2019; Tikunov et al., 2020), but in eggplant, the regeneration

ability of hypocotyl explants is significantly higher than that of

cotyledon explants (Padma and Ravishankar, 2013). Cucurbit crops,

such as watermelon, muskmelon and cucumber, generally use

cotyledon nodes as explants (Fang and Grumet, 1990; Choi et al.,

1994; Zhao et al., 2022). For cruciferous crops, the transformation

efficiency of rape stem explants was the highest, while for radishes,

cotyledons were suitable explants. Both cotyledon and hypocotyl

explants have been successfully reported in cabbage.

In summary, there are few reports on the optimization of the

genetic transformation of broccoli. Therefore, this study

conducted a comparative study on the effect of 5 broccoli

genotypes, 2 explant types, 3 vector transformations, and 4
Frontiers in Plant Science 09
gradient concentrat ions of hygromycin B on genetic

transformation (Ravanfar et al., 2014), and our study will

provide new evidence and new insights into improving the

efficiency of Agrobacterium-mediated genetic transformation in

broccoli and other Brassica crops.
Conclusion

This experiment found that the two most important factors

affecting the genetic transformation of broccoli are the genotype

and the concentration of hygromycin. The 5 mg/L concentration of

hygromycin B was more advantageous for obtaining resistant

broccoli sprouts, and cotyledon explants were not suitable for

Agrobacterium-mediated genetic transformation of broccoli. In

addition, genotype 19B42 reached a higher transformation rate of

26.96% similar to that in other Brassica oleracea crops; thus, inbred

line 19B42 will provide us with powerful recipient material for the

genetic transformation of broccoli and other Brassica oleracea

crops. Subcellular localization of the glucoraphanin metabolism-

related gene Bol031350 and clubroot resistance gene CRa was first

carried out in broccoli, and their proteins were found in the

cytoplasm and nucleus, which provided a scientific basis for

studying the regulation of glucosinolate metabolism and clubroot

resistance in cruciferous crops.
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