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Diseases have a great impact on the quality and yield of strawberries, an accurate

and timely field disease identification method is urgently needed. However,

identifying diseases of strawberries in field is challenging due to the complex

background interference and subtle inter-class differences. A feasible method to

address the challenges is to segment strawberry lesions from the background and

learn fine-grained features of the lesions. Following this idea, we present a novel

Class-Attention-based Lesion Proposal Convolutional Neural Network (CALP-

CNN), which utilizes a class response map to locate the main lesion object and

propose discriminative lesion details. Specifically, the CALP-CNN firstly locates the

main lesion object from the complex background through a class object location

module (COLM) and then applies a lesion part proposal module (LPPM) to propose

the discriminative lesion details. With a cascade architecture, the CALP-CNN can

simultaneously address the interference from the complex background and the

misclassification of similar diseases. A series of experiments on a self-built dataset

of field strawberry diseases is conducted to testify the effectiveness of the

proposed CALP-CNN. The classification results of the CALP-CNN are 92.56%,

92.55%, 91.80% and 91.96% on the metrics of accuracy, precision, recall and F1-

score, respectively. Compared with six state-of-the-art attention-based fine-

grained image recognition methods, the CALP-CNN achieves 6.52% higher (on

F1-score) than the sub-optimal baseline MMAL-Net, suggesting that the proposed

methods are effective in identifying strawberry diseases in the field.

KEYWORDS

convolutional neural network, strawberry disease identification, complex background,
similar diseases, class response map, main lesion object, lesion details
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1 Introduction

Strawberry, often praised as the “Queen of Fruits”, is rich in

vitamin C and antioxidants that support heart health and blood sugar

control (Hannum, 2004). It is becoming a new income-producing

agricultural product compared with traditional crops. However,

strawberries are very delicate and highly susceptible to infection in

natural environment. They are prone to various infectious diseases

caused by fungal, bacterial and viral pathogens (Iqbal et al., 2021). Up

to now, many strawberry diseases have been identified during the

whole cultivation period of strawberries. These diseases can occur in

strawberries’ fruit, leaf, and stem, such as gray mold, powdery mildew

and anthracnose. Therefore, disease management is a routine and

labor-intensive requirement in strawberry cultivation. Currently, the

identification of strawberry diseases is empirically conducted by

growers, especially in China. The various types of diseases pose a

great challenge to the accurate identification of the growers.

Meanwhile, the manual manners are expensive, laborious and

subjective, making them hard to wildly apply in modern

agriculture. Hence, the current strawberry disease management

cannot meet the need for automatic monitoring in agricultural

practice (Hu et al., 2021). Furthermore, most strawberry growers

lack professional knowledge to distinguish the diseases, resulting in

the use of incorrect and overdose fungicides in disease management.

The abuse of fungicides greatly harms the health of consumers and

has caused substantial economic loss (Wang et al., 2021b). There is an

urgent need for a fast and effective method to identify diseases in

strawberry farming.

In general, the visual symptoms, including color, texture, shape

and location of the lesions are important evidence for disease

identification (Sankaran et al., 2010; Cruz et al., 2019; Liang et al.,

2019). Given these visual features, various methods based on

computer vision (CV) technology have been developed to identify

different crop diseases. The CV-based methods for crop disease

identification can be summarized into two streams. In the first

stream, the traditional CV-based methods (such as color space

transform, histogram of oriented gradient and gray level co-

occurrence matrix [GLCM]) are applied to extract lesion features

from diseased spots (Kim et al., 2009; Revathi and Hemalatha, 2014;

Kaur et al., 2016; Johannes et al., 2017). Then, a classifier (e.g., linear/

logistic regression, random forest) is constructed to yield classification

results based on the extracted features (Huang, 2007; Kaur et al., 2016;

Iqbal et al., 2018; Dwivedi et al., 2021). For instance, three

phalaenopsis seedlings diseases had been successfully identified by

an artificial neural network with the GLCM extracted texture features

(Huang, 2007). Besides, (Johannes et al., 2017) designed two

descriptors of their segmented hot-spot blobs to validate the

effectiveness of the related traditional CV-based methods in

identifying diseases at the early stage under a complex field

background. The two descriptors were used to describe the color

and texture features of the blob lab channels, respectively. These

studies have proved that traditional CV-based methods are effective in

recognizing the diseases of crops in both laboratory and field

environments. However, these methods rely on the manual

selection of discriminative features among diseases. The

discriminative feature selection in field disease identification is very

difficult and time-consuming (Zhao et al., 2022). Furthermore, the
Frontiers in Plant Science 02
identification accuracy could dramatically decrease with a slight

change in the input image dataset (Arsenovic et al., 2019). These

shortcomings result in the traditional CV-based methods rarely

adopted in the practice of crop disease identification. The

convolutional neural network (CNN) and its variants lead the

second stream for crop disease identification. The CNN-based

models can automatically extract basic features like color, texture,

edge, and location information. Meanwhile, they are competent to

obtain more abstract semantic information from the image of crop

diseases (Zeiler and Fergus, 2014). Besides, these CNN-based models

have more flexible architectures that can be applied as feature

extractors or classifiers. In recent studies, the CNN-based models

have become the preferred method to identify crop diseases (Liang

et al., 2019; Hu et al., 2021; Yang et al., 2022; Zhao et al., 2022). Earlier

studies apply the classical CNN models, such as AlexNet (Krizhevsky

et al., 2012), GoogLeNet (Szegedy et al., 2015), and ResNet (He et al.,

2016) on some specific crop disease datasets and found the most

suitable model for the disease identification tasks (Mohanty et al.,

2016; Srdjan. et al., 2016; Ferentinos, 2018; Too et al., 2019; Picon

et al., 2019). The related models achieve preferable recognition

accuracy on their disease datasets. However, these studies fail to

consider the complexity of the practical application of field disease

identification. The main challenges of field disease identification are

the complex background and a variety of diseases with similar

symptoms (Barbedo, 2018). These models cannot be applied to

crop cultivation practice. Consequently, some researches aim at

reducing the misclassification caused by complex backgrounds and

diseases with similar symptoms.

A simple yet effective method to eliminate the influence of

complex background on disease identification is to segment the

lesion region from their background. Several CNN-based semantic

segmentation methods have been proposed to mitigate the adverse

impact of the background. (Ngugi et al., 2020) proposed a

segmentation network, KijianiNet, to segment tomato leaves from

the natural field conditions. (Hu et al., 2021) and (Wang et al., 2021a)

adopted U-Net (Ronneberger et al., 2015) and DeepLabV3+ (Chen

et al., 2018) in the first stage of their models to segment the diseased

leaves from the field scenes, respectively. The related experimental

results showed that extracting diseased regions from the background

can greatly improve the identification performance of the models.

However, CNN-based semantic segmentation methods require pixel-

level supervision. Such pixel-level annotation by experts is time-

consuming, laborious and costly since plenty of lesions have varied

shapes. On the topic of similar disease identification, few studies have

proposed effective approaches to tackle this issue. (Cruz et al., 2019)

applied transfer learning and data augmentation technologies to

enhance the ability of the classical CNN models (e.g., AlexNet,

GoogLeNet and ResNet) to distinguish the grapevine yellow from

its similar diseases (such as grapevine leafroll and stictocephala

bisonia). The experimental results confirmed that the data

augmentation technologies were beneficial for classical CNN

models to identify grape diseases. Because a suitable data

augmentation strategy could increase the differences among similar

diseases. However, the strategy was not easy to obtain, it required trial

and error. The research of (Yang et al., 2022) was a development in

identifying similar diseases of field crops. Similar diseases were

classified by increasing the weight of discriminative lesion features.
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To locate lesion details and learn discriminative lesion features among

similar diseases, they proposed a self-supervised multi-network fusion

classification model. However, the locations of the lesion details were

randomly generated. Furthermore, all the obtained lesion details need

to be fed to a classifier to assess the confidence of these regions as

lesions, which greatly increased the time consumption of the model.

Image-based automatic disease identification is a basic need of

modern large-scale cultivation agriculture. Field disease identification

is challenging due to the complex background and similar symptoms

among diseases. To address these problems, this paper focuses on

strawberry field disease identification and proposes a novel Class-

Attention-based Lesion Proposal Convolutional Neural Network

(CALP-CNN) to precisely identify strawberry diseases in the field.

The CALP-CNN method first utilizes a class-attention mechanism to

enhance the localization of discriminative lesion feature. Two specific

modules (i.e., the class object location module, COLM, and the lesion

part proposal module, LPPM) are designed to recursively segment the

main lesion object and lesion detail from an input image. Finally, the

features of the original, main lesion object and lesion details are

concatenated for final identification. To our knowledge, the CALP-

CNN method is the first attempt to simultaneously address the

challenges posed by the complex background and similar symptoms

to crop disease identification in the field. The main contributions are

summarized as follows:
Fron
• We introduce a new class attention mechanism (i.e., the class

response map) to improve the ability of the CNN to localize

the discriminative lesion features.

• We address the challenges of field disease identification by

developing a novel CALP-CNN that simultaneously removes

thenoisy background and effectively learns discriminative lesion

representations among similar diseases in an unsupervised way.

• A series of experiments are conducted on the field strawberry

disease dataset to evaluate the effectiveness of the CALP-CNN.

The experimental results show that the proposed method has

better performance than other state-of-the-art fine-grained

methods on field strawberry disease identification.
2 Material and methods

2.1 Material

In this paper, the strawberry diseases with high incidence in

planting practice were taken as our research objects. To this end, a

strawberry common disease dataset (SCDD) was constructed. The

SCDD was collected in two ways: field-collection and internet

crawling. We firstly shot 1,326 disease images of three strawberry

varieties (Fengxiang, Nvfeng and Hongyan) in ChangFeng County,

Anhui Province, China. To increase the diversity of the dataset, the

images were deliberately captured in the field at different angles and

focal lengths. The second part was from the internet. A crawler was

applied to download more than 5,000 images of field strawberry

diseases. The collected images were manually screened one by one to

discard the poor-quality samples (obscure and the resolution less than

224×224). The disease images in the dataset were annotated by three
tiers in Plant Science 03
experts. One was responsible for labeling the dataset, and the other

two were responsible for reviewing the results. Finally, a high-quality

dataset of strawberry diseases with 3,411 images was constructed for

downstream analysis. The SCDD contained 11 common diseases and

healthy type. Table 1 shows detailed information of the SCDD. In

addition, the typical symptoms of 11 common strawberry diseases are

shown in Figure 1.

In our experiments, the dataset was randomly divided into a training

set, a validation set and a testing set in the ratio of 6:2:2 (2,047 images for

training, 682 images for validation, and the remaining 682 images for

testing). In the training process, we adopted the online data augmentation

strategies to increase the diversity of the dataset and the robustness of the

models. Specifically, the processes of Normalize, RandomHorizontalFlip,

RandomVerticalFlip, and RandomResizedCrop (crop to 224×224) were

applied during training.
2.2 Methods

In this paper, a class-attention-based lesion proposal CNN is

presented to settle the main challenges of CNN-based methods in

field disease identification, i.e., the complex background and similar

diseases. The framework of CALP-CNN is shown as Figure 2. A

cascade architecture is designed for extracting the region-based

features from the input images at three scales including the raw

image at coarse-grained level, the main lesion object at medium-

grained level and the lesion detail images at fine-grained level.

Furthermore, a series of modules are developed to extract class-

related features in each layer of the cascade architecture. The detailed

information of the CALP-CNN is described as follows:

First, a CNN backbone is repeatedly applied to extract region-

based features from the input images in three scales. The CNN

modules in three scales are given the same parameters. Second, the

features are fed forward to three classifiers to predict three probability

scores. The computed probability scores represent the prediction
TABLE 1 List of strawberry common disease dataset.

Category label Strawberry disease Number

0 healthy 509

1 leaf scorch 287

2 gray mold 332

3 powdery mildew 344

4 brown spot 215

5 fertilizer disorder 308

6 fusarium wilt 145

7 white leaf spot 259

8 calcium deficiency 431

9 magnesium deficiency 197

10 anthracnose 198

11 bacterial leaf spot 186

Total 3411
fro
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confidence of each disease category. Meanwhile, a class response map

(CRM) module is constructed to generate a class attention matrix

based on the region-based features. Here, the class attention matrix is

defined as a class response map in this paper. Third, two different

modules (COLM and LPPM) are developed to detect lesion regions

based on the corresponding attention matrix from different scales of

the input image, respectively. The COLM is used for locating the main

lesion object in the image at coarse-grained level, while the LPPM

proposes lesion details in the image at medium-grained level. Once an

attended region is located, we segment the region and zoom in it to

the raw image size. The located regions can be employed to generate a

series of highly reliable lesion features. As a whole, the CALP-CNN

takes advantage of ensemble learning to integrate the features from

three scales for final identification. Moreover, the CALP-CNN

combines an intra-scale cross-entropy loss and an inter-scale

pairwise ranking loss to ensure rapid convergence.

2.2.1 Class response map
A series of class activation maps can be generated by the product

of CNN feature maps with their corresponding class scores. The

studies of (Zhou et al., 2016; Ding et al., 2019) have proved that the

class-related information in the class activation maps is effective for

locating discriminative regions in an image. In this paper, we obtain

discriminative information of lesions based on the class activation

maps and construct a class response map (also denoted as class
Frontiers in Plant Science 04
attention matrix) to localize the objects of interest. Figure 3 shows the

generation process of a class response map.

First, a pre-trained CNN backbone is applied to extract the feature

maps of a 3-channel image I∈R3×H×W , where the H ×W is the spatial

size of the image. The extracted feature maps are represented as

S∈RC×Hf×Wf ,where C is the channel number and Hf × Wf is the spatial

size of the feature maps. Second, the feature maps S are fed forward to

a classifier consisting of a fully connected (FC) layer and a softmax

layer. A vector p∈R^{N_c}.(NC is the pre-set category number of the

strawberry diseases) can be computed by the classifier as the predicted

probability score of each disease. In addition, the weights of the FC

layer are denoted as wfc∈RC×Nc . Third, a CRM module is designed to

generate the class-related features maps. It establishes a new

convolutional layer with the weight of the wfc (i.e., the formed

convolutional layer achieves the same weights as the FC layer).

Therefore, it possesses a strong ability to extract class-related

features. Based on the constructed convolutional layer, a set of

class-related feature maps Q={Qi}(Qi∈RHf×Wf,i=1,…,Nc) can be

generated from the extracted S. The Qi represents the i-th channel.

The features of the Qi are most relevant to category i. In the training

process, the CALP-CNN applies the ground truth label to select the

most class-related feature map of the convolutional layer as the class

response map. That is to say, if the image is annotated as category c,

the class response map is Qc. In the testing process, there is no ground

truth label of the input image. Follow as (Ding et al., 2019), the CALP-
FIGURE 1

The typical symptoms of 11 common strawberry diseases and one healthy type. The annotated labels of the diseases are one-to-one correspondence
with Table 1.
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FIGURE 3

The generation process of class response map.
FIGURE 2

The framework of the proposed CALP-CNN. A cascade architecture is designed to construct the lesion details at different scales. A CNN-based
backbone is repeatedly used to extract features from the coarse raw image to lesion detail images. The CRM module generates the class response map
from the features. The COLM and the LPPM can obtain the coordinates of the lesion object and the lesion details, respectively. All features (the stripes
marked with purple, green, and red) are concatenated for final identification. The classification loss Lcls (cross-entropy loss between ground truth label Y*

and predict label Yr, Y°, Yd
i ,Y

c) and the pairwise ranking loss Lrank (the loss between raw probability pr, object probability p°, and lesion probabilities pdi )
are combined to optimize the network and make it converge.
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CNN adopts the entropy of the top 5 predicted probabilities to

evaluate the lesion information in their corresponding class-related

maps. Let p̂ ∈ R5be the subset of p for top 5 predicted class

probabilities. We compute the entropy as

H = −o
5

i=1
pi · logpi, pi ∈ p̂ (1)

and construct the class response map Qc based on the following

strategy,

Qc =

cM1, if  H ≤ ϵ

o
5

i=1

cMi, otherwise

8><>: (2)

where M̂ ∈ R5�Hf�Wf is the class-related feature maps correspond

to p̂ and e is a threshold (empirically set to 0.2).

2.2.2 Class object location module (COLM)
In most cases, the CNN backbone could extract many irrelevant

and noisy features that are adverse to disease identification, especially

for a complex background (Barbedo, 2018). To cope with this issue,

we design the COLM to locate the main lesion object and discard the

irrelevant background region. This module is inspired by the

discriminative region location methods of the fine-grained image

classification and retrieval domain (Wei et al., 2017; Ding et al., 2019;

Zhang et al., 2021). The pipeline of COLM is shown as Figure 4

The class response map Qc is resized to the same size as the input

image I by a bilinear interpolation algorithm. The interpolation result

is denoted as Q
0
c ∈ RH�W . Ding et al. have concluded that the larger

value in the class response map, the more related of the corresponding

pixel to the class (Ding et al., 2019). In most cases, we have no prior

knowledge about the location of the lesion objects since most crop

disease datasets only have image-level supervision.

�q =  o
H
i=1oW

j=1Q
0
c(i, j)

H �W
(3)

Then, a mask map M can be generated according to Eq.4.

M(i, j)  = ​
1,      if  Q

0
c(i, j) > �q

       0,       otherwise

(
(4)

As shown in Figure 4, the object regions are marked red in the

mask map. We can observe some noisy regions (the top-left and

bottom-right) in the mask. In fact, the noisy regions could be non-
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lesion parts, whereas they are activated by the complex background.

Fortunately, the sizes of the noisy regions are typically smaller than

the main lesion object. Flood-fill algorithm is a common method to

connect neighboring and related elements of a matrix. In this paper,

we apply it to test the connectivity of all the points in M and find out

the largest connected area. The largest connected area is the location

of the main lesion object. The minimum enclosing rectangle of the

largest connected area is denoted as M. We adopt the top-left point

(xtl, ytl) and bottom-right point (xbr, ybr) to represent the location of

M = M [xtl:xbr,ytl:ybr]. With the interpolation algorithm, the pixels in

the mask map M are one-to-one corresponding to the pixels in the

input image I. Therefore, the location of M can be used to extract the

main lesion object and discard the noisy background in I. As a result,

the main lesion object Iobj is computed as:

Iobj = I½xtl , xbr , ytl : ybr� (5)

Based on the ablation experiments in section 4.2, the COLM

module can effectively improve the classification accuracy.
2.2.3 Lesion part proposal module (LPPM)
Identifying similar diseases in the field is another critical problem for

strawberry cultivation, especially for thosediseaseswhichhavehomologous

backgrounds and subtle inter-class differences (e.g., the diseases at the early

stage and the diseases occurring in the same part). Strengthening the

differences between diseases is the key approach to address this issue (Cruz

et al., 2019). The similar disease identification is in accord with the

characteristics of the fine-grained image recognition (FGIR) (Zheng et al.,

2017). The studies of FGIR have concluded that the discriminative features

always lie in thedetails (Fuetal., 2017;Recasens et al., 2018;Dinget al., 2019;

Zhang et al., 2021). Hence, we present the LPPM to localize the

distinguishing lesion features in the details. The design idea of this

module is derived from the region proposal algorithm (RPA) (Ren et al.,

2015). The RPA is an effective method to propose candidate regions for

object detection. The candidate region is called anchor in object detection.

Nevertheless, the RPA requires an additional bounding box to annotate the

location of the object. The bounding box annotation process is labor-

intensive and subjective. Here, we take the average value of all pixels in the

anchor as a confidence ofwhether the region in the anchor is a lesiondetail.

In this way, the RPA can be generalized to identify detailed lesions in the

images without bounding box annotations.

The pipeline of LPPM is shown as Figure 5. The LPPM takes the

output (i.e., class response map) of a CRM module as input. We

denote it as Mc∈RHf×Wf . First, the LPPM propose the coordinates of
FIGURE 4

The pipeline of COLM. A class response map is generated from a CRM module. The pixels in the class response map are compared to their average value
to generate a mask map. Some non-lesion areas are activated by the complex background in the mask map.
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the anchors onMc. By default, we use 3 aspect ratios (1:1, 2:1, 1:2) and

1 scale (Hf/2), yielding k=3 anchors at each pixel of Mc. The total

number of generated anchors is k × Hf×Wf. Each anchor is an eligible

candidate for the lesion detail. The coordinates of the anchors are

denoted by their top-left point ðx0tl , y
0Þ
tl and bottom-right point ðx0br , y

0Þ
br

Second, we calculate the average value of an anchor at Mc as follows:

�a =
ox

0
br

i=x
0
tl
oy

0
br

j=y
0
tl

Mc i, jð Þ
x
0
br − x

0
tl

� �� y
0
br − y

0
tl

� � (6)

�a is the confidence of the anchor to be a lesion detail region. A

higher value of ā represents the higher probability of the anchor being

a lesion detail. Third, we pick out the top-N anchors according to

their confidence. In practice, the top-N anchors are adjacent and

contain almost the same parts (Ren et al., 2015). For this reason, the

directly selection of top-N anchors will cause information redundancy.
Fron
Input: The coordinate list of the anchors; The

corresponding confidence list of the anchors; The

IoU threshold, Output: The top-N anchor

listCombined the confidence list and the

coordinate list with an element as ½�a,  xtl , ytl , xbr , ybr�.
The result is a confidence_coordinate_list;

confidence_coordinate_list  Sort the combined

list in descending order with the confidence �a;

anchor_list  Initialize an empty list of

selected anchors;while Length(anchor_list)< N and

Length(confidence_coordinate_list) > 0 doA Pop

out the first anchor element from the confidence_

coordinate_list;If anchor_list is empty thenAdd A

to the anchor_list;else Calculate the IoU between A

and the other anchors in the anchor_list;if IoU<

threshold then IoU< threshold Add A to the

anchor_list;return the anchor_list (is the top-

N list);
ALGORITHM 1.

In this paper, we use the intersection over union (IoU) to indicate

the redundant ratio of two anchors. The IoU between anchor A2 and

anchor A2 is computed as:

IoU =
A1 ∩ A2

A1 ∪ A2
(7)
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The IoU ratios between the anchor with the highest confidence

and the other anchors are calculated. The scores of neighboring

anchors will be suppressed when their IoU ratios are higher than

the pre-set threshold. The threshold is set to 0.7 in this paper. The

selection process of the top-N anchors is described in Algorithm 1

Note that N is a hyper-parameter which represents the defined

number of lesion details. From the ablation experiments (see

Section 4.2), the CALP-CNN achieves the best classification results

when N is set to 5. Finally, we map the coordinate of the anchors in

the top-N list to the input image I with the stride (s = H/Hf) of the

backbone network. The location of the lesion Idetail is generated as:

Idetail =  I½s*xtl : s*xbr , s*xbr : s*ybr� (8)
2.2.4 Optimization strategy
The loss function of the proposed CALP-CNN is composed of

two parts, including an intra-scale cross-entropy loss Lcls and an inter-

scale pairwise ranking loss Lrank. The total loss function for an image I

is defined as follows:

L(I) =  Lcls(I) + Lrank(I) (9)

The Lcls and Lrank are expressed in Eq. 10 and Eq. 11, respectively.

Lcls Ið Þ = Lcls Y
r ,Y*ð Þ + Lcls Y

o,Y*ð Þ + Lcls Y
c,Y*ð Þ

+o
N

i=1
Lcls Ydi ,Y*

� �
(10)

where Yr, Y°, and Yd are the predicted label vectors from the raw,

object and detail images. Yc is the predicted label vector using the

concatenated features and Y* is the ground truth label vector. N is the

number of lesion details. Lcls is the chief loss function, which is

dominant in the parameter optimization of the CALP-CNN.

Lrank Ið Þ = Lrank pr , poð Þ +o
N

i=1
Lrank po, pdi

� �
(11)

where pr, p° and pd denote the prediction probabilities from the

raw, object and detail images, respectively. To be specific, the ranking

loss of the probabilities pi and pj is defined as:

Lrank(p
i, pj) = max 0, pi − pj + d

� �
(12)

where d is a constant (by default, d=0.05). The ranking loss can

force the object image to acquire higher predicted probabilities than
FIGURE 5

The pipeline of LPPM. First, a class response map is generated from a CRM module. Second, the RPA is applied to proposal candidate lesion regions from
the class response map. Third, a non-maximum suppression is utilized to pick out the top-N lesions.
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the original image. Meanwhile, the detail images are forced to acquire

higher predicted probabilities than the object image. In other words,

the Lrank takes a coarse prediction as reference and gradually compels

the network toward more discriminative region by forcing the finer-

scale images to achieve more confident predictions.
2.3 Evaluation metrics

In this paper, the Accuracy, Precision, Recall, and F1-score are

adopted to evaluate the performance of the proposed CALP-CNN.

The Accuracy, Precision, Recall, and F1-score of category i are defined

as follows:

Accuracyi =
TPi + TNi

TPi + FPi + TNi + FNi
(13)

Precisioni =
TPi

TPi + FPi
(14)

Recalli =
TPi

TPi + FNi
(15)

F1 − scorei =
2Precisioni · Recalli
Precisioni + Recalli

(16)

where TPi and TNi denote the number of samples labeled as

category i and non-category i that are correctly classified, respectively.

FPi denotes the number of samples labeled as non-category i but

classified as category i. FNi denotes the number of samples labeled as

category i but classified as non-category i.

For a multi-class classification task, the overall Accuracy,

Precision, Recall, and F1-score can be defined with the average of all

the categories in their binary classification case. The formulas of the

overall Accuracy, Precision, Recall, and F1-score are defined as follows:

Accuracy = o
Nc−1
i=0 Accuracyi

Nc
(17)

Precision = o
Nc−1
i=0 Precisioni

Nc
(18)

Recall = o
Nc−1
i=0 Recalli

Nc
(19)

F1 − score = o
Nc−1
i=0 F1 − scorei

Nc
(20)

where the Nc represents the number of categories of strawberry

diseases in the SCDD.
3 Experimental results and analysis

We conduct a series of experiments on the testing set of the SCDD

to verify the effectiveness of the proposed CALP-CNN to identify

strawberry diseases by filtering the complex background features and

learning the discriminative features among similar diseases. The top-
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N of the anchors (lesion details) is set to 5 for the LPPM in

our experiments.

Baselines: Because the CALP-CNN is an attention-based model

and our SCDD only has image-level supervision, here we select six

weakly-supervised fine-grained image recognition methods as

baselines and compare their disease identification performance with

the CALP-CNN method. The six baselines are described in detail

as follows:
• MA-CNN (Zheng et al., 2017): Multi-attention convolutional

neural network, which uses channel grouping to learn

different part features.

• RA-CNN (Fu et al., 2017): Recurrent attention convolutional

neural network, which recurrent learns the finer-scale features

by an attention proposal network.

• MMAL-Net (Zhang et al., 2021): Multi-branch and multi-

scale attention network, which utilizes a saliency map to

locate the main object and propose discriminative parts.

• SSN (Recasens et al., 2018): A saliency-based sampling layer

for a neural network that samples the raw image based on a

saliency map with a non-uniform method.

• TASN (Zheng et al., 2019): Trilinear attention sampling

network first uses a trilinear function to enhance saliency

values, then samples the raw images with these enhanced

values.

• S3N (Ding et al., 2019): Selective sparse sampling network,

which captures diverse and fine-grained detail from the raw

image based on a class response map with a selective sparse

method.
All the baselines achieve state-of-the-art on their fine-grained

datasets [e.g., CUB-200-2011 (Welinder et al., 2010), and FGVC

Aircraft (Maji et al., 2013)].

Implementation details: The proposed CALP-CNN is

implemented on the open-source package Pytorch (Paszke et al.,

2019), which can flexibly implement various CNN-based models. A

pre-trained ResNet-50 on the ImageNet dataset is used as the

backbone for extracting the feature maps. For a fair comparison, all

baselines are re-implemented with this backbone. We use the

stochastic gradient descent (SGD) to optimize network parameters.

All the models are trained for 60 epochs with a batch size of 16. The

initial learning rate is set to 1e-3 and will be dropped by 10 at the 20-

th and 40-th epoch. The momentum is set to 0.9 and the weight decay

is set to 1e-4. The input images are preprocessed to size 224×224. All

the experiments are performed on a dell T5820 computer workstation

with NVIDIA GeForce RTX 3090 GPU and Intel Xeon W-

2200 processor.
3.1 Classification results

We compare the performance of the proposed CALP-CNN with

the baselines on the testing set of the SCDD. The classification results

are shown in Table 2. The CALP-CNN achieves more accurate

classification results on all metrics. The CALP-CNN significantly

outperforms the backbone (ResNet-50) by 9.49% on the F1-score. The

overall F1-score of the CALP-CNN is higher than the saliency-based
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models, for example, 9.03% improvement for SSN, 7.05% improvement

for TASN, and 6.52% improvement for MMAL-Net. Additionally, the

proposedCALP-CNN is also superior to the recurrent attentionmethod

(RA-CNN), the channel grouping attention method (MA-CNN), and

the class attention method (S3N). Specifically, it improves 8.59%, 8.4%

and 6.55% compared with RA-CNN, MA-CNN, and S3N on F1-score,

respectively. Note that the improvement of our proposed model is

contributed by the introduction of the COLM and LPPM. The COLM

can filter the noisy background features, while the LPPM provides

discriminative lesion details.
3.2 Ablation experiments

In this paper, four ablation experiments are conducted to

investigate the role of 1) different network branches, 2) lesion

location methods (saliency map vs. class response map), 3) the

number of lesion details, and 4) the ranking loss on field disease

identification accuracy. The experiments show that the CNN with

three branches and five lesion details (top-5) achieves the best

performance. The best model is equipped with the class response

map for lesion location and the ranking loss for model optimization.

3.2.1 Contribution of different branches
As shown in Figure 2, the CALP-CNN consists of three main

branches, i.e., the raw branch (R-branch), the object branch (O-

branch), and the (lesion) details branch (D-branch). In our

experiments, we temporarily remove different branches to survey the

contribution of each branch. The F1-score of the ablation experiments is

recorded in Table 3. The following conclusions can be drawn: 1) The F1-
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score of the CALP-CNNwith all branches (R+O+D) is 91.96%. It drops to

87.94% when omitting the O-branch. While it drops to 88.42% when the

D-branch is removed. These results demonstrate that both the O-branch

and theD-branchare capableof locating informative lesion regions. 2)The

O-branch has the highest score (88.97%) among the three branches. It

shows that the locating and segmenting operation of the class-related

lesion object from the complex background can effectively eliminate the

influenceof thebackgroundondisease identification in thefield. 3)TheD-

branch represents detailed information on lesions but does not yield the

highest score among the three branches. It demonstrates that the

discriminative lesion detail features are not all-inclusive for disease

identification. Contextual information is also a key feature for disease

identification. On the other hand, the D-branch could provide essential

information to the other branches. The overall accuracy of the network

features is improved from 83.92% to 87.94% in R+D branches setting and

87.08% to 91.21% inO+Dbranches setting, respectively. Furthermore, the

D-branch can collect important lesion details for similar disease

identification cases. 4) Note that the absence of the O-branch results in a

bigger loss (4.02%, from 91.96% to 87.94%) than the D-branch (3.54%,

from 91.96% to 88.42%), suggesting that removing the background

features is critical for disease identification in the field. 5) The

concatenated features of the three branches achieved the best

performance. It indicates that the share of the object and the lesion

detail features can enhance the lesion features and suppress the influence

of background features. The disease surrounding context information of

disease is preserved in the concatenated features.

3.2.2 Role of different location methods
We re-implement the COLM and LPPM with saliency-based

attention (Zhang et al., 2021) to locate the main object and the
TABLE 2 The classification performance of different methods on the SCDD.

Attention Mechanism F1-score Accuracy Precision Recall

ResNet-50 (He et al., 2016) – 82.47 84.35 83.49 82.13

RA-CNN (Fu et al., 2017) part attention 83.37 85.71 84.56 83.38

MA-CNN (Zheng et al., 2017) channel attention 83.56 85.82 84.49 83.92

MMAL-Net (Zhang et al., 2021) saliency attention 85.44 87.11 85.79 85.47

SSN (Recasens et al., 2018) saliency attention 82.93 84.40 84.01 82.91

TASN (Zheng et al., 2019) saliency attention 84.91 87.10 85.72 84.88

S3N (Ding et al., 2019) class attention 85.41 86.70 86.56 84.72

CALP-CNN class attention 91.96 92.56 92.55 91.80
The bold and underlined values indicate the highest and sub-optimal scores in the metric, respectively.
TABLE 3 The contribution of each branch.

Experimental Setting R-branch(%) O-branch(%) D-branch(%) Concatenation(%)

R branch 82.47 – – 82.47

R+O branches 82.66 88.97 – 88.42

R+D branches 83.92 – 83.01 87.94

O+D branches – 87.08 84.37 91.21

R+O+D branches 82.44 88.12 86.05 91.96
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lesion details. The saliency map adopts a class-agnostic attention

mechanism. Different from the saliency map, the class response map

is a class-aware attention method. From Table 4, we can observe that

the class-aware method has 5.57% higher scores than the class-

agnostic method. It further demonstrates that the class-aware

method can effectively localize class-related regions.

Number of lesion details: Ten experiments are performed to

investigate the relationship between the classification result (F1-score)

and the number of lesion details. As shown in Figure 6, the F1-score

improves as the number of lesion details increases. However, the F1-

score declines when the number of lesion details exceeds 5. It

demonstrates that the disease classification performance is not

positive to the number of lesion details. The underlying reason is that

the contextual information is diluted in numerous detailed lesions.

3.2.3 Effect of ranking loss
To explore the impact of the ranking loss on classification results,

we remove the ranking loss and only retain the cross-entropy loss to
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optimize the parameters of the CALP-CNNmodel. The best F1-score in

60 epochs training is 91.30%, which is 0.66% lower than the original

model. The introduction of ranking loss could assist the two modules

(COLM and LPPM) in localizing more discriminative regions.
3.3 Results of similar diseases identification

In practice, some of the diseases of strawberries perform similar

visual appearance and contextual information, which could result in

false identification among similar diseases. In order to evaluate the

effectiveness of the proposed CALP-CNN for distinguishing these

similar diseases, two kinds of similar strawberry diseases are chosen in

the SCDD for experiments, including (1) the diseases at early stage,

(2) the diseases occurring on fruits (e.g., gray mold, powdery mildew,

anthracnose). We generate two sub-datasets corresponding to the two

kinds of similar strawberry diseases. The disease samples from the two

sub-datasets are shown in Figure 7.

The validation results of the trained CALP-CNN and the ResNet-

50 on the two sub-datasets are recorded in Table 5. Both of the

methods do not achieve the ideal identification performance.

However, our CALP-CNN outperforms the ResNet-50 by 5.85% on

disease at early stage dataset and 6.73% on disease on fruit dataset,

respectively. Overall, the results suggest that the identification of

similar strawberry diseases is challenging. While the discriminative
TABLE 4 Comparison between different location methods.

F1-score(%) Comments

saliency map 86.39 class-agnostic attention

class response map 91.96 class-aware attention
FIGURE 6

Relationship between the classification accuracy (F1-score) and the number of lesion details.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1091600
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2023.1091600
lesion detail features provide helpful information to improve the

identification performance.
3.4 Qualitative evaluation of lesion
localization performance

Because most of the strawberry datasets (including the SCDD) are

image-level annotations. It is difficult to quantitatively evaluate the

location accuracy of the main lesion object and the lesion details at the

pixel-level. Here, we follow the study of (Wei et al., 2017) to conduct a

qualitative evaluation to evaluate the accuracy of the main lesion

object and lesion detail detection. We randomly pick out 3 groups of

diseased images from the testing set for each strawberry disease and

visualize the identification results of the lesions. The experimental

results are shown in Figure 8. In Figure 8, the first column of each

group is the input image, and the subsequent two columns are the

location results of the main lesion object and lesion details of the

image, respectively. Note that the images of lesion detail have been

amplified to the same size as their input images. Based on the results

of the main lesion objects, we can observe that the main lesion objects

are all identified in the predicted bounding boxes of the COLM

(group 1: 11/11, group 2: 11/11, group 3: 11/11). Furthermore, the

predicted boxes contain contextual information by persevering the

local background of the main lesion objects. In addition, most lesion

details of the diseases can also be predicted by the LPPM (group 1: 54/
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55, group 2: 52/55, group 3: 55/55). In our experiments, the false

predicted lesion areas occur in the images which have only one lesion

area and the size of the lesion is relatively small (e.g., line 7, column 3

of group 2).
4 Discussions and conclusions

Existing methods for crop disease identification in the field are

not sufficiently accurate because of their poor ability to eliminate the

interference from the background and extract discriminative features

among similar diseases. Detecting and segmenting the lesion region

from the disease image is a simple yet effective way to reduce the

influence of the complex background. Meanwhile, learning

discriminative features from the lesion details is beneficial for the

identification of similar diseases. The CNN-based semantic

segmentation methods can effectively segment the lesion regions

from the complex background. Hence, recent studies use semantic

segmentation networks to segment lesion regions from the

background as the first step of their models (Hu et al., 2021; Wang

et al., 2021a). The segmentation performance of the networks highly

relies on the amount of pixel-level annotated data. The pixel-level

annotation is time-consuming, laborious and expensive, which

restricts the applications of CNN-based segmentation methods.

Besides, many studies have shown that the CNNs can localize

discriminative regions from the input image (Selvaraju et al., 2017;

Dabkowski and Gal, 2017; Wei et al., 2017; Ding et al., 2019).

However, not all the located regions are useful for disease

identification. The regions, which are activated by the complicated

background, are adverse for disease identification (Barbedo, 2018).

Therefore, it is necessary to filter out the most useful region from the

located regions. The identification of similar diseases is also a

challenging task. Because the discriminative details between the

similar diseases are too subtle to be well-represented by the CNNs.
FIGURE 7

The examples of the similar diseases in the SCDD.
TABLE 5 The performance of the CALP-CNN and the ResNet-50 on the
similar disease datasets.

Dataset Amount/Categories ResNet-50 CALP-CNN

early stage 324/10 59.87 65.72

on fruit 79/3 69.30 76.03
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Data augmentation technologies can increase the differences among

similar diseases. Nevertheless, the increment is not obvious (Cruz

et al., 2019). In addition, a suitable augmentation strategy is not

straightforward and requires trial and error. Hence, data

augmentation technologies are not an appropriate solution for

similar disease identification. Fortunately, there are many

similarities between crop similar disease identification and FGIR.

The FGIR focuses on how to effectively represent the discriminative

features between the subordinate classes (Ding et al., 2019).

Therefore, the discriminative region localization and feature

representation methods in FGIR can be extended to crop similar

disease identification.

In this paper, we cite the field strawberry disease identification as

our study object and explore innovative methods to address the

challenges caused by the complex background and similar diseases.

First, we enhance the ability of the CNN backbone to localize

discriminative regions through a new class-attention-based

mechanism (i.e., class response map). Second, we construct the

COLM based on the flood-fill algorithm to filter out the most

useful lesion region from the complex background. Third, we raise

a new lesion part proposal method (i.e., the LPPM) to propose the

discriminative lesion details based on the RPA. The COLM and

LPPM are connected in series to form a Class-Attention-based
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Lesion Proposal Convolutional Neural Network (CALP-CNN),

which can simultaneously address the challenges caused by complex

background and similar diseases in field disease identification.

A series of experiments are conducted on the constructed field

strawberry common disease dataset to testify the effectiveness of the

CALP-CNN in eliminating the interference from the complicated

background and distinguishing similar strawberry diseases. The

classification result on F1-score reaches 91.96%, which is greatly

higher than other methods, showing that the proposed model

outperforms other state-of-the-art methods in the view of field

strawberry disease identification. In addition, the ablation results

on F1-score drop to 87.94% and 88.42%, respectively, when the

COLM and LPPM branches in the CALP-CNN are removed. It

indicates that both background feature elimination and

discriminative lesion detail feature representation are indispensable

for field disease identification.
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