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As the world’s population grows and food needs diversification, the demand for

cereals and horticultural crops with beneficial traits increases. In order to meet a

variety of demands, suitable cultivars and innovative breeding methods need to be

developed. Breeding methods have changed over time following the advance of

genetics. With the advent of new sequencing technology in the early 21st century,

predictive breeding, such as genomic selection (GS), emerged when large-scale

genomic information became available. GS shows good predictive ability for the

selection of individuals with traits of interest even for quantitative traits by using

various types of the whole genome-scanning markers, breaking away from the

limitations of marker-assisted selection (MAS). In the current review, we briefly

describe the history of breeding techniques, each breeding method, various

statistical models applied to GS and methods to increase the GS efficiency.

Consequently, we intend to propose and define the term digital breeding

through this review article. Digital breeding is to develop a predictive breeding

methods such as GS at a higher level, aiming to minimize human intervention by

automatically proceeding breeding design, propagating breeding populations, and

to make selections in consideration of various environments, climates, and

topography during the breeding process. We also classified the phases of digital

breeding based on the technologies and methods applied to each phase. This

review paper will provide an understanding and a direction for the final evolution of

plant breeding in the future.

KEYWORDS
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1 Introduction

By 2050, the world’s population is expected to reach 9.6 billion,

which requires large agricultural production. Consequently, it will be

necessary to increase agricultural production by more than 70%

(Godfray, 2014). In addition to direct causes, such as population

growth, the indirect causes include the appearance of rapidly

developing countries leading to urbanization and modernization

and their population’s diet shift towards dairy and meat products.

The increased demand for animal-based diets promotes higher cereal

crop consumption than a vegetarian diet due to feeding cereal crops

to animals. Therefore, without changes in crop production, unequal

food distribution among the world’s population will deepen

(Bradshaw, 2017). Moreover, the world’s climate is changing

rapidly due to global warming. The average temperature of the

world rises every year and abnormal climate phenomena occur

(Zandalinas et al., 2021).. High temperatures and unpredictable

precipitation patterns create challenges for crop growth. Therefore,

a strategy to increase agricultural production in preparation for

climate change is essential. Considerable progress has been achieved

in producing crops tolerant to biotic and abiotic stress. Moreover,

several attempts to increase the economically beneficial traits of crops

in the 20th century were successful (Crossa et al., 2017). However,

despite these improvements, the recent increase in yields of major

crops is not enough to meet the expectations of future agricultural

production demands. In order to increase agricultural production, it

is essential to develop new cultivars that are resilient to climate change

and have increased yields. Moreover, economic growth in many

countries increased the demand for horticultural crops. As a result,

horticultural crops, particularly fruits and vegetables, which are

indispensable to us, increase our interest in improving our health

and quality of life. Therefore, agricultural researchers worldwide must

use various breeding methods to improve varieties, increase

production of all crops and horticultural crops, and develop new

breeding techniques and varieties using new technologies to meet

consumers’ requirements.

In the second half of the 20th century, a backcrossing breeding

method was commercialized. Marker-assisted backcrossing (MABC)

allows rapid introgression of key genes representing superior traits

into elite cultivars or breeding lines, resulting in a cultivar containing

both the transgene and the preferred alleles (Ragot et al., 1995). MAS

genetically enhances useful traits in crops that are difficult to

phenotype. In addition, the fixation of the transgene in commercial

cultivars can proceed rapidly (Moose and Mumm, 2008). However,

MAS is effective for a few quantitative trait loci (QTLs) with a

significant effect on the trait but not for traits dominated by

numerous QTLs with minor effects. Therefore, researchers try to

solve these constraints. As a result, GS emerged as an alternative. GS

estimates the value of breeding based on markers distributed

throughout the genome and does not use just a few markers like

traditional MAS (Meuwissen et al., 2001). While MAS completely

depends on molecular markers associated with target traits, GS

resembles conventional breeding methods that depend on

phenotypes and the breeder’s selection ability. In conventional

breeding, breeders select plant individuals based on their

preferences and experience. On the contrary, MAS objectively

selects plant individuals with molecular markers. In the GS
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procedures, the genetic or breeding population is mechanically

trained based on statistical models (training population). Then, the

model is applied to the breeding population for selection (breeding

population or validation population). Provided that training is the

process of breeders gaining experience, the application of the model

may be the process of breeder’s selection. Consequently, GS can be

more reasonable for breeding complex traits to which a number of

minor genes are related.

Humans have bred crops to introgress useful traits and increase

yields. Breeding methods have changed from domestication to

traditional phenotypic selection, molecular breeding, and phenotype

prediction (Razzaq et al., 2021). The recently proposed GS in plants is

more difficult to predict the effect of environmental variables than

animals and most of the processes are still labor-intensive. So, it is

difficult to apply GS to actual breeding selection yet. In order to solve

this problem, several studies have conducted GS using ML

technology. Some agricultural scientists call these attempts digital

breeding to distinguish them from previous GS. However, digital

breeding is still in its infancy and lacks a precise definition, causing

much confusion in communication among researchers. In order to

solve these controversies, we would like to define a new term digital

breeding. Digital breeding means that breeding design, experimental

plot arrangement, growth process, and selection are all carried out

automatically in the breeding process while predicting and

considering various environmental variables. Digital breeding aims

to automate the breeding process of plants by minimizing human

intervention. Recently, biological data has been digitized and

increased. In the same way, breeding technologies adopt some

cutting-edge sciences such as next-generation sequencing, machine/

deep learning, speed breeding, and advanced statistical models,

enabling predictive breeding. This article surveys breeding

technologies to date, classifies the concept, application, and research

status of digital breeding, and attempts to provide clarification by

borrowing the idea of the levels of driving automation. In this review

article, the past, present, and future of breeding is divided into six

stages according to the level of technological development. It will be

helpful to understand breeding trends so far and to present the

direction and achievements of breeding in the future.
2 Outline of breeding techniques

2.1 Traditional breeding techniques

Plant breeding developed through efforts to establish better-

performing varieties by crossing between cultivars with the traits

desired by the breeder (Acquaah, 2009). Breeders select phenotypes

with desired traits, such as semi-dwarf and nutrient-efficient plants.

Plant breeding aims to select, identify, and expand varieties with

valuable traits desired by consumers and breeders in the next

generations by targeting diversity through new variations.

Therefore, breeding will fail if suitable individuals cannot be

selected for the next generation. So for breeding success, breeders

studied various breeding methods, considering the multiple

characteristics: fertilization method, breeding ability, combination

ability, breeding scale, and breeding age. In addition, the breeding

method was determined through the genetic structure of the cultivars’
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traits and the degree of interaction between genes (Kearsey, 1997).

Breeding methods considering these factors can be classified into

segregation breeding and cross-breeding (Table 1). Segregation

breeding nurtures excellent individuals or groups while selecting

outstanding individuals or lines when a genetically diverse group

has already been secured. The pure line selection method and the

mass selection method are representative. Cross-breeding is breeding

cultivars with an excellent performance by recombining or

introducing beneficial or desired genes through an artificial cross

between cultivars or lines. Pedigree selection, bulk population, single-

seed descent (SSD), and backcross breeding are representative

methods in cross-breeding.

2.1.1 Pure line selection
In 1903, Johannsen’s research confirmed that a population mixed

with self-pollinated species could be classified as a genetically pure

line. Pure lines are suitable for applications that require trait

uniformity because of small genetic differences and similar

phenotypes (Acquaah, 2009). Furthermore, pure line selection is

rapid, and genotype selection from a diverse population can

continue to repeat selfing until there is no apparent segregation in

subsequent generations (Poehlman and Sleper, 1995). Based on these

results, selection can eliminate variation but not create variations.

Thus, the variations produced in the pure line are caused by

environmental factors, meaning that selection in the pure line is

meaningless. In addition, pure line cultivars are virtually challenging

to produce in diverse environments due to their small genetic

differences. Therefore, pure lines play an important role as a

material for cross-breeding or generating genetic populations.

2.1.2 Mass selection
Mass selection applies to self-pollination and cross-pollination,

but the genetic results differ (Allard, 1960). The continuation of

inbreeding changes the gene frequency of the population. It decreases

the heterozygosity from one generation to the next. Still, there is little

change in allele frequency in cross-pollination unless the allele

associated with the desired trait is changed through selection

(Acquaah, 2009). This method is a population improvement

strategy aiming to increase the average performance of the base

population by increasing the gene frequency of the desired gene

and acting on existing variabilities without creating new ones

(Acquaah, 2015). The general process of mass selection can be

divided into two categories. One is the negative mass selection to

remove plants with unwanted traits or off-types, and the other is the
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positive mass selection to select plants with desirable traits to

maintain purity and to generate more plants with desired traits

(Acquaah, 2009). These processes can be performed based entirely

on the breeder’s visual judgment, either directly by selecting the

desired trait or indirectly by selecting traits related to the desired trait

(Gjedrem and Thodesen, 2005). Also, since the selection is based on

the plant’s phenotype, it is preferable if the desired trait is highly

heritable or controlled by additive genes (Brown and Caligari, 2011).

Although the resulting plants are relatively homogeneous, they are

genotypically broad, containing different pure lines. Since only one

generation is required per cycle, this method is inexpensive, simple,

and fast.

2.1.3 Pedigree selection
Pure line selection and mass selection methods focus on genetic

variation, whereas pedigree selection methods create variation

through hybridization. A pedigree selection method can be used for

cross-pollinating species, but it is mainly used for breeding self-

pollinating species. Pedigree selection uses a pedigree with accurate

records of breeders to keep the ancestors by knowing who the parents

of the F2 generation are in order that F2 individuals can be identified

through the descendants of subsequent generations (Poehlman and

Sleper, 1995). As a result, a base population is established through

parental hybridization, followed by selection and isolation, which

progresses through generations until a desired degree of

homozygosity is achieved (Allard, 1960). Breeders can also

influence genetic diversity and variation through these selections

and processes. In this method, selecting species that are easy to

observe, select, and harvest is desirable. Since lines begin to form

after F4, selection should be based on progenies rather

than individuals.

2.1.4 Bulk population
The bulk population method improves crops by putting off

artificial selection until later generations and influencing variation

through natural selection at the early generation stage (Briggs and

Knowles). In other words, it is a breeding method in which

homozygosity of the population is increased by repeating mixed

breeding and group cultivation without selection in the early

generation of hybrids (F2 to F4) and then fixing the line through

individual selection in later generations (F4 to F5) (Allard, 1960). The

rationale for this method is that natural selection will eliminate

individuals sensitive to various abiotic stresses in the production

area for which traits are not desirable (Acquaah, 2015). Varieties

produced by this method will have already adapted to the place of

production, and themethod can be applied to creating cross-pollinated

inbreeding populations. Still, breeding self-pollinating species that

grow in tight spaces between individuals is best. However, the

approach is that the genotype of the desired trait can be lost in early

generations if it is not competitive under natural selection. In contrast,

the genotype of a competitive but unwanted trait under natural

selection can persist into future generations (Acquaah, 2009).

2.1.5 SSD
SSD is a compromised breeding method between the bulk

population and pedigree selection. This breeding method randomly

selects ‘only one seed’ from each plant of the F2 population with the
TABLE 1 Comparison of breeding methods according to pollination of
plants.

Methods Self-pollinated Cross-pollinated

Pure line selection O

Mass selection O O

Pedigree selection method O O

Bulk population method O O

SSD O

Backcross breeding O O
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desired trait created by artificial hybridization of F1 to shorten the

breeding time and reduce genotype loss in the segregated generation

(Allard, 1960). This advances the generation of many F2 plants

through multiple generations, enabling rapid cultivation and

selection of lines with high homozygosity in later generations. This

method is best for plants such as soybeans that can self-pollinate and

be grown densely (Tigchelaar and Casali, 1976) and can be used in

small spaces such as greenhouses. However, it is not suitable for traits

with low heritability, polygenes, or traits associated with

pleiotropic genes.

2.1.6 Backcross breeding
Backcross breeding aims to transfer one or more specific genes of

interest from an ineffective breed to an excellent breeding line while

preserving all other characteristics in the already excellent breeding

line. It is a breeding method achieved over a relatively short time

through repeated crosses and selection of superior breeding lines, i.e.,

recurrent parents (Acquaah, 2009). Although this method is best

suited for qualitative traits (Borojevic, 1990), backcrossing may be

difficult if the gene of interest is closely associated with unwanted

genes, resulting in linkage drag (Allard, 1960).
2.2 Techniques in molecular breeding

Traditional breeding, with a history of nearly 100 years, liberated

humanity from starvation with groundbreaking achievements.

Despite these outstanding achievements, it stagnated due to a long

breeding time and the limited number of crops that could be cross-

bred. Amid these difficulties, a new concept emerged that applied a

molecular-based selection strategy that replaced the existing

phenotype-based breeding strategy. Until then, breeders visually

made selections for breeding. However, after the advent of

molecular breeding, it became possible to determine whether the

genes of the parent generation were passed on to the next generation

through gene analysis technology (Savadi et al., 2018). Next-

generation sequencing (NGS) enables the discovery of molecular

markers by sequencing the entire genome of a plant. Molecular

breeding makes it possible to accurately select useful individuals

with desired traits without being greatly affected by the

environment by using molecular markers that detect the traits of

each individual (Metzker, 2010). Modern molecular breeding is a

powerful molecular tool based on precision breeding that can reduce

the time and effort required to produce new varieties and provide new

and accurate in-depth research to satisfy the increasing global

population and large-scale plant breeding requirements (Figure 1).

2.2.1 QTL mapping
Molecular markers with DNA-based polymorphisms can be used

for genetic improvement by allowing for the selection of useful traits

(Tewodros, 2016). In general, most of the agriculturally important

traits are quantitatively inherited. Their genetic variation can be

attributed to the collective response of several small effects

associated with the trait. Methods utilizing traditional molecular

markers include finding QTL-associated markers that regulate the

expression of any trait in single or multiple parental mapping
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populations (Semagn et al., 2015). Throughout the 1980s and

1990s, various rich molecular markers were developed, enabling

QTL mapping with reasonable marker density and genome

coverage (Cooper et al., 2004). In plants, QTL mapping enriches

biological knowledge of genetics and genetic structures across related

species, providing useful markers to understand the genetic structures

of complex traits (Bernardo, 2008). Therefore, building linkage maps

and finding correlations between genetic markers and phenotypic

traits is fundamental (Wang et al., 2016). Relatively simple single-

marker analysis and more sophisticated interval mapping (Haley and

Knott, 1992), joint mapping (Kearsey and Hyne, 1994), multiple

regression (Whittaker et al., 1996) and composite interval mapping

(Zeng, 1994) are used in various ways to link genotypes with many

different quantitative traits. In recent decades, QTL mapping studies

identified various QTLs that regulate complex phenotypic traits in

crops such as rice (Yano et al., 2000), maize (Yano et al., 2000),

arabidopsis (El-Assal et al., 2001), and tomato (Fridman et al., 2000).

2.2.2 Linkage disequilibrium (LD) mapping
Another method of selection to identify loci involved in the

inheritance of complex traits is association mapping, also called LD

mapping. This methodology is more efficient than QTL mapping, as it

explores diversity using existing natural populations or germplasm

collections with diverse cultivars, as opposed to QTL analysis, which

uses bi-parental populations constructed using contrasting parents

(Gómez, 2011). Correlation between mapped genetic markers and

traits can be used to detect QTLs (Ibrahim et al., 2020). This can be

difficult to do unless you have a well-annotated genome, as it allows

for detecting more alleles with high resolution and precise mapping of

quantitative traits but requires extensive knowledge of markers within

the genome.

2.2.3 Genome-wide association study (GWAS)
With the development of NGS technology, computational

methods using information from the genetic analysis have been

improved, and GWAS search for key genes underlying important

traits, contributing to the production of genetically improved plants.

The first published GWAS was a study on humans in the early 2000s.

Since then, several active studies in animals and plants have been

conducted (Ozaki et al., 2002). This methodology has emerged as an

alternative approach to bi-parental QTL mapping in various crop
FIGURE 1

Schematic diagram of plant breeding using molecular markers.
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species. Research on associations between molecular markers (e.g.,

SNPs) and desired phenotypic traits is key to identifying relevant

genes. In addition, there is no need to develop new mapping

populations because historical recombination events between

accessions are used to find relevant genomic regions (Nakano,

2020). Once accessions are genotyped, the data can be used for

many different traits, enabling quick research of different traits in

various environments (Deng et al., 2021). In the case of GWAS, since

the genetic variation is identified by genotyping many markers, it is

important to select an optimal statistical model to detect false

positives. Consequently, statistical power and computational

efficiency may be indispensable for detecting truly associated

markers (Wu and Zhao, 2009). In GWAS, the mixed linear model

(MLM) and general linear model (GLM) are the most recommended.

In addition to those, there are various models such as the compressed

MLM (CMLM), enriched CMLM (ECMLM), and the settlement of

MLM under progressively exclusive relationship (SUPER), which are

single locus analyses similar to GLM and MLM but more advanced.

There are also the multiple loci mixed linear model (MLMM) and the

fixed and random model circulating probability unification

(FarmCPU). Among them, GLM is one of the methods with high

computational efficiency, which can lower false positives by using the

population structure and principal components as fixed effects.

However, if the polygenic background is not sufficiently calculated,

the false positives will be high, and the family structure will not be

considered in the statistical analysis (Mebratie et al., 2019). However,

MLM (kinship or kinship + Q matrix + PCA) takes into account the

population structure and is used to control for false positives by virtue

of familial relatedness. These MLMs perform better than the GLM

model alone and are widely used as an alternative to GLM (Alqudah

et al., 2020). These models were improved and developed to produce

better statistical results. However, MLM can be difficult to control for

false positives when it involves population structures with extensive

genetic diversity. In this case, CMLM and ECMLM were developed to

increase statistical power further. The SUPER model increases

statistical power by inducing kinship using relevant genetic markers

instead of the entire markers. MLMM and FarmCPU extend the

single-loci method of MLM to a multiple-loci method. FarmCPU

combines the MLMM strategy into the limited kinship matrix of the

SUPER model (Kusmec, 2018). Thus, it tests markers using multiple

related markers as covariates in a fixed effects model and performs

analysis on related covariate markers in a random effects model.

FarmCPU is faster than MLMM and effectively improves problems

caused by false positives (Liu et al., 2016). In addition, as new models

are continuously developed, the performance and statistical power of

GWAS is expected to increase over time. Also, existing models need

to be improved more efficiently in line with increasing

data availability.

2.2.4 MAS
Recently, the amount of molecular markers for traits of interest in

plant breeding has been gradually increasing. QTL mapping to

identify genetic loci quantitatively associated with traits of interest

is the basis for developing molecular markers used in MA) (Ibrahim

et al., 2020). MAS can be defined as the manipulation of a genomic

region involved in expressing a trait of interest in a short time through

the application of DNA markers. These attempts led the study of
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molecular breeding into a new era (Sharma, 2020). It is also applied to

plant breeding to improve tolerance to biotic or abiotic stress and to

improve crop yield and quality. MAS has the basic idea of using LD

between markers and QTLs: using a non-random association between

the marker and the QTL allele (Hospital, 2009). Identifying genes in

the target trait and markers linked to QTLs is a prerequisite for these

MAS (Khush, 2000). The framework of MAS in plant breeding is

divided into four groups: (i) marker-assisted backcrossing, (ii)

marker-assisted pyramiding, (iii) early generation marker-assisted

selection, and (iv) marker-based recurrent selection. These systems

characterize genetic material in early segregating generations and

strongly anchor the breeding cycle (Nadeem et al., 2018). Marker-

assisted backcrossing (i), first described in 1992, is a technique for the

introgression of one or several major genes of a donor line into the

genetic background of an elite line or recurrent line. With the help of

molecular markers, it was possible to speed up the selection and

genomic recovery of recurrent parents (Muranty et al., 2014), and it is

widely used to eliminate undesirable traits (ex., disease susceptibility)

in popular varieties (Sharma, 2020). Marker-assisted pyramiding (ii)

is the process of combining multiple genes into one genotype. The

most common strategy of pyramiding is to combine several resistance

genes to biotic and abiotic stress, which is a strategy to prevent the

decay of resistance to specific diseases or stresses. This method

efficiently transfers genes into improved varieties by pyramiding the

gene combinations. Early generation MAS (iii) has the advantage of

selecting markers at an early generation, allowing attention to fewer

important lineages in the next generation compared to the previous

generation (Collard and Mackill, 2008). In plants, a technique that

helps to improve quantitative traits by repeating crosses and selection

is called recurrent selection. The goal of marker-based recurrent

selection (iv) with such recurrent selection is to augment favorable

alleles and more QTLs in the population before inbred lines

extraction (Bankole et al., 2017). This method can efficiently breed

complex traits because it can use minor genes/QTLs that do not

significantly affect the phenotype (Abdulmalik et al., 2017). However,

the limitation of MAS in plant breeding is that traits composed of

many minor effect alleles cannot be efficiently selected. Besides,

linkage drags occur in every breeding effort, which hampers the

improvement of target traits. Consequently, predictive breeding

procedures using agro-bigdata and advanced statistical models

embedded in some basic machine learning algorithms are being

recently used for overcoming the limits of MAS, which will be

discussed in the next section.
2.3 GS

Complex quantitative traits are regulated by genome-wide minor

effect alleles. Most economically useful traits, such as yield, fruit

quality, and stress tolerance, are mostly complex quantitative traits

(Bhat et al., 2015). There are two major marker-based breeding

methods—MAS and GS—to select plants with superior traits. In

MAS, crops are selected based on QTLs detected through linkage

mapping (LM) or GWAS (Myles et al., 2009). MAS cannot identify

genes with minor effects associated with complex traits, and if the

associated markers constitute a small fraction of genetic variation, the

results are worse than phenotypic selection (Xu and Crouch, 2008).
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Moreover, in MAS, only a few statistically significant specific markers

are used, and the rest are excluded from the analysis. Therefore, in

traditional MAS, the number of specific markers per trait is generally

low, and the use of MAS is limited when several genes with small

effects are involved in one trait (Bernardo, 2008). Therefore, MAS is

optimized for qualitative traits, such as specific metabolites and

disease resistance, rather than quantitative ones.

A new method called GS deals with these problems. Improvement

of complex traits requires phenotypic evaluation at various locations

and multi-years to confirm the correlation between environment and

genotype. However, it was difficult due to the lack of cost and labor.

With the development of NGS technology, sequencing costs have

become cheaper, and high-resolution genome information can be

easily obtained. Advances in sequencing methods have made GS

possible (Gorjanc et al., 2015). All available high-performance

markers in the genome can be used to select GS crops (Jannink

et al., 2010). Given a marker set covering the entire genome, GS

models consider all markers influencing a trait regardless of a specific

threshold. Traditional MAS focuses on a small number of major genes

or QTLs, whereas GS makes predictions by integrating all available

markers in the genome into the model. Calculating all genetic effects

prevents the loss of genetic variance occupied by minor genes or

QTLs. Therefore, GS is more effective than MAS for traits regulated

by multiple markers (Meuwissen et al., 2001). The most significant

advantage of GS is that it can predict the phenotype information of

mature individuals based on genotype data obtained from seeds or

seedlings. This process eliminates the need for comprehensive

phenotypic evaluation by year or environment and increases the

speed of crop varietal development (Bhat et al., 2016). Previous

studies showed that compared to MAS, the accuracy of genomic

prediction (GP) is three times higher for maize (Zea mays L.) and two

times higher for wheat (Triticum aestivum L.) (Heffner et al., 2009).

Therefore, it is expected that this genome-based predictive selection

has the potential to replace phenotypic selection or marker-

assisted breeding.

GS combines phenotypic and genotype data of the training

population to construct a model. Then, based on the learned

model, the genomic estimated breeding values (GEBVs) of

individuals in the breeding population are predicted (Figure 2).

Therefore, with genotype data, GS selects individuals based on

GEBVs from the validation (or breeding) population. In this case,

phenotype information from the validation population is not required

(Meuwissen et al., 2001). Breeding values consist of two elements. The

first is the average breeding values of the parents, and the second is the

variance of the progeny from the mean breeding values of both

parents due to Mendelian sampling. Since GS uses a high density of

markers to quantify Mendelian sampling, large-scale phenotypes of

the progeny are not required. This process reduces the breeding cycle

and is more efficient than comprehensive phenotyping. GS is effective

for complex traits with low heritability and simple traits with high

heritability. In addition, it is possible to reduce the development cost

of a hybrid or breeding line (Crossa et al., 2017). The process of

training models resembles that of acquiring breeding resources by

breeders. Therefore, GS is closer to a conventional selection

procedure. On the other hand, selection in the early stages of

growth based on the trained models can be made, like MAS,

combining the advantages of conventional breeding and MAS.
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Although GS is a useful tool in plant breeding, there is limited

information on setting up an optimized statistical model. Incorrect

data imputation, unexpected responses, and environmental

constraints limit the performance of GP. Although attempts were

made to consider and overcome these limitations in several statistical

prediction models, it is still the most challenging problem in

multidimensional genomic data (Budhlakoti et al., 2020). The

prediction accuracy difference between the respective models is

determined according to the underlying statistical methods. Many

GP models use a large set of markers to predict the phenotype, and

each model makes different assumptions according to the distribution

and difference of the markers (Goddard, 2009). So far, the only

solution to avoid this limitation may be repeated trials with different

statistical models to find an optimized scenario that can be applied to

target traits. GP models are divided into parametric and non-

parametric methods according to the presence of prior information

and the setting of parameters (Budhlakoti et al., 2022). In parametric

methods, Regularized Linear Regression (RLR) models such as least

absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996)

and ridge regression (RR) (Meuwissen et al., 2001) emerged,

improving the over-parameterization problem of the existing simple

linear model. Currently, best linear unbiased prediction (BLUP) and

Bayesian models are mainly used according to variance assumption in

GS (Meuwissen et al., 2001). Semi-parametric methods such as

reproducing kernel Hilbert space (RKHS) and Nadraya-Watson

estimator predict GEBVs taking into account epistatic genetic

structure (Gianola et al., 2006). Furthermore, ML-based statistical

models such as SVM (Long et al., 2011), artificial neural networks

(ANN) (Gianola et al., 2011), and random forest (RF) (Holliday et al.,

2012) have been applied to plant breeding (Figure 3). Various studies

have tried to find optimal accuracy by applying various statistical

models for each crop. However, it is difficult to define an optimal

statistical method due to differences in crops, cultivars, environments,

populations, and markers. Therefore, it is necessary for breeders to

compare and to select appropriate statistical methods for each

situation when conducting GS.

ABLUP- Traditional pedigree- Best Linear Unbiased Predictor;

GBLUP-Genomic Best Linear Unbiased Predictor; ssGBLUP-Single-

step Genomic Best Linear Unbiased Predictor; RRBLUP-Ridge

Regression Best Linear Unbiased Predictor; rrGBLUP- Ridge

Regression Best Linear Unbiased Predictor; Bayes-Bayesian method
FIGURE 2

Schematic diagram of genomic selection.
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RF-Random Forest; RR-Ridge Regression; LASSO-Least Absolute

Shrinkage and Selection Operator; SVM- Support Vector Machine;

RF-Random Forest; ANN-Artificial Neural Networks; MLP-Multi-

Layer Perception; CNN-Convolutional Neural Networks; DBN-Deep

Belief Network; RKHS- Reproducing Kernerl Hillbert Space.

2.3.1 RLR models
GS tries to avoid biased marker prediction effects by using the

entire marker. Ordinary least squares (OLS) is a simple method for

measuring the influence of markers. However, OLS only makes

predictions within a sample and does not allow the weighting of

markers. In the case of a high density of markers, the number of

markers (p) exceeds the sample size (n). Therefore, it is not

appropriate to obtain an estimate of the marker effect through OLS

(Perez et al., 2010). In order to solve this problem, RLR models were

proposed, such as RR and LASSO. The RLR model reduces the

variance of regression coefficients by shrinking the regression

coefficients. Through this process, only the key predictor variables

are considered when making estimations in the statistical model

(Szymczak et al., 2009). This process can improve prediction

accuracy by reducing the mean squared error (Friedman et al., 2010).

RR estimates the regression coefficient using parameter shrinkage,

giving the ℓ2-norm penalty. The ℓ2 penalty of RR tends to shrink the

coefficient to zero. In particular, RR is advantageous for non-zero

coefficients. In the case of k identical predictor variables, when the

predictor variables are fitted alone, each coefficient is equally reduced

to the size of 1/k. Moreover, RR is effective when many predictors

have small effects, especially coefficients with many correlated

variables. Therefore, RR cannot eliminate coefficients and cannot

select only a relevant subset of predictors. Similar to RR, LASSO is

advantageous for processing large amounts of data quickly and

efficiently (Friedman et al., 2010). However, LASSO has a weakness

when many predictors are correlated. If only one suitable predictor is

selected from k identical predictor variables, the others are ignored.

That is, Lasso’s ℓ1 penalized least squares criterion excludes

coefficients close to zero. The most significant difference between

LASSO and RR is that ridge regression only shrinks coefficients,

whereas LASSO also selects variables. In addition, LASSO shrinks

coefficients with the same force for all coefficients, but RR shrinks

coefficients in proportion to the size of the coefficients (Ogutu, 2012).

On the other hand, elastic net combines the penalties of LASSO and

RR. Elastic net penalty weights LASSO and RR. When the penalty

parameter is close to 0, it corresponds to RR. However, when it is close
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to 1, it shows a performance similar to LASSO. Elastic net solves the

disadvantages of using RR or LASSO alone and shows high prediction

accuracy when predictors are correlated (Tutz, 2009).

2.3.2 MLM
Estimating the value of breeding requires optimizing the

estimation of the regression coefficients but also optimizing the

information in the phenotypic data. There is a method that

combines these two factors. There is a method of obtaining a

phylogenetic effect by simultaneously modifying the phenotype and

a method of estimating the breeding value using an additional genetic

relationship between plants. This method is called best linear

unbiased prediction (BLUP) (Goldberger, 1962). BLUP statistical

method was proposed by Henderson (1975) as the coefficient

matrix of mixed model equations (MME) for linear mixed models

used in data analysis to estimate and predict random effects. BLUP

evaluates all objects simultaneously and acts as a linear model,

correcting for different effects between objects and estimating by

combining objects and fixed effects. For linear models, a single

genotype effect appears as an independent random variable,

uncorrelated (Piepho et al., 2008). These BLUP models include

pedigree-based BLUP (ABLUP), genomic best linear unbiased

predictor (GBLUP), and ridge regression BLUP (rrBLUP). ABLUP

is a standard method for predicting breeding values through inferable

associations between individuals using relevant information based on

pedigree (Crossa et al., 2010). ABLUP’s Ep is assumed to follow a

normal distribution of random additive effects (Rezende et al., 2014).

GBLUP is derived from ABLUP but differs in that the matrix of the

marker-based matrix Eq is replaced by G (Myburg et al., 2007).

GBLUP has potential advantages over ABLUP. First, the prediction of

similarity computed based on pedigree is replaced by similarity

feasible in GBLUP, which consists of weak assumptions. Possible

similarities can also be characterized in pairs instead of based on

family history in ABLUP (de los Campos et al., 2009). Unlike the

previous two methods, rrBLUP changes the parameter notation in Eq.

It has a similar computational method to GBLUP and assumes that

the same marker effects are reduced, and the variances are equally

normal. The GBLUP method is the most common approach in

animals and plants. GBLUP was parameterized with the ridge

regression model (Hoerl and Kennard, 1970), rrBLUP, to predict

the genome. The reduction of SNPs can be determined either by

normalizing rrBLUP or by the ratio of variance components in

GBLUP (Heslot et al., 2012).

2.3.3 Bayesian prediction models
Bayesian analysis is named after the British mathematician

Thomas Bayes. This analysis is a statistical method that combines

the information in the sample with the information on the parameters

in the population in advance to explain the statistical reasoning

process (Gelman et al., 1995). The first step in using the model is

specifying the probability distribution of the parameter of interest in

advance and applying it by providing the posterior probability

distribution for the parameter. These posterior distributions provide

the basis for the parameters (Mila and Ngugi, 2011). In this method,

single nucleotide polymorphisms (SNPs) encompass the entire

genome and are used in animals and plants to estimate breeding

values. Training to estimate the effect of SNPs in statistical problems
FIGURE 3

Classification of GS statistical models.
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allows us to estimate the effect in situations where the number of

individuals is much smaller than the vast amount of SNPs (Habier

et al., 2011). A key part of this analysis is the probability distribution

of a parameter in the population. The Bayesian approach allows for

subjective and objective data to pre-determine the distribution.

Therefore, some argue that Bayesian analysis lacks objectivity

(Habier et al., 2011).

Many Bayesian methods for GS have been developed. Similar

sampling models have been shared, and a new concept of the Bayesian

alphabet has emerged, including Bayes A and Bayes B in different

analytical methods (Gianola et al., 2009). In animal and plant

breeding studies, hierarchical Bayesian models such as Bayes A and

Bayes B were presented (Meuwissen et al., 2001), as well as Bayesian

LASSO (Legarra et al., 2011; Li and Sillanpää, 2012) and Bayesian

ridge regression (BRR) (De Los Campos et al., 2013).

Direct approaches such as GBLUP first construct the relationship

between SNPs and molecules and then utilize mixed model equations

to determine genetic merit directly [89]. The Bayesian approach is

more effective than other QTLs and genetic value prediction models,

as many SNPs are preferentially merged into ineffective ones

(Meuwissen et al., 2001). In addition, the Bayesian method, which

assigns higher variances to subsets of SNP effects, has been shown to

achieve higher prediction accuracy than GBLUP when large effect

variations contribute to complex traits (Hayes et al., 2010).

Although the Bayesian model is widely used in animal and plant

breeding, it has several drawbacks, including those previously

described. First, SNPs treated as close to one are assigned an

ineffective ratio. Second, the degree of freedom of the independent

data dictionary is used for distribution. Only one degree of freedom

can be added regardless of subsequent phenotypes and genotypes. In

order to overcome these shortcomings, Bayes Cp and Bayes Dp were

developed and sampled by replacing parameter p or scale parameter S

with variables rather than data information (Habier et al., 2011).

Bayesian methods in this context have mechanisms to combine

prior probability distributions with sample data information for later

probability distributions in the natural state. Because of this, it can

also be used to make better decisions in posterior probabilities.

2.3.4 Semi-parametric prediction models
Parametric models such as MLM and Bayesian models, widely

used in GS, use a prior effect size distribution determined by several

parameters. The parameters used in predictive models limit the

amount of information the model can use. Therefore, the small

number of parameters determined in the predictive model limits

the flexibility of the model. On the other hand, in the semi-parametric

model, there is no assumption that data follows a specific distribution,

and the number of parameters is determined according to the amount

of training data. The semi-parametric model can be used when there

is no prior information about the data (Murphy, 2012). Predictive

models can be applied differently depending on the genetic

architecture of the trait. Parametric predictive models can take into

account additive effects but are ineffective for epistasis due to the

difficulty of predicting high interactions (Howard et al., 2014). Semi-

parametric and non-parametric models have high accuracy in genetic

architectures with epistasis effects.

Conversely, semi-parametric models involve epistasis effects and

have been used in several plant prediction studies. Epistasis plays a
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vital role in explaining the occurrence of genetic variation, and

considering epistasis in predictive models can obtain good

predictive accuracy of plant breeding in quantitative traits (Cordell,

2002; Howard et al., 2014). Epistasis is the interaction between genes

in which one locus affects the phenotype by altering the effects of

another locus. Therefore, epistasis can occur between multiple loci,

and various interactions must be included in the model to calculate

GEBVs for GS. A large number of markers is used in GS, and the

corresponding epistasis interactions increase even more. Therefore, it

is difficult to predict genetic gain using a model using only a small

number of specific parameters (Moore and Williams, 2009).

For this reason, several models have been devised for genetic

prediction. RKHS is designed for genetic prediction in non-linear

models. It makes inferences about functions without prior

information in a semi-parametric method. RKHS reflects

independent variables in a finite-dimensional space into infinite-

dimensional Hilbert spaces. This method assumes that distances in

Euclidean space can be expressed through a kernel matrix that reflects

the distances between objects in Hilbert space (Rodriguez-Ramilo

et al., 2014). RKHS obtains prediction results by applying ML after

transforming the independent variable using a kernel function. RKHS

using implicit transformations has good results for predicting non-

linear patterns of data (Gianola and van Kaam, 2008).
3 Digitalizing plant breeding

3.1 Strategies to increase prediction
accuracy in GS

Comparison of GS methods is evaluated by prediction accuracy.

The prediction accuracy is measured by the correlation between the

measured GEBVs and the actually measured phenotype data.

Therefore, improvement of prediction accuracy is important for

GS applications.

3.1.1 Marker density and selection
Among them is the density of the marker. Since GS estimates the

effects of markers using LD between quantitative loci and markers, a

high density of markers is advantageous for GS (Meuwissen et al.,

2001). Even for low-density markers in GS, some efficiency can be

guaranteed if the intervals of the markers are uniformly distributed

(Habier et al., 2009; Spindel et al., 2015). In addition, markers are

selected by additive effect sizes, and when the trait of interest is

oligogenic, it has high predictability compared to markers with

uniform spacing (Li et al., 2018). In GS, a method using high-

density SNPs is widely used to increase accuracy. However, this

method has a negative side when species have low importability or

large populations (Crossa et al., 2010). Therefore, reducing marker

dens i ty could be a solut ion to reduc ing the cos t o f

GS implementation.

To take advantage of GS while lowering the marker density,

highly correlated duplicate markers can be removed from the LD

block. This approach reduces multicollinearity and does not interfere

with the marker effect. It can also be a good alternative because it

reduces the possibility of overfitting (Xu, 2013). The low density of

markers reduces computational analysis time and allows for
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genotyping of more individuals at the same cost. Even if the number

of markers is reduced, it can have high prediction accuracy, so a

method to identify valid markers can be a reasonable strategy for GS

in the future. Therefore, breeders should consider the appropriate

marker density to fit their budget and time when conducting GS

(Gorjanc et al., 2015). If it is difficult to reduce the number of markers

using LD, the accuracy of GP can be improved by using GWAS-

related markers. The presence of irrelevant markers in the GP process

can reduce prediction accuracy. GWAS predicts the effect of markers

based on the entire genome and selects markers statistically linked to

the target trait. Therefore, the prediction accuracy can be significantly

improved if GP is performed with markers associated with the target

trait (Odilbekov et al., 2019). In addition, combining GWAS and GS is

convenient because it does not use additional data and uses the same

existing phenotypic and genotypic information (Odilbekov et al.,

2019). In short, selecting an appropriate marker for GS is an

important factor for improving prediction accuracy. Breeders

should consider the range of markers prior to selection.

3.1.2 Design of training population
The accuracy of genetic predictions is also determined by the

design of the training population. Well-established training

populations are important in GS. The training population consists

of breeding lines with phenotype data for target traits and genotype

data. After training a predictive model with markers, the prediction of

GEBVs in the test population is performed using the trained model

(Akdemir and Isidro-Sanchez, 2019). As NGS technology advances,

genotyping costs and time continue to decrease, but the progress in

phenotyping is slow. High costs and wasted labor are difficulties and

limitations in plant breeding. In general, increasing the size of the

training population tends to improve prediction accuracy. However,

breeders should choose an optimized training population that

maximizes predictive accuracy while significantly reducing

phenotypic costs (Lado et al., 2013). Traditional optimization

methods use random sampling. Random sampling does not

increase prediction accuracy because of under- or over-represented

genetic information (Bustos-Korts et al., 2016). After comparing

random sampling methods, the coefficient of determination (CD)

and the prediction error variance (PEV) methods have been

proposed. CD shows slightly better results than PEV because CD

from random samples shows genetic diversity when selecting

individuals (Rincent et al., 2012). Another method of optimizing

the training population is to use the genetic information of the test

population when establishing the training population. The use of

genetic information in the test population leads to a significant

increase in prediction accuracy by applying a genetic algorithm

(Lorenz and Smith, 2015; Akdemir et al., 2015). The genetic link

between the training and test populations increases GP accuracy

(Wientjes et al., 2013) because when the genetic distance between

individuals is close, they share a common ancestry, and there is less

recombination between the marker and the QTLs. Furthermore, the

two groups share polymorphic loci that produce genetic variations

(Habier et al., 2010). In addition, if the genetic background between

groups is shared, the interaction deviation between the QTLs and the

genetic background is shared (Lorenz and Cohen, 2012). Therefore,

breeders should consider training the population composition of

unrelated individuals if they want to increase the accuracy of GP.
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3.1.3 Multiple environments and heritability
Difficulties in making genetic predictions should apply to GEBVs

in various environments. For accurate predictions, predictive models

must consider terms that interact with various environments and

environment x genotype interactions. These changed prediction

models are divided into two types. The first is a non-informed

model, which includes the environment as the main random effect.

Also, the interaction between a genotype and environment is specified

as a random effect. These prediction models report improved

accuracy compared to traditional prediction models that specify

only a genotype and environment as the main effects (Jarquin et al.,

2014; Lopez-Cruz et al., 2015). On the other side, the informed

prediction model includes measured environmental covariates in

each environment. Then, informed prediction models incorporate

information through variance-covariance structures using kernel-

based methods. Finally, the informed prediction model calculates

the interaction between each marker and environmental covariates

and includes these calculations in predicting GEBVs. It is important

to predict GEBVs by considering these models in various

environments. Predictive models should be improved in terms of

prediction results, or genetic and environmental variability should be

analyzed to improve accuracy (Basnet et al., 2019). In general, traits

with high heritability are determined by some genes having a major

effect. Because these traits are less affected by the environment, their

prediction accuracy is high. However, since numerous genes

determine most of the traits humans try to breed with minor

effects, it is necessary to consider the environment when selecting a

predictive model (Combs and Bernardo, 2013).

3.1.4 High-throughput phenotyping (HTP)
With the development of NGS and large-scale marker

information, the application of GS increases in plants. However,

one of the challenges that breeders face in training GS models is

inaccurate phenotypic data. The sophistication of phenotypic

information is as important as genomic information. Inaccurate

phenotypic data make the predictive ability of the GS model

decline. In addition, the existing phenotype measurement method

has disadvantages because it is labor-intensive and requires a lot of

time and costs. Recently, high-throughput phenotyping (HTP) has

been used for accurate phenotypic information measurements. HTP

is a non-destructive, fast, and accurate phenotypic measurement

method that accurately captures traits of interest (Pabuayon et al.,

2019). HTP has developed rapidly in plant breeding over the past

decade. HTP processes stress tolerance, yield, and growth information

through automated sensing, data acquisition, and processing. These

advantages of HTP include accelerating the breeding cycle while

allowing rapid screening of numerous plants at various growth stages

(Yadav, 2021). The HTP platforms include RGB, normalized

difference vegetation index (NDVI) sensors, multispectral and

hyperspectral cameras, spectrometers, and light detection and

ranging (LiDAR) technology (Yadav, 2021). The HTP platforms

include RGB, normalized difference vegetation index (NDVI)

sensors, multispectral and hyperspectral cameras, spectrometers,

and light detection and ranging (LiDAR) technology (Shabannejad

et al., 2020). Many studies on GS in plants using HTP have been

conducted. GS was performed utilizing HTP using NDVI in wheat.

Data collected through HTP showed a 7 to 33% increase compared to
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the standard univariate model (Crain et al., 2018). In addition, when

HTP was performed in wheat using RGB, the prediction accuracy for

days to maturity increased by 3 to 4 times (Shabannejad et al., 2020).

Also, in another study, the measurement of secondary traits in wheat

using an unmanned aerial vehicle (UAV) remote sensing increased

the genetic prediction accuracy of grain yield by an average of 146%

(Sun et al., 2019). These results suggest that using HTP improves

model performance while enabling accurate selection. The efficient

use of HTP becomes the background for ML and DL technology. The

advanced combination of genotyping and phenotyping will provide

breeders with opportunities for better GS.
3.2 Application of ML for GS

ML uses statistical techniques to allow systems to learn from data

without explicitly programming them. ML takes a sample and then

builds a model to explore algorithms that learn from current data and

make predictions on new data. ML-based methods can be effective in

improving prediction accuracy compared to conventional GS

(Yoosefzadeh-Najafabadi et al., 2022). The main difference between

the traditional statistics model and ML is that ML is a non-parametric
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model that offers tremendous flexibility to adapt to complex

associations between data and outputs. It is difficult to build

informative and predictive models because of the expanding scale

of genome data, inherent complexity, the unique characteristics of

organisms, and various environmental variables. Accordingly, the use

of ML continues to grow and can be a good alternative (Greener et al.,

2022). It initially adapts hidden patterns of unknown structures that

cannot be incorporated into parametric models (Gianola, 2013).

GS statistical methods use ML for more accurate predictions

(Table 2). Statistical analysis of the genetic basis of quantitative traits

in plants is unsuitable for complex configurations such as pleiotropic

genes, gene X gene, and gene X environment interactions. It is difficult

to capture all marker effects, and problems such as the ‘large p, small

n’ problem, sometimes lead to over-parameterization. ML methods

improve prediction accuracy through observations of repeated

experiences (Gianola et al., 2006). ML can identify hidden

information in large data. Therefore, it is attractive for complex

genomic information, including information about gene

interactions and pleiotropic genes, when performing GS. ML

develops and applies data through computer algorithms and is

divided into supervised and unsupervised learning. Supervised

learning predicts desired trait values from input data. On the other
TABLE 2 Machine learning application to GS in plants.

Crop Topology Traits Ref

1 Wheat ANN Grain development and hence morphometry (Dubey et al., 2006)

2 Wheat & Pampas ANN Grain yield (Alvarez, 2009)

3 Maize
ANN

Maize transpiration (Fan et al., 2021)
SVM

4 Maize ANN Producing provinces (Adisa et al., 2019)

5 Pepper ANN Fruit yield (Gholipoor and Nadali, 2019)

6 Rice ANN Identification of 13 Rice Cultivars (Abbaspour-Gilandeh et al., 2020)

7 Wheat ANN Quality parameters (Mutlu et al., 2011)

8 Tomato ANN Escherichia coli (Wang et al., 2008)

9 Wheat SVM Growth period (Shen et al., 2021)

10 Wheat SVM Fusarium head blight (Huang et al., 2019)

11 Wheat SVM Powdery mildew (Huang et al., 2019)

12 Rice SVM Leaf diseases (Sethy et al., 2020)

13 Maize SVM Root complexity (Zhong et al., 2009)

14 Maize SVM Corn tassels (Kurtulmus and Kavdir, 2014)

15 Tomato SVM Leaf Viruses (Mokhtar et al., 2015)

16 Wheat RF Grain yield (Roell et al., 2020)

17 Maize RF Grain yield (Ramos et al., 2020)

18 Maize RF Total Nitrogen Content (Lopez-Calderon et al., 2020)

19 Wheat & Rye RF 5 leaf rust disease symptoms (Wojtowicz et al., 2021)

20 Sweet pepper RF Fruit flavor (Eggink et al., 2012)

21 Soybean RBF, SVR, RF Yield related components (Yoosefzadeh-Najafabadi et al., 2022)
ANN, artificial neural network; SVM, support vector machine; RF, random forest; RBF, Radial basis function; SVR, Support vector regression; RF, Random forest.
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hand, unsupervised learning checks the group and association

between input variables in which output variables do not exist.

Most ML involves supervised learning, such as Bayes nets, rule-

based learning decision trees, naive Bayes, and nearest-neighbors, and

applies to GS in the form of RF, ANN, and SVM (Gonzalez-Camacho

et al., 2018). RF is an attractive alternative to analyzing complex

individual traits using dense genetic markers. RF has good predictive

power to measure the importance of each marker. RF does not require

the specification of inheritance and takes into account non-additive

effects. In addition, it is fast even when dealing with many covariates

and can be applied to regression and classification models (Gonzalez-

Recio et al., 2010).

Another ML-based model, SVM, is advantageous for

classification and regression, similar to other ML models. The

difference from other ML models is that SVM is specialized in

identifying subtle patterns in complex and large amounts of

information data. SVM makes a decision boundary with various

feature vectors to achieve predictions. SVM can flexibly handle data

using kernel-based functions. Furthermore, SVM can improve the

non-linear form of phenotypes and genotypes using kernel functions

(Noble, 2006). ML models can be applied in many scientific fields, but

it is not clear whether these methods are superior to other statistical

models. Therefore, if you want to make a clear prediction in the GS

process, data acquired by various methods should be accumulated,

and the optimal method should be selected based on experience.

Recently, the ML method, a specific type of ANN, has been

considered to increase the performance of GS. ANN takes into

account patterns in data and makes predictions about complex

functions as universal approximations (Gianola et al., 2011). In GS,

these functions automatically identify factors such as epistasis or

dominance in genomic marker information. Moreover, it does not

require any assumptions about the phenotypic distribution, and

applying ANN to GS enables effective estimations of the effects of

complex interactions (Rosado et al., 2020)
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3.3 Application of DL for GS

Although studies on GS applied with DL are still lacking, several

advanced studies exist (Table 4). In 2018, Montesinos-López et al.

(Montesinos-Lopez et al., 2018). compared DL and GBLUP models

using densely connected network architecture. Their study used nine

published genomic data sets (three maize and six wheat data sets).

When genotype x environment interactions (G x E) were ignored, DL

had good predictive accuracy in 6 of 9 data sets. However, the

prediction accuracy of GBLUP was excellent in 8 of 9 data sets

when the G x E interaction was taken into account. In the study

conducted in 2019, genomic-based prediction performance was

confirmed by comparing the Bayesian threshold genomic best

linear unbiased prediction (TGBLUP) model with multi-layer

perceptron (MLP) and SVM methods (Montesinos-Lopez et al.,

2019). It was confirmed that SVM and MLP were the most efficient

in terms of computation time. These studies suggest that DL is not a

data science panacea but a worthwhile addition to the data science

toolkit in plant breeding. So far, research on GS using DL confirming

prediction accuracy through the comparison with existing statistical

models is limited. Thus, more research is needed.

An artificial neural network (ANN), the most fundamental

concept in DL, is a network structure created by mimicking the

neuron connection structure of a human neural network. A structure

in which three or more ANNs are superimposed is called a deep

neural network (DNN), and ML using this is called DL (LeCun et al.,

2015). Popular DL topologies in GS include MLP, a convolutional

neural network (CNN), and a recurrent neural network (RNN)

(Montesinos-Lopez et al., 2021).

In MLP, in an artificial neural network, data moves in one

direction from the input node through the hidden node to the

output node (Figure 4). It has at least one hidden layer and is

usually supervised learning. This method is the simplest to train,

generally performs well in a variety of applications, and is suitable for
FIGURE 4

Multilayer perceptron structure with 3 hidden layers.
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general prediction problems where it is assumed that there is no

special relationship between the inputs. However, these networks are

prone to overfitting during the training process, so there is a problem

in that the accuracy decreases in real data (Abdollahi-Arpanahi

et al., 2020).

CNNs are used in visual recognition tasks involving images or

video data. CNNs reduce the size of input and parameter sharing

because the inputs are only partially connected to some neurons.

Therefore, it is efficient because it reduces the parameters that need to

be estimated. Most CNNs include three operations: convolution, non-

linear transformation, and pooling (Figure 5). This process allows you

to reduce the input size without losing relevant information. In

addition, the training time can be decreased by reducing the

parameters (Pook et al., 2020).

RNNs do not always travel in one direction, as they can be fed

back to previous layers via synaptic connections. At least one

feedback loop exists because the signal travels in both directions.

Although the training parameters are reduced by sharing parameters

across multiple steps, the short-term memory or latency of the

network improves the performance, so training requires a lot of

computational resources (Montesinos-Lopez et al., 2021).

Although few GS programs use DL, DL is emerging as a promising

tool. First, the reason is that the DL model efficiently processes the

image’s raw data without any preprocessing. Second, it captures naturally

genetic diversity without specifying additional terms for the predictors.

This is important for non-additive effects or complex relationships and

interactions that are important to capture the genetic merit of the whole.

Third, topologies such as CNNs efficiently capture the LD of neighboring

SNPs. Fourth, some topologies, such as CNNs, share parameters so that

more parameters do not need to be estimated, reducing the number of

parameters that need to be estimated. However, there are a few caveats to

using DL in GS. It is more prone to overfitting than existing statistical

models. Research results have reported that these problems can be solved

with a Bayesian paradigm (Neal, 1996). In addition, considerable

knowledge is required to implement and output the DL model because

it depends on the choice of many hyper-parameters and requires a very

complex adjustment process.

The possibility that DLs can provide good predictive performance

in GS has been suggested by several studies (Table 3). However, it still

shows a similar or lower level of predictive performance than the
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existing statistical models. More iterative and collaborative

experiments are needed, and more data are needed to utilize DL in

genome selection. In addition, the data should include not only the

phenotype but also various types of omics data, climate data, and

experience data of breeders. Then we need to design an efficient

topology for the DL model (Montesinos-Lopez et al., 2021).
4 Conclusion

Plant breeding has steadily increased crop productivity by

developing superior varieties to support a growing population. Due

to recent global environmental changes such as global warming,

resource depletion, outbreaks of pests and diseases, and

diversification of consumer demands, the role of plant breeding

attracts much attention. Traditional breeding has developed

dramatically and contributed to increased crop production, yield, and

improved nutrition. Traditional breeding has created modern cultivars

since the 20th century and has achieved great success in productivity.

However, it is insufficient to meet the demand for crop production

accompanied by exponential population growth. Breeding methods

based on the traditional phenotypic selection are ineffective for low

heritability and multi-genic quantitative traits (biological and abiotic

stress, yield, and quality) because these traits are greatly influenced by

the interaction between genes and the environment. Moreover,

traditional breeding methods are time-consuming, laborious, and

ineffective for cost and land use. In addition, low reliability and

accuracy make these breeding methods less efficient. Accordingly, a

new breeding method is required to quickly and accurately breed crops

with high yield, good quality, and climate resilience. Researchers

successfully established biotechnology-based molecular breeding

technology to overcome the limitations of traditional breeding

technology. They are now putting genome breeding technology into

practice, also called predictive breeding. In summary, the history of

plant breeding developed from traditional to molecular breeding.

Predictive breeding will be available in the near future.

Rapid development in advanced technologies such as biotechnology,

genomics, and phenomics improves progress in plant breeding. Breeders

in the 21st century create mutations that directly correct target genes

and expand the limits of genetic resources indefinitely by transcending
FIGURE 5

The structure of the CNN topology.
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the category of sexual reproduction with transformation technology.

Selection in a population or lineage can rapidly and accurately fix the

desired genotype using genomic information.

Integrating novel digital tools will be valuable and helpful in

enhancing breeding progress, particularly for difficult-to-breed,

quantitative traits. Vast genetic, genomic, phenotypic, and

environmental data must be integrated and handled based on

digital technology to fulfill the breeding technologies. In the current

article, we first defined the term digital breeding, including breeding

technologies from molecular to predictive breeding. For digital-based

breeding technology to be commercialized, gene and genome

information related to traits for each crop must be identified. It is

expected that digital breeding can make it possible to reflect complex
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climates, geography, quantitative traits, and multiple traits in the

breeding process. In a broad sense, therefore, digital breeding is not a

single but a convergence technology. It can be defined as various

attempts to actively utilize advanced technologies such as big data and

artificial intelligence for agricultural breeding. However, as common

confusion with new concepts in the early days of establishment, each

researcher may have different ideas about digital breeding depending

on their research field, research experience, and breeding resources.

Particularly, some researchers think that DL-based techniques in

breeding can become a game changer based on the results that DL

has shown in various fields so far, so only DL-based techniques may

be considered digital breeding. The different perceptions of digital

breeding by researchers may cause confusion in the planning and
TABLE 4 Phases of digital breeding defined in the current review.

Phase Definition Associated Statistical Model Associated Breeding Tech-
niques

0 No digital technology used – Traditional breeding

1 Digitize large amounts of data for marker development – Molecular breeding

2 Limited use of digital technology to develop markers GWAS (GLM, MLM, FarmCPU, etc.) Molecular breeding

3 Prediction of GEBVs mainly based on quantitative traits GS (BLUP, LASSO, Bayesian, Machine
learning, etc.)

GS

4 Prediction of phenotype considering environments Phenotype prediction (ML, DL) GS

5 Using artificial intelligence technology from breeding design to
phenotype prediction

Automated breeding design of all processes
(DL)

AI breeding
TABLE 3 Deep learning application to GS in plants.

Crop Topology
Traits

Ref

1 Wheat MLP Grain yield, days to heading
(Perez-

Rodriguez
et al., 2012)

2 Maize DBN Grain yield, female flowering or days to silking, male flowering time or days to anthesis, and anthesis-silking interval
(Gonzalez-
Camacho
et al., 2012)

3 Maize and wheat MLP Grain yield
(Gonzalez-
Camacho
et al., 2016)

4 Maize and wheat MLP Grain yield
(Montesinos-
Lopez et al.,

2018)

5 wheat MLP Grain yield, days to heading, plant height
(Montesinos-
Lopez et al.,

2019)

6 Maize MLP Grain yield, check yield, yield difference
(Wang,
2019)

7 Soybean CNN Grain yield, protein, oil, moisture, plant height
(Liu et al.,
2019)

8 Arabidopsis MLP, CNN Arabidopsis traits
(Pook et al.,

2020)

9 Maize and wheat MLP Leaf spot diseases, Gray Leaf Spot
(Perez-

Rodriguez
et al., 2020)
fronti
MLP, Multi-Layer Perceptron; CNN, Convolutional Neural Networks; DBN, Deep Belief Network.
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promotion of related R&D. To address the problem, we first listened

to the opinions of many researchers working with various breeding

technologies. Consequently, we could classify the breeding level based

on the intensity of digitalization. As a solution, we suggest that if

digital breeding is divided like the autonomous driving levels in

automobiles, it will be possible to easily organize the differences in

thinking about digital breeding. Accordingly, we divided digital

breeding into six phases. Phase 0 is traditional breeding that does

not use digital technology and includes cross-breeding and mutation

breeding. Phase 1 refers to identifying and processing substantial

marker data generated by the development of genome sequencing

technology. In Phase 2, markers are developed using bioinformatics

tools. It is advantageous to select markers associated with qualitative

traits using GWAS. Marker selection using GWAS has been actively

carried out, but it is difficult to apply it to breeding directly. On the

other hand, Phase 3 shows the potential to be practically applied to

breeding. In this phase, the basis for practical application to breeding

was laid by calculating the GEBVs using genomic information.

Research based on GS started digital breeding. Although GS

research has been actively conducted on livestock, it is still lacking

in plants. Predictive statistical models for GS have been used in BLUP,

LASSO, Bayesian, and ML-based models have also been applied. In

Phase 4, breeding mainly uses DL to predict the phenotype by

considering factors that affect plants, such as the environment.

Some studies have been carried out by applying DL to plants, but it

is still incomplete due to accuracy and technical problems. It looks

like digital breeding, in the narrow sense, refers to this phase. In Phase

5, all processes from breeding design to phenotype prediction are

automatically performed using DL. It has not yet been studied and is

the ultimate goal for digital breeding techniques to evolve (Table 4).

More phases can be added if new technologies emerge in the future.
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