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Accurate information concerning crown profile is critical in analyzing biological

processes and providing a more accurate estimate of carbon balance, which is

conducive to sustainable forest management and planning. The similarities

between the types of data addressed with LSTM algorithms and crown profile

data make a compelling argument for the integration of deep learning into the

crown profile modeling. Thus, the aim was to study the application of deep

learning method LSTM and its variant algorithms in the crown profile modeling,

using the crown profile database from Pinus yunnanensis secondary forests in

Yunnan province, in southwest China. Furthermore, the SHAP (SHapley Additive

exPlanations) was used to interpret the predictions of ensemble or deep learning

models. The results showed that LSTM’s variant algorithms was competitive with

traditional Vanila LSTM, but substantially outperformed ensemble learning model

LightGBM. Specifically, the proposed Hybrid LSTM-LightGBM and Integrated

LSTM-LightGBM have achieved a best forecasting performance on training set

and testing set respectively. Furthermore, the feature importance analysis of

LightGBM and Vanila LSTM presented that there were more factors that

contribute significantly to Vanila LSTM model compared to LightGBM model.

This phenomenon can explain why deep learning outperforms ensemble

learning when there are more interrelated features.

KEYWORDS
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1 Introduction

Pinus yunnanensis is a major component of coniferous forests in southwestern China. It

has been extensively cultivated for reforestation and ecological engineering (Sun et al., 2008).

In southwest China, it occupies approximately 52% of the forested area and produces 32% of

the timber volume (Jin and Peng, 2004). As a pioneer tree species, Pinus yunnanensis is

shade-intolerant, deep-rooted, drought-resistant, and tolerant of rocky soils with low fertility

(Xu et al., 2016). It plays a crucial role in regional economic development and ecological
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restoration (Wu, 1986; Jin and Peng, 2004; Xu et al., 2016).

Knowledge of the dynamics of Pinus yunnanensis promote the

regeneration of secondary forests and further help China to better

achieve its carbon neutrality target in 2060 because it can effectively

improve forest carbon sinks in the region (Deng et al., 2022).

Crown profile is mostly related to the competition of individual

trees in the stands, light interception, growth, and yield of trees.

However, crown measurement is time-consuming and labor-

intensive. It is impossible to measure the crown of every tree in

actual production, so it is necessary to build the high-precision crown

profile models. Crown profile models are key components of growth

and yield models in the evaluation of competition among trees, forest

microclimate, and biodiversity (Dong et al., 2016; Sun et al., 2022).

Accurate information concerning crown profile is critical in analyzing

biological processes (e.g., photosynthesis, stand growth, survival, and

competition) (Rautiainen et al., 2008; Dong et al., 2016; Wang et al.,

2021), whilst providing a more accurate estimate of carbon balance

(Plesoianu et al., 2020; Yang et al., 2022). In mixed species ecosystems,

modeling individual specie crown profile models is necessary if

seeking to analyse species-specific phenological trends, plasticity,

and responses to extreme events (Fawcett et al., 2021).

In forest surveys, the crown profile database contains multiple

measurements for each sample tree crown, which displays

hierarchical structural features. Crown profile models were initially

fit assuming that the within equation errors were independent and

identically distributed. However, since crown profile models in that

several measures are taken on each crown profile, autocorrelation

among measures within a profile is likely. For linear statistical models,

the least squares estimate of regression coefficients remain unbiased

and consistent in the presence of autocorrelation, but they are no

longer efficient (Myers, 1990; Crecente-Campo et al., 2009). It has

been of interest for forest modelers to better understand this

phenomenon, particularly on the basis of statistical modeling and

analysis (Wang et al., 2017). The traditional crown profile modeling

methods have been used to deal with the autocorrelation and

heteroscedasticity in the crown profile equations, they are mainly

direct variance-covariance modelling (Hann, 1999; Crecente-Campo

et al., 2009; Crecente-Campo et al., 2013), mixed-effects modelling

(Fu et al., 2013; Sharma et al., 2016; Fu et al., 2017; Sharma et al., 2017;

Sun et al., 2017; Jia and Chen, 2019; Wang et al., 2019; Chen et al.,

2021; Di Salvatore et al., 2021), and nonlinear marginal modeling

(McCulloch and Searle, 2001; Lejeune et al., 2009; de-Miguel et al.,

2012; Chen et al., 2022). With the rapid development of machine

learning artificial intelligence, some machine learning algorithms

have the characteristics of high accuracy and good robustness for

the data with nonlinear features (Singh et al., 2016; Dong et al., 2021),

which has subsequently been applied to crown profile modeling. Tian

et al. (2021) established crown profile model for Chinese fir

(Cunninghamia lanceolata (Lamb.) Hook) based on random forest

algorithm, the accuracy of the random forest model was higher than

that of the mathematical model. Chen et al. (2022) recently proposed

six machine learning algorithms (MLP, SVR, RF, AdaBoost, GBDT

and XGBoost) for the crown profile model of China fir, and found

that the performance of the ensemble learning algorithms were

superior to single machine learning algorithms and parametric

regression approach. However, it appeared that none of the

machine learning crown profile modeling methods offered plausible
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explanation of hierarchical structural features. Here we are facing

with space-evolving multidimensional structures (the crown profile

database). Deep learning, which refers to machine learning algorithms

that construct hierarchical architectures of increasing sophistication

(Reichstein et al., 2019), has achieved notable success in modelling

ordered sequences and data with spatial context in many fields.

Applications to problems in crown profile modeling are in their

infancy, but across the key problems (regression, space- or time-

dependent data prediction) there are promising. LSTM network can

fully explore the internal correlation between time series data, which

is specially used to solve the problem of long-term information

dependence and avoid gradient disappearance or explosion (Wu,

2019). At present, the application of LSTM model is only based on

single factor prediction, and most of them are applied in small sample

range. The similarities between the types of data addressed with

classical deep learning applications and crown profile data make a

compelling argument for the integration of deep learning into the

crown profile modelling. There are few reports on the application of

crown profile research based on deep learning.

The objectives of this study were to explore the application of

deep learning method LSTM and its variant algorithms in the crown

profile modeling, using the crown profile database from Pinus

yunnanensis secondary forests in Yunnan province, in southwest

China. It is expected to overcome many of the limitations that have

hindered a more wide-spread adoption of machine learning in crown

profile modeling problem.

The principal contributions of this paper are as follows: (1) A

deep learning prediction based on LSTMs is introduced to explore

and exploit the implicit information of hierarchical structural features

for crown profile forecasting; (2) To improve the generalization

capability and robustness of a single deep learning approach,

LSTM’s variant algorithms consisting of a cluster of LSTMs with

diverse hidden layers and neurons and LightGBM are developed; (3)

A unified framework SHAP were adopted to interprete predictions of

ensemble and deep learning models;(4) The performance of the

proposed LSTM’s variant algorithms is successfully validated on

studies data collected from Pinus yunnanensis secondary forests in

Yunnan province. Statistical tests of experimental results have

demonstrated the proposed LSTM’s variant algorithms is

competitive with traditional Vanila LSTM, but substantially

outperform ensemble learning model LightGBM.

Notation

The following notations (Table 1) will be used throughout the

remainder of this paper.
2 Materials and methods

2.1 Data source and processing

The localities where forest inventories were carried out at

Cangshan Mountain(25°34′~26°00′N,99°55′~100°12′E), Yunnan

province, SW China, including Malong Peak, Foding Peak and

Maer Peak. The three peaks are located on the eastern slope of

Cangshan Mountain. The eastern slope of Cangshan Mountain

belongs to subtropical climate, with an annual average temperature

of 15°C and a dominant wind direction of southwest monsoon. The
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annual precipitation is abundant, with a rainfall of more than

1000 mm. However, the dry and wet seasons are distinct, and the

rainfall is concentrated from May to October, accounting for 84% of

the total annual rainfall (Yuan et al., 2008). The predominant tree

species are Pinus yunnanensis, Pinus armandii Franch., and Tsuga

dumosa (D. Don) Eichler. The typical soil of the area is red soil.

The predominant tree species Pinus yunnanensis were surveyed

within three circular sample plots (one plot in each peak). The radius

of the corresponding circular sample plot is 18 meters (Malong Peak),

30 meters (Foding Peak) and 20 meters (Maer Peak). In each tree, the

crown radius (CRi, m) was measured at a different height above crown

top (CHi, m, i.e., the vertical height from crown top to each crown

radius) along the crown profile; the diameter (DBH, cm) was

measured at breast height (1.3 m aboveground), to the nearest

0.1 cm, and total tree height (TH, m) was measured to the nearest

0.1 m. The height to the base of the live crown (HCB, m), and the

crown width (CW, m, the average values of two measures taken at

eastwest direction and north–south direction) were also measured to

the nearest 0.1 m in each tree (see Figure 1).

CHi, crown height from treetop to each measurement point i (m);

CRi, crown radius to each measurement point i (m).

The three data files were merged for extensive visual examination,

screening, and outlier detection in an initial exploratory analysis

before the pooled data were used for modeling. During the

exploratory analysis, some obvious data errors were corrected. Tree

crown measurements with relative crown height (RCH) than 1 were

removed from the data set. Some trees were removed to ensure that

each tree crown contained at least four crown radius measurements.

Finally, the crown profile data used in this study were collected from

3,096 measured CR values of 516 trees from Pinus yunnanensis forests

ranging in age from 16 to 45 years. A data summary is presented

in Table 2.

Considering the multiple measurements for each sample tree

crown, the relative crown heights from 0.1 to 1 m with an even

interval of 0.1 m were selected to develop crown profile models.
Frontiers in Plant Science 03
However, actual measurements of CH at each tree had non-

equidistant space-steps. To overcome this difficulty, the crown

profile data were used to obtain numerically interpolated values of

CR using piecewise cubic Hermite interpolating polynomial (PCHIP)

implemented in MATLAB (R2021b). This interpolation method was

adopted because it had the characteristic of preserving shape well.

Within each tree crown, CRh1… CRh11denote CR in m at the 11

specified relative crown heights (h1 … h30) from crown top, ranging

from 0.1 to 1 at an even interval of 0.1.
2.2 Multiple factors crown profile modeling
based on LSTMs

Our research framework is illustrated in Figure 2. The whole

framework comprises three parts: input features, model, and output.

First, we need to extract the features we need from the data we have

obtained. Then, we will divide the data into training and testing data,

where the training data will be further split the validation data out.

Next, the training and validation data are fed into the proposed LSTM

and its variant algorithms for training. After the training process, we

can put the testing data into the trained model, and it will output the

predicted results.

2.2.1 Feature processing
2.2.1.1 Feature derivation

In order to extract the feature information of crown profile data to

the maximum extent for LSTM algorithms to train the model, the

feature polynomial fusion method and the feature correlation factor

method were used to derive new features.

The feature polynomial fusion method can not only get the cross-

term feature, but also get the higher order feature. The derivation of

polynomial features combines low-dimensional features to obtain

high-dimensional features, so that the LSTM models can capture the

basic relationship of data to a greater extent and “learn” more data

information. We selected the original data features CW, LCL and CH.

After the third order polynomial addition, the number of features

obtained was 19, of which the number of new features was 16. Feature

derived expression were shown in equations (1) and (2).

Poly a, b, cð Þn= a, b, c, a2ab, ac, b2, bc, c2,…, bcn−1, cn
� �

(1)

Numnew = o
n

k=1

k2 + 3k + 2
2

− 3         (2)

Where Poly ()n is n-order feature derivation; a,b,c is three features

of dataset; Numnew is the number of new derivation features.

For the feature correlation factor method, we defined the

following composite tree factors: relative crown height (RCH=

CH/LCL), tree slenderness coefficients (TSC= TH/DBH), crown

length ratio (CLR= LCL/TH), crown fullness ratio (CFR=CW/

LCL). These tree factors were also used to establish crown

profile model.

2.2.1.2 Supervised transformation

Since crown profile is influenced by multiple environmental

factors, the crown profile can be predicted by the change trend of
TABLE 1 Notation.

Variable Paraphrase

TH total tree height in m;

CH crown height from treetop, 0< H≤TH in m;

DBH diameter at breast height (1.3 m) in cm;

LCL largest crown length in m;

RCH = CH/LCL, relative crown height;

CR crown radius in m at CH;

CW crown width in m;

RCR = CR/LCR, relative crown radius;

TSC = TH/DBH, tree slenderness coefficients;

CLR = LCL/TH, crown length ratio;

CFR =CW/LCL, crown fullness ratio;

HCB height above ground to crown base in m;

HCW height above ground to CW in m;
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the continuous adjacent space in each tree. Therefore, in order to fully

consider the spatial sequence characteristics affecting the crown

profile, CR data at a certain interval was taken as the new feature

information, so that the model can fully learn the spatial factors and

tree factors of the data. At the same time, the spatial sequence data of

samples were combined into pairwise input and output formats, and

the spatial sequence prediction problem was transformed into a

supervised learning problem.
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In this paper, CRi-1 (CR with lag space of 1) was taken as the

spatial feature of position i, which together with the measured crown

factors and the features derived from the features constituted the

features of the model.

Finally, the modeled data has 28 input feature variables and one

output variable, where the 28 input feature variables include 7 direct

measurement features (DBH, TH, CW, HCW, HCB, LCL, CH), 16

polynomial features (CW*LCL, CW*CH, LCL2, LCL*CH, CH2, CW3,
TABLE 2 Summary statistics of tree characteristic data for 516 sample trees.

Variable Min Max Mean Std Dev

DBH (cm) 1.8 55.0 15.7 6.4

TH (m) 3.0 19.8 10.4 3.3

CH (m) 0 12.4 2.6 1.9

CR (m) 0 4.7 1.3 0.9

CW (m) 1.4 12.0 5.4 1.8

LCL (m) 0.3 12.4 4.7 2.3

HCB (m) 1.2 10.7 5.7 1.9

HCW (m) 2.0 16.2 6.7 2.0

TSC 0.26 5.72 0.72 0.32

CLR 0.03 0.89 0.44 0.13

CFR 0.38 9.50 1.41 0.94
FIGURE 1

Tree crown measurement diagram of for Pinus yunnanensis.
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CW2*LCL, CW2*CH,LCL3, LCL2*CW,LCL2*CH, CH3, CH2*CW,

CH2*LCL, CW*LCL*CH), 4 correlation factor features (RCH, TSC,

CLR, CFR), and 1 supervised features of transformation (CRi-1).

2.2.1.3 Non-dimensionalize

Since the data involves multiple indicators that may affect the

crown shape, the value range of each indicator is different. In order to

unify the impact of index values on the model, this paper used the

method of data normalization to make the sample data non-

dimensionalize, and the normalized mathematical expression was

equation (3).

x0 =
x −min

max −min
(3)

Where, x is the data value of an index before dimensionalization,

max and min are respectively the maximum and minimum values of

this index in all samples. x’ is the non-dimensionalized data value of

this index.

2.2.2 LSTM algorithms and modeling scheme
LSTM is a modification of recurrent neural networks (RNNs) –

neural networks that allow feedback loops to communicate data from

a node in a forward layer to a node in a backward layer (Géron, 2022).

LSTM networks overcome the problem of vanishing and exploding

gradient problems by intelligently forgetting some past irrelevant

information, and hence such network proves very suitable for

modeling sequential data (Mehtab et al., 2020). LightGBM is a

recent modification of the GB algorithm. It can outperform existing

boosting frameworks on both efficiency and accuracy, with

significantly lower memory consumption (Ke et al., 2017).

JoZefowicz et al. (2015) analyzed the performance of more than

10,000 different LSTM permutations, some from the literatures

(Krause et al., 2016; Chen et al., 2018; Kent and Salem, 2019; Lu

et al., 2020) but most generated as LSTM variants, and found that

some of the mutations did perform better than the classic LSTM, but

not all, of the tasks, studied. In this study, the regression models based

on the crown profile data sets were developed using LSTM and its

variant algorithms, namely, stacked LSTMs-LightGBM, integrated

LSTM-LightGBM, and hybrid LSTM-LightGBM. The models were
Frontiers in Plant Science 05
optimized and extensively evaluated with the following modeling

scheme. Vanila LSTM: Vanilla LSTM is defined as three parts: input

layer, LSTM hidden layer, and fully connected output layer. We

implemented a one-hidden-layer LSTM model using Keras with the

Tensorflow backend (Figure 3A). The model hyperparameters were

optimized within the predefined range: number of hidden units (100

−1000), epoch (50−200), learning rate (0.0001,0.001,0.01), size of

minibatch (10-100), optimization algorithm (Adam ()), activation

function (relu for hidden layers), dropout rates for hidden layers (0,

0.1, 0.2).

Stacked LSTMs-LightGBM: The proposed ensemble deep

learning method consisted of three LSTMs and LightGBM was

developed in this paper. More specifically, the LightGBM

aggregated the outputs of different LSTMs. In the structure of

stacked LSTMs-LightGBM, the predictions of a cluster of LSTMs

were input into a LightGBM regression top-layer to produce the final

forecasting (Figure 3B). The performance of ensemble learning

depended vastly on the parameters of top-layer. Three

hyperparameters governing the performance of the LightGBM

regressor were optimized within the following number of leaves

(“num_leaves”, 50−500), number of iterations (“n_estimators”,30

−900), and learning rate (“learning_rate”, 10−4−10−1).

Integrated LSTM-LightGBM: Integrated LSTM-LightGBM was a

combination of LSTM and LightGBM models to give full play to the

advantages of combined model prediction. After the LSTMmodel was

used to predict CR, LightGBM model was used to introduce the

relaxation variable method to correct each predicted CR value for the

calculated residual e (Figure 3C). The predicted value of LSTM model

(CR’) and the error corrected by LightGBM (e’) were integrated to

obtain the prediction result of Integrated LSTM-LightGBM, namely

(ĈR = CR’ + e’). LSTM parameters adopted the optimized parameters

of the Vanila LSTMmodel, and LightGBM hyperparameter range was

defined as follows: number of leaves (“num_leaves”, 10−200), number

of iterations (“n_estimators” ,30−300), and learning rate

(“learning_rate”, 10−3−10−1).

Hybrid LSTM-LightGBM: The Hybrid LSTM-LightGBM took the

predicted CR value of LSTM and LightGBM models as a feature

input, and the measured CR value as an output. Ridge regression was

performed, and the final hybrid model prediction result was obtained
FIGURE 2

The framework of multiple factors crown profile modeling based on deep learning.
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according to the obtained Ridge regression model (Figure 3D). The

linear_model.RidgeCV function from scikit-learn was used to develop

the regression models with hyperparameter optimized within the

predefined ranges suggested: alphas (10−6−10).

The specific definitions of the relevant hyper-parameters are

described in the Supplementary_Material.docx
2.3 Performance evaluation

The performance of the proposed algorithms was evaluated based

on their balanced the determination coefficient (R2, equation (4)), the

mean squared error (MSE, equation (5)), the mean absolute deviation

(MAE, equation (6)), and the Mean Deviation (ME, equation (7))

values. The computation time of the proposed algorithms was also

recorded to indicate the speed of each method.

R2 = 1 −o
n
i=1(yi − y

∧
i)
2

on
i=1(yi − yi)

2 (4)
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MSE =
1
no

n

i=1
(yi − y∧i )

2 (5)

MAE =
1
no

n

i=1
yi − y∧i
�� �� (6)

ME = o
n
i=0 yi − byið Þ

n
  (7)

where yi represents the observed value for the ith analytic tree i
th; y∧i is

the predicted value of ith observed value; n is the number of trees, yi is

the mean value for the observed.

The data split ratio adopted by the test was 8:1:1. That is, 80% of

original data were used as the training set to train the model

parameters, 10% of the original data was used as the validation set,

which was used for model optimization during model training, and

another 10% of original data was used as the test set to test the

forecasting effect of model (Ju et al., 2019). All of models were run on

a computer with Windows 11 operating system, Intel Core i7 CPU @

3.20 GHz and RAM of 16.00 GB.
A B

DC

FIGURE 3

The architecture of LSTM and its variant algorithms. (A) is Vanila LSTM algorithm; (B) is Stacked LSTMs-LightGBM algorithm; (C) is Integrated LSTM-
LightGBM algorithm; (D) is Hybrid LSTM-LightGBM algorithm.
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Understanding why a model makes a certain prediction can be as

crucial as the prediction’s accuracy in the research of machine

learning modeling. Here, we used SHAP (Lundberg and Lee 2017)

to interpret the predictions of ensemble or deep learning models. We

calculated SHAP value using shap package in Python. SHAP overall

process: (1) Select the training set as the basic data set, and the

explanation model instantiates an interpreter; (2) Select the test set as

the explanation sample, and then calculate the SHAP value

corresponding to each feature of each sample in the explanation

sample through the interpreter. The greater the SHAP value, the

greater the feature contribution.
3 Results

3.1 Prediction of the crown profile model

The parameters used in all the models were tuned by grid search

or experiment, and the parameters of the ensemble learning model

were the same as the parameters of the single model, which ensured

the validity of ensemble learning. The optimizing parameters can

ensure that all of parameters maintain the good performance in

training and prediction. The optimized parameters of all the models

used in the experiment are summarized in Table 3.

Figure 4 visualizes the training performance of Vanila LSTM. For

Vanila LSTMmodel, the loss curves of the training and validation sets

tended to be flat after parameter tuning, and the learning rate

decreased to 0.0001. In the case of not amplifying the samples of

the dataset, the model was fully trained at this time, but the effect of

the training model had room for further improvement.

The variant algorithm of LSTM has been used to further improve

model accuracy. The training results of different crown profile models

based on LSTM and its variant algorithms are listed Table 4. We

observed that the LSTM’s variant algorithms performed higher
Frontiers in Plant Science 07
accuracy compared to molecular LSTM algorithm (Vanila LSTM).

From Table 4 and Figure 5, the proposed Hybrid LSTM-LightGBM

performs better than two other variant algorithms with the minimum

value of MAE as 0.2336, MSE as 0.1089 and ME as 3.91E-16 and the

maximum value of R2 as 0.8656 for training datasets. And the better

one of two other variant algorithms is Integrated LSTM-LightGBM

with MAE as 0.2798, MSE as 0.1558, ME as -5.49E-12 and R2 as 0.

8078.For validation datasets, the proposed Integrated LSTM-

LightGBM realizes the best rank, followed by Hybrid LSTM-

LightGBM. Moreover, from the analysis of training time, the

Hybrid LSTM-LightGBM required slightly more computational

time compared to Integrated LSTM-LightGBM. We also observed

that LightGBM was the fastest algorithm among the proposed

algorithms as it consumed the shortest computation time for

training datasets in this study, whereas Stacked LSTMs-LightGBM

was the most time-consuming algorithm, requiring, on average,

approximately 719 times longer computational time than

LightGBM due to large number of algorithm parameters (Table 4).

Table 5 shows the error for different model predictions. As seen

from the four forecasting performance indices (R2, ME, MAE and

MSE) that the Integrated LSTM-LightGBM model had some degrees

of advantages over LightGBM and Vanila LSTM, indicating that in

the case of more complex data, LSTM’s variant algorithms were

sufficient to learn crown profile features and it could predict

accurately. Although the ensemble learning model (LightGBM) was

not inferior to Vanila LSTM and its other variant algorithms in test

results, the overall trend of the deep learning model was better. The

comparable model performance on both validation and test sets

indicated that the applied LSTM’s variant algorithms offered

generalizability and transferability of the developed model to

previously LSTM algorithm. Rank metric from testing results

showed that Integrated LSTM-LightGBM performance achieved

the best performance followed by LightGBM and Stacked

LSTMs-LightGBM.
TABLE 3 The parameter values for different models.

Model Python Package Hyper-parameter Value

Vanila LSTM from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense

units =500,
epochs=100,
batch_size=10,
optimizer=‘adam’,
learning rate=0.0001
recurrent_activation = ‘sigmoid’

Stacked LSTMs-LightGBM from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import lightgbm as lgb

(the same LSTM parameter values as mentioned above)
num_leaves=5,
learning_rate=0.1,
n_estimators=49

Integrated LSTM-LightGBM from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import lightgbm as lgb

(the same LSTM parameter values as mentioned above)
num_leaves=42,
learning_rate=0.05,
n_estimators=23

Hybrid LSTM-LightGBM from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import lightgbm as lgb
from sklearn import linear_model

(the same LSTM parameter values as mentioned above)
num_leaves=29,
learning_rate=0.1,
n_estimators=56
alphas=0.1
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3.2 Relative importance of
influential predictors

Considering that LSTM’s variant algorithms were composed of

LightGBM and Vanila LSTM, the relative importance of potential

influential predictors for predicting crown profile was investigated for

each of LightGBM (Figure 6) and Vanila LSTM models (Figure 7).

For beeswarm plot, each point is a result, its position on the x-axis

represents the SHAP value of the feature, and the color represents the

relative size of the feature, with red representing high and blue

representing low.

For LightGBM model, LAG(CR) (CRi-1), RCH and CW were

found the most important predictors, while other variables were

relatively insignificant variables (see Figure 6 feature importance

bar plot). Furthermore, we found that LAG (CR), the most

important feature, was basically positively correlated with CR (the

model output); The RCH also had an obvious influence. Further

analysis, if the RCH is large, the estimated value will be reduced

significantly, because the leftmost point in the row of RCH is basically
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red in feature importance beeswarm plot; The SHAP value in the data

point with large CW value is greater than 0, which belongs to positive

correlation (see Figure 6 beeswarm plot).

For the Vanila LSTM model, the most important variables were

found to be the Poly (CW, LCL, CH)3 and the original measurement

tree factors (LAG(CR), DBH and TH), and the least important

predictors were some derived factor (CLR, TSC, RCH, HCW, CFR

and HCB), in that order (see Figure 7 left plot). The beeswarm plot

(see Figure 7 right plot) shows that CH*LCL2, CW*LCL2, LCL3 and

CW2*LCL are obviously positively correlated with predictors, while

CH3 and CH2*CW are basically negatively correlated with predictors.

The blue dots of CH*LCL2, CW*LCL2, LCL3 and CW3 variables are

mainly concentrated in the area where SHAP value is less than 0,

indicating that when their values are small, the estimate of CR will be

reduced. For feature DBH, CH, LCL and CW, most of the points are

diffuse in SHAP=0, so it has no effect on most of them, only a

small part.

The relative importance of influential predictors was different for

the LightGBM and Vanila LSTM models. There were only three
TABLE 4 The training results of different crown profile models based on LSTM and its variant algorithms.

Model Train Validation

R2 MSE MAE ME Training time R2 MSE MAE ME

Vanila LSTM 0.6643 0.2721 0.3650 0.1689 126.16 0.6637 0.2746 0.3634 0.1524

LightGBM 0.8554 0.1172 0.2396 4.75E-10 0.48 0.7199 0.2287 0.3407 -0.0117

Stacked LSTMs-LightGBM 0.7139 0.2319 0.3454 3.69E-10 344.94 0.6871 0.2555 0.3524 -0.0178

Integrated LSTM-LightGBM 0.8078 0.1558 0.2798 -5.49E-12 126.36 0.7242 0.2252 0.3351 -0.0178

Hybrid LSTM-LightGBM 0.8656 0.1089 0.2336 3.91E-16 126.64 0.6994 0.2455 0.3549 -0.0128
fronti
Best performance is highlighted in bold.
FIGURE 4

Accuracy and loss curves of training set and verification set (Vanila LSTM model).
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factors that contribute significantly to LightGBMmodel, while almost

all factors contributed to Vanila LSTM model. This phenomenon can

explain why deep learning outperforms ensemble learning when there

are many features.
4 Discussion

4.1 Performance and comparison of models

Previous studies have shown that machine learning has broad

application in crown profile modeling. These machine learning

includes MLP, SVR, RF, AdaBoost, GBDT and XGBoost (Tian

et al., 2021; Chen et al., 2022). Among them, the ensemble learning

algorithms can deal with complex nonlinear relationship and show

strong prediction ability when predicting the crown profile (Chen

et al., 2022).The purpose of this paper is to find the applicable model

for crown profile prediction by comparing the ensemble and deep

learning algorithms based on the same data format. So far, the deep

learning algorithm has not been used to predict crown profile yet
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based on space-dependent data. Results from this study (see Table 4

and Table 5) showed that the Integrated LSTM-LightGBM model

consistently obtained the best performance for crown profile

prediction compared with LightGBM model. The overall trend of

the deep learning model was better than the ensemble learning model.

An important finding was that there were only three feature

variables that contribute significantly to LightGBM model, while

almost all feature variables contributed to Vanila LSTM model (see

Figures 6, 7). Two phenomena can be attributed to the finding. Firstly,

the LSTM’s variant model was superior to the single LSTM model.

The model relied on feature variables to develop its prediction

algorithms. So, when the number of features contributed to model

was less, the generalization ability of the whole model was therefore

reduced and the accuracy of the predictor importance measurement

was also affected. Secondly, the deep learning outperformed ensemble

learning when there were many features (Zhang et al., 2018; Jan et al.,

2019). The LSTM series was affected by more variables than

LightGBM in this study. This finding supported the notion that

more feature variables bring more room for improvement for

LSTM series.
FIGURE 5

Performance Evaluation for the five algorithms on the validation and test subsets.
TABLE 5 Comparison of test results of different crown profile models based on LSTM and its variant algorithms.

Model R2 (Rank) MSE (Rank) MAE (Rank) ME (Rank) Sum Rank (Rank)

Vanila LSTM 0.6692 (5) 0.2942 (5) 0.3959 (5) 0.2028 (5) 20 (5)

LightGBM 0.7197 (2) 0.2493 (2) 0.3586 (2) 0.0607 (3) 9 (2)

Stacked LSTMs-LightGBM 0.7040 (3) 0.2633 (3) 0.3700 (3) 0.0379 (1) 10 (3)

Integrated LSTM-LightGBM 0.7308 (1) 0.2394 (1) 0.3537 (1) 0.0458 (2) 5 (1)

Hybrid LSTM-LightGBM 0.6900 (4) 0.2757 (4) 0.3780 (4) 0.0664 (4) 16 (4)
Rank is the rating of the test statistic (R2, ME, MAE and MSE), the smaller the rating value, the better the model prediction result. the best performance is highlighted in bold.
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4.2 The interpretability of ensemble or deep
learning models

Previous results have shown that the machine learning is an effective

technique in improving the crown profile prediction accuracy. However,

understanding why amodel makes a certain prediction can be as crucial as

the prediction’s accuracy (Lundberg and Lee, 2017). Interpretable machine

learning techniques can generally be grouped into two categories: intrinsic

interpretability and post-hoc interpretability (Du et al., 2019). Intrinsic

interpretability incorporates interpretability directly to their structures,
Frontiers in Plant Science 10
including decision tree, rule-based model, linear model, attention model,

etc. In contrast, the post-hoc interpretability requires selecting and training

a black-box model (ensemble or deep learning) and applying

interpretability methods (feature importance, partial dependency graph)

to explanate after training (Molnar, 2020). Current explanations are

usually given in the format of feature importance vectors, which are a

complete causal attribution explanation (Molnar et al., 2018). The

explanation audiences, such as developers or researchers, can utilize the

statistical analysis of the feature importance distribution to debug the

models (Du et al., 2019).
FIGURE 6

Feature importance bar plot (mean (|SHAP value|), left plot) and beeswarm plot (mean value, right plot) for LightGBM model. Where color represents
characteristic value (red high, blue low). * indicates a multiplication sign.
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In this paper, we adopt a unified framework for interpreting

predictions of ensemble or deep learning models, SHAP. The relative

importance of influential predictors was different for the LightGBM

and Vanila LSTM models. There are more factors that contribute

significantly to Vanila LSTM model compared to LightGBM model.

The phenomenon can be attributed to two causes. Firstly, over-fitting

can be a problem, especially for the LightGBM model. The

generalization ability of the whole model was therefore reduced and

the accuracy of the predictor importance measurement was also

affected. Secondly, the problem of non-convex optimization makes
Frontiers in Plant Science 11
convergence to a local optimum possible when the parameters of the

model are learned and adjusted. This will lead to the deviation of the

predictor importance’s estimation (Huang et al., 2019).
4.3 Limitations and further research

One of the limitations of this paper is that whether it is LightGBM or

LSTM series, whether it is a Vanila LSTM model or an LSTM’s variant

model, their robustness is difficult to guarantee for abnormal data and
FIGURE 7

Feature importance bar plot (mean (|SHAP value|), left plot) and beeswarm plot (mean value, right plot) for Vanila LSTM model. Where color represents
characteristic value (red high, blue low). * indicates a multiplication sign.
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false data, but compared to the ensemble and deep learning models, the

model generated by deep learning is still better, but it will consume more

computing resources. Fortunately, the computational complexity of

these algorithms is relatively small in crown profile modelling, and the

main purpose of this paper is to explore the performance of deep

learningmethods. However, if we can solve the above problems, it will be

more conducive to the improvement of the algorithm, this part of the

task will be placed in our follow-up work.

Age has a certain influence on the crown profile (Yu et al., 2021).

However, age variable inputs have not been used in this paper to predict

crown profile because it is difficult to obtain the age of each tree for the

uneven aged forest in this study. In future research, age variable may be

used for improving the model predictions of crown profile. Moreover,

current models may be biased when applied at a large scale as the crown

profile is largely influenced by site quality, stand density, spatial

structure (such as mingling, neighborhood comparison, and uniform

angle index), and random variabilities caused by various stochastic

factors that vary from stands to stands. Thus, the prediction bias can be

reduced through the integration of all kinds of variability into the

crown profile models (Sharma et al., 2017).

Several important model-agnostic interpretability methods such as

Partial Dependence Plot (PDP), Individual Conditional Expectation

(ICE), Permuted Feature Importance, Global Surrogate, Local

Surrogate (LIME), SHAP Value exist, and while none of them are

perfect, they can help researchers interpret the results of even very

complex machine learningmodels (Zhou, 2019). For this study, we only

used a method (SHAP Value) to interpret the predictions of ensemble

or deep learning models. In the future work, multiple model-agnostic

methods may be adopted, each of them represents a step toward more

fully understanding machine learning models. As machine learning

becomes more and more ubiquitous, grasping how these models find

answers will be crucial to improving their performance and reliability.
5 Conclusions

This paper has introduced a novel method using deep learning

prediction based on LSTMs, LightGBM and Ridge algorithm for crown

profile forecasting. In the proposed LSTM’s variant models, a cluster of

LSTMs with diverse hidden layers and neurons are employed separately

to learn the information of crown profile. When compared with

proposed prediction models including Vanila LSTM, LightGBM,

Stacked LSTMs-LightGBM, Integrated LSTM-LightGBM and Hybrid

LSTM-LightGBM, the pro-posed Hybrid LSTM-LightGBM can achieve

a best forecasting performance with the minimum value of MAE, MSE

and ME and the maximum value of R2 for training datasets, and the

proposed Integrated LSTM-LightGBM can achieve a best forecasting

performance on both validation and test sets. Furthermore, the analysis

of feature importance of LightGBM and Vanila LSTM present that there

are more factors that contribute significantly to Vanila LSTM model

compared to LightGBMmodel. This phenomenon can explain why deep

learning outperforms ensemble learning when there aremore interrelated

features. In conclusion, the following are the highlights of the study:

(1) LSTM’s variant algorithms obtained the best performance for

crown profile prediction.

(2) The overall trend of the deep learning model was better than

the ensemble learning model.
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(3) We used a method (SHAP Value) to interpret the predictions

of black-box models (ensemble or deep learning).
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