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Phosphorus (P) is one of the essential macronutrients for plant growth and

development, and it is an integral part of the major organic components,

including nucleic acids, proteins and phospholipids. Although total P is abundant

in most soils, a large amount of P is not easily absorbed by plants. Inorganic

phosphate (Pi) is the plant-available P, which is generally immobile and of low

availability in soils. Hence, Pi starvation is a major constraint limiting plant growth

and productivity. Enhancing plant P efficiency can be achieved by improving P

acquisition efficiency (PAE) through modification of morpho-physiological and

biochemical alteration in root traits that enable greater acquisition of external Pi

from soils. Major advances have been made to dissect the mechanisms underlying

plant adaptation to P deficiency, especially for legumes, which are considered

important dietary sources for humans and livestock. This review aims to describe

how legume root growth responds to Pi starvation, such as changes in the growth

of primary root, lateral roots, root hairs and cluster roots. In particular, it

summarizes the various strategies of legumes to confront P deficiency by

regulating root traits that contribute towards improving PAE. Within these

complex responses, a large number of Pi starvation-induced (PSI) genes and

regulators involved in the developmental and biochemical alteration of root

traits are highlighted. The involvement of key functional genes and regulators in

remodeling root traits provides new opportunities for developing legume varieties

with maximum PAE needed for regenerative agriculture.
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1 Introduction

Phosphorus (P) is one of the principal macronutrients for plant

growth and productivity, and it is part of the crucial organic

components such as nucleic acids, proteins, enzymes and

phospholipids (Hawkesford et al., 2012; Plaxton and Shane, 2015;

Lambers, 2022). P participates in a series of physiological, biochemical

and metabolomic processes in plants such as photosynthesis,

respiration, energy generation, nucleic acid synthesis, nitrogen (N)

fixation and redox reactions (Liang et al., 2014; Ham et al., 2018;

Lambers, 2022). Hence, P is essential at all developmental stages of

plants including seed germination, root growth, leaf and stem

development as well as flower and seed generation (Malhotra

et al., 2018).

Although total P is abundant in most soils, a large proportion of P

is fixed by soil mineral components (e.g., aluminium or iron) into

insoluble chemical complexes that are not readily accessible to plants

(Hinsinger, 2001; Margenot et al., 2016; Ojeda-Rivera et al., 2022).

Inorganic phosphate (Pi), in the form of HPO4
2- and H2PO4

-, is the

plant- available P. However, Pi concentration in soil solutions is

generally less than 10 µM (Vance et al., 2003; Mo et al., 2022).

Therefore, low Pi availability is considered as a major limiting factor

for plant growth, development and yield in more than 60% of the

world’s arable land (Gutiérrez-Alanıś et al., 2018). To obtain high

crop yields, a large amount of P-containing fertilizers derived from

rock phosphate are applied in agricultural systems. Approximately 60

million tonnes of P fertilizers were used in 2020 around the world,

which were more than 40% higher than those in 2000 (FAOSTAT,

2022). However, only 10–30% of the P in P fertilizers are estimated to

be used by plants (Vance et al., 2003; Richardson and Simpson, 2011;

Ojeda-Rivera et al., 2022). Most of the mineral P fertilizers that are

applied in high amounts can gradually leach from soils into water

bodies, leading to environmental pollution, such as eutrophication

(MacDonald et al., 2011; Zak et al., 2018). In addition, rock phosphate

reserves are a non-renewable resource that will be depleted in future

(Vance et al., 2003; George et al., 2016). Breeding programs address

this problem through the development of P-efficient crop cultivars

that produce higher yields per unit of P fertilizer input. Therefore, an

improved understanding of the mechanisms of P efficiency in crops

is required.

Several studies have demonstrated that increasing plant P

efficiency can be achieved by improving P acquisition efficiency

(PAE) and/or P utilization efficiency (PUE) (Wang et al., 2010;

Adem et al., 2020; Han et al., 2022; Zou et al., 2022). PAE is

regarded as the ability of plants to acquire soil P by roots, while

PUE is thought to be the ability of plants to generate biomass or yield

using the acquired P (Wang et al., 2010; Han et al., 2022). In P-limited

soils, enhancement of PAE is a key strategy that has received

considerable attention with a focus on optimizing root traits

including: (1) root growth responses that involve changes in root

morphology (e.g., primary root, lateral roots, root hairs, and cluster

roots) and root architecture, contributing to acquire more P from

soils by extension of root system (Lynch, 2011; Li et al., 2016; Zhang

et al., 2018; Chen et al., 2021; Liu, 2021; Lynch et al., 2022); (2)

coordination of physiological and biochemical alterations of root

traits, such as exudation of protons, organic acids and phosphatases
Frontiers in Plant Science 02
into the rhizosphere, facilitating P mobilization from the unavailable

P in the rhizosphere (Pang et al., 2018a; Robles-Aguilar et al., 2019;

Wen et al., 2019); (3) establishing symbiotic interactions with

beneficial microbes (e.g., Pi-solubilizing bacteria) or arbuscular

mycorrhizal fungi (AMF) to improve PAE by solubilizing and

foraging P (Khan et al., 2014; Campos et al., 2018). Thus, genetic

modification of root system traits can be an effective strategy for

improving crop varieties with low P tolerance and high PAE.

The Fabaceae family, formerly known as Leguminosae, is one of

the largest families of flowering plants, comprising more than 700

genera and about 18,000 species among the grain, pasture, and

agroforestry species, and it is second in importance to human

activities after Gramineae family (Lewis et al., 2005; Abdelrahman

et al., 2018). Legumes account for approximately 27% of the world’s

crop production, ranking in second place as human food crops after

cereal crops. Major legume crops include soybean (Glycine max),

common bean (Phaseolus vulgaris), chickpea (Cicer arietinum),

cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan),

groundnut (Arachis hypogaea), and white lupin (Lupinus albus).

Alfalfa (Medicago sativa), clover (Trifolium spp.), and stylo

(Stylosanthes spp.) are major forage legumes in the world. Many

legume crops are either used for food or as an animal fodder or for

both purposes (Foyer et al., 2016; Abdelrahman et al., 2018; Roy et al.,

2020). Unlike most other non-legume plants, legumes can develop

symbiotic interaction with rhizobia to form nodules that can fix

atmospheric N, thereby contributing to enhance agricultural

sustainability (Abdelrahman et al., 2018; Yang et al., 2022). Since

symbiotic N fixation (SNF) in nodules requires significant inputs of

energy, legumes are generally considered to have a high P

requirement (Sulieman and Tran, 2015; Pang et al., 2018b; Zhong

et al., 2023). Furthermore, as N-fixing root nodules are strong P sinks,

the growth and yield of legumes are dramatically decreased by 30–

40% under low P stress (Tesfaye et al., 2007; Valdés-López and

Hernández, 2008; Chen et al., 2011; Qin et al., 2012; Guo et al.,

2022). Thus, low P availability is regarded as an important constraint

for legume production.

Over the past three decades, great efforts have been made to

elucidate the plant responses and the adaptive mechanisms of

legumes to Pi deprivation. In this review, we focus on progress in

theunderstandingof rootgrowthresponses toPdeficiency in legumes. In

particular, we summarize the recent advances in dissecting the adaptive

strategies of legume plants to Pi starvation through regulation of root

response for improving PAE. We highlight the Pi starvation-induced

(PSI) genes that have been successfully characterized for their roles in

improving PAE and we also indicate future research directions for

improving PAE. This will provide new opportunities for developing

legume varieties with high P efficiency that are needed for resource-

efficient and regenerative agriculture.
2 Legumes adapt to Pi starvation by
regulating root growth responses

Plants can sense external and internal Pi status and remodel root

traits in response to P deficiency through local and systemic responses

(Raya-González et al., 2021). Local P deficiency appears to be the
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external driver of primary root growth inhibition, promoting lateral

root formation and increasing the production of root hairs (Chien

et al., 2018; Huang and Zhang, 2020; Liu, 2021) (Figure 1). Although

the dissection of root responses to P deficiency in legumes has

remained less defined, legumes are able to adapt to P deficiency

through regulation of a variety of root growth responses and

gene expressions.
2.1 Root morphology

Adaptive responses of legume plants to P deficiency involve

changes in root morphology induced by dynamic remodeling of

primary roots, lateral roots, root hairs and cluster roots, which

maximize the acquisition of external Pi from soils. Low-P-enhanced

elongation of primary roots is observed in many legume plants, such

as soybean, common bean, stylo and crowtoe (Lotus corniculatus)

(Wissuwa, 2003; Guo et al., 2011; Zhou et al., 2014; Luo et al., 2020;

An et al., 2023). For example, the growth of primary root is stimulated

in soybean and stylo during P deficiency, which may be beneficial for

foraging P from soils (Li et al., 2015; Luo et al., 2020; Yang et al.,

2021a; Xie et al., 2022). To date, a set of PSI genes have been

demonstrated to be involved in the regulation of primary root

growth in legumes (Guo et al., 2011; Li et al., 2022). It has been

reported that more than 200 PSI genes have been identified in

soybean roots. Among them, GmEXPB2, a b-expansin gene, is

found to be induced by P deficiency in roots. GmEXPB2 is a

secretory protein that localizes to the cell wall; overexpression of

GmEXPB2 increases the growth of primary roots by enhancing the

size and number of cortical cells in both the root meristematic and
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elongation zones, thereby increasing Pi uptake and P efficiency in

soybean (Guo et al., 2008; Guo et al., 2011; Zhou et al., 2014; Li et al.,

2015; Yang et al., 2021a). Furthermore, a low-P-induced expansin-like

B gene, GmEXLB1, has been proved to participate in enhancing root

elongation and modifying root architecture, which is contributed to

increase plant PAE (Kong et al., 2019). Similar role of SgEXPB1 gene

in regulating root growth has recently been characterized in stylo

under P-deficient condition (Wang et al., 2023). A variety of expansin

genes upregulated by P deficiency are also reported in other legumes,

such as alfalfa (Li et al., 2022), suggesting the key role of expansin

genes in legume root growth. In addition, a group of transcription

factors are also reported to be involved in regulating the primary root

growth during P deficiency, such as members belonging to the MYB

transcription factor family. For example, GmWRKY46, belonging to

the WRKY family localized in the nucleus, is induced by P deficiency

in soybean roots; overexpression of GmWRKY46 promotes the

growth of both primary root and lateral roots and increases Pi

uptake in transgenic Arabidopsis probably through the regulation

of downstream PSI gene (Li et al., 2021).

Lateral roots also play vital roles in efficient Pi acquisition by

enhancing soil exploration (Li et al., 2020; Zhang et al., 2020; Li et al.,

2021; Lynch, 2022). It has been shown that the growth and

proliferation of lateral roots in legume plants are mediated by Pi

availability. For example, elongation and density of lateral roots are

increased by low P stress in alfalfa and common bean (Williamson

et al., 2001; Linkohr et al., 2002; Reymond et al., 2006; Zhang et al.,

2014). A group of genes involved in lateral root growth have been

identified in alfalfa, soybean and white lupin (Cheng et al., 2011; Li

et al., 2020; Zhang et al., 2020; Li et al., 2021). For example,

Gm6PGDH1, encoding the 6-phosphogluconate dehydrogenase, is
FIGURE 1

Strategies for improving P acquisition efficiency through gene regulation in legumes. In legumes, P acquisition efficiency can be achieved by remodeling
of root morphology and architecture, inducing high-affinity Pi transporters, increasing root exudates to facilitating P mobilization, and activating Pi
signaling network. A variety of Pi starvation-induced (PSI) genes have been implicated in improving P acquisition efficiency in legumes. These are related
to root growth, Pi uptake, insoluble P mobilization and Pi signaling network.
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mainly expressed in the P-deficient soybean root; overexpression of

Gm6PGDH1 increased lateral root length and Pi uptake in transgenic

soybean plants under P-deficient conditions (Li et al., 2021). In

addition, GmETO1 is an essential ethylene-biosynthesis regulator

located in the cell nucleus; both hairy root length and number of

lateral roots are significantly increased in transgenic soybean plants

with GmETO1 overexpression (Zhang et al., 2020). Furthermore, it

has been found that the overexpression of GmWRKY45 increases the

adaptability of transgenic Arabidopsis to Pi starvation through an

increase in lateral root growth, contributing to greater Pi uptake (Li

et al., 2020). In white lupin, the NAC domain-containing LaNAC1 is

also implicated in regulating the growth of lateral roots under P

deficiency (Cheng et al., 2011).

Root hairs, deriving from root epidermal cells, increase the root

surface area that can be in contact with the soil substrate (Williamson

et al., 2001; Huang et al., 2017). For instance, the number and length

of root hairs in alfalfa increase rapidly in the early stage of P

deficiency, facilitating greater Pi uptake (Li et al., 2018). Many

genes have been documented to be involved in root hair growth in

common bean, soybean and white lupin (Cheng et al., 2011; Yao et al.,

2014a; Yao et al., 2014b; Li et al., 2015). For example, two genes

encoding glycerophosphodiester phosphodiesterase, LaGPX-PDE1/2,

have been implicated in root hair growth and development in white

lupin (Cheng et al., 2011). Both LaGPX-PDE1/2 are highly expressed

in P-limited root hairs; knockdown of LaGPX-PDE1/2 in white lupin

impairs root hair development and density, thereby decreasing P

concentration (Cheng et al., 2011). Therefore, LaGPX-PDE1/2 are

proposed to be involved in improving PAE by enhancing root hair

development. In common bean, PvSPX1 is one of the SPX (SYG1,

Pho81 and XPR1) domain-containing proteins that is localized in the

nucleus and plays a central role in the P signaling network (Yao et al.,

2014b). The expression of PvSPX1 is enhanced by P deficiency in both

leaves and roots of common bean; overexpression of PvSPX1 leads to

an increase root P concentration and an enlargement of root hair zone

in transgenic bean hairy roots, suggesting that PvSPX1 can regulate

the growth of root hairs (Yao et al., 2014b).

Cluster roots, also known as proteoid roots, are a specialized root

structure consisting of closely spaced tertiary lateral roots, and it is the

feature of the Proteaceae members and several other plant species

(Shane and Lambers, 2005; Shu et al., 2005; Lambers et al., 2006). It

has been established that Pi acquisition capacity within the cluster

roots is greater than that of the normal roots, suggesting an important

role for cluster roots in Pi acquisition (Keerthisinghe et al., 1998).

White lupin is the representative plant used to study the formation

and growth of cluster roots affected by P nutrition (Liu et al., 2005;

Wang et al., 2015). The earliest response of white lupin to P deficiency

is the formation of cluster roots (Neumann et al., 2000). Numerous

PSI genes have been identified in cluster roots of white lupin (Zhou

et al., 2019). Among them, a novel C terminally encoded peptide gene

LaCEP1 is characterized to be negatively regulating cluster root

development (Zhou et al., 2019). LaCEP1 is highly expressed in the

pre-emergence zone of the cluster roots; overexpression of LaCEP1

results in the inhibition of cluster root formation (Zhou et al., 2019).

Although the formation of cluster roots significantly increases root

surface area, cluster roots increase P acquisition mainly through

increasing root exudation rather than by strengthening P foraging
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(Gardner et al., 1982; Neumann and Römheld, 1999; Shen et al.,

2003). It is therefore of interest to investigate the coordinated

morpho-physiological and biochemical responses of cluster root to

P deficiency.
2.2 Root architecture

Root architecture refers to the overall spatial configuration of the

root system, and it has significant effects on nutrient acquisition

(Zhao et al., 2004; Koevoets et al., 2016; Li et al., 2016; Lynch, 2022).

Root architecture displays high plasticity under P deficiency (Rellán-

Álvarez et al., 2016; Amtmann and Shahzad, 2017; Motte et al., 2019).

Modification of root architecture is the key strategy for plants to cope

with low P stress and maximize Pi acquisition under P-limited

conditions (Zhao et al., 2004; Li et al., 2016; Liu, 2021). Root

architecture determines the distribution range and expansion

degree of roots in soils, which is highly correlated with the P

efficiency of legumes. The development of shallow root architecture

is generally considered as an effective strategy for the legumes

adaptation to P deficiency, such as common bean, mungbean

(Vigna radiata) and soybean (Liao et al., 2004; Reddy et al., 2020;

Seck et al., 2020). For example, in soybean, shallow root architecture

and high lateral rooting are helpful traits in increasing Pi uptake

compared to the deep root architecture. Furthermore, among an

applied core collection of soybean, the cultivated soybean displays a

shallow root architecture and high P efficiency, while the wild,

climbing soybean exhibits a deep root architecture and low P

efficiency (Zhao et al., 2004).

A range of quantitative trait loci (QTL) are reported to be related

to root architecture and Pi acquisition (Liao et al., 2004). In legumes,

for example, according to QTL analysis of basal root growth angle

(BRGA) in bean recombinant inbred lines (RILs), the QTL for BRGA

co-segregates with gain in yield under low P stress, and thus the

BRGA has a major effect on PAE and yield under low-P conditions

(Lynch and Brown, 2001; Liao et al., 2004). Furthermore, QTL

analysis using bean RILs shows that some of the identified root

traits, including those for BRGA, shallow basal root length and

relative shallow basal root length, are associated with QTL for PAE

(Liao et al., 2004). In addition, the QTL for basal root growth is also

linked to the QTL for PAE in common bean (Beebe et al., 2006).

Similarly, various QTL controlling root traits and P efficiency have

been identified using soybean RILs; and the authors proposed that

some of the identified QTL have great potential for genetic

improvement of soybean with high P efficiency through a selection

of root traits (Liang et al., 2010b).

Although key genes responsible for the QTL controlling root

architecture in legumes have not been well characterized by forward

genetic approaches, several genes possibly involved in modifying root

architecture in response to Pi starvation have been identified by

reverse genetics (Li et al., 2014; Yang et al., 2021a). For example, in

soybean, GmEXPB2 is intrinsically involved in root system

architecture responses to abiotic stresses, and overexpression of

GmEXPB2 modified soybean root architecture through expanding

root hair density and size of the root hair zone (Guo et al., 2011; Li

et al., 2015).
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2.3 Induction of phosphate
transporter genes

Phosphate transporters (PHTs) are known to control Pi uptake

and transport in plants (Versaw and Garcia, 2017; Dai et al., 2022).

PHTs have been identified in many plants and can be divided into

four subfamilies (PHT1, PHT2, PHT3 and PHT4) according to their

functional differences and subcellular localization. Among them, the

PHT1 family is a multiprotein family that is localized in the plasma

membrane for transporting Pi from apoplast to cytoplasm (Nussaume

et al., 2011). Most PHT1 genes are induced by Pi starvation in plant

roots and are implicated in Pi uptake from soil or Pi translocation

within plant tissues or cells (Liu et al., 2011; Remy et al., 2012). The

role of PHT1 homologues in Pi uptake has been documented in

legumes, such as M. truncatula, soybean and white lupin (Liu et al.,

2001; Liu et al., 2008; Guo et al., 2022). Of the eleven PHT1

homologues in M. truncatula, only MtPT1, MtPT2, MtPT3 and

MtPT5 are induced by low P stress (Chiou et al., 2001; Liu et al.,

2008).MtPT1 is mainly expressed in the root and is likely involved in

the Pi uptake (Chiou et al., 2001). MtPT5 encodes a plasma

membrane-localized Pi transporter (Liu et al., 2008). Ectopic

expression of MtPT5 complements the Pi uptake capability in the

Arabidopsis pht1;1pht1;4 double mutant, confirming its function in Pi

uptake (Wang et al., 2022). In soybean, GmPT4 is a plasma

membrane-localized Pi transporter; and overexpression of GmPT4

increases the growth and Pi uptake in soybean, improving PAE (Guo

et al., 2022). Pi-starvation-enhanced expression of PHT1 genes are

also found in white lupin and stylo (Liu et al., 2001; An et al., 2023).

Overexpression of SgPT1 from stylo can increase Pi uptake and

enhance root growth in transgenic plants (An et al., 2023).
2.4 Root exudates

Insoluble P in soil can be divided into inorganic P and organic P.

Inorganic P can be further classified into calcium phosphate (Ca-P),

aluminum phosphate (Al-P) and iron phosphate (Fe-P), all of which

is not easily available for the plant (Ao et al., 2014), while organic P

mainly exists in the form of organic P esters and anhydrides, such as

phytate, phospholipids, nucleotide and its derivatives (Simpson et al.,

2011; Lorenzo-Orts et al., 2020).

Previous work indicates that the regulation of root organic acid

exudation is an important process for inorganic P acquisition from

the soil by chelating metal ions of insoluble phosphate, thereby

increasing Pi concentration in soil solution (Peng et al., 2018;

Lambers, 2022). Various types of organic acids secreted from roots

are observed in legumes, such as white lupin (Lambers et al., 2013),

soybean (Ryan et al., 2009), pigeon pea (Cajanus cajan) (Ishikawa et

al., 2002) and common bean (Shen et al., 2002). For example, citrate

and malate are the major organic acids secreted from cluster roots of

white lupin under low P stress, which can help to increase Pi

concentration in the rhizosphere (Vance, 2010; Lambers et al.,

2013). Furthermore, organic acid exudation from a low-P-tolerant

soybean genotype was higher than that of a low-P-sensitive soybean

genotype (Zhang et al., 2011).

Organic acid synthesis and exudation are controlled by a variety

of genes in legumes (Ryan et al., 2001; Wang et al., 2013; López-
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Arredondo et al., 2014). For example, organic acid synthesis is

significantly increased in roots of transgenic alfalfa overexpressing

the malate dehydrogenase gene, MDH, which is beneficial for

increasing Pi uptake (Tesfaye et al., 2001; Tesfaye et al., 2003).

Similar roles are observed in GmMDH12 from soybean and

SgMDH1 from stylo (Chen et al., 2015; Zhu et al., 2021; Song et al.,

2022). In addition, it has been reported that overexpression of citrate

synthase (DcCs) from Daucus carota increases the synthesis and

exudation of citrate in transgenic pigeonpea; and transgenic lines

display enhancement of root growth compared to the wild type

(Hussain et al., 2016). To date, the well-characterized malate and

citrate transporters are members belonging to Aluminium Active

Malate Transporter (ALMT) and Multidrug and Toxic Compound

Extrusion (MATE) families, respectively (Sasaki et al., 2004;

Hoekenga et al., 2006). For example, a group of GmALMT genes

are regulated by P deficiency in soybean. Among them, GmALMT5,

localized to the plasma membrane, is enhanced by Pi starvation in

soybean roots; both root growth and P content of transgenic

Arabidopsis overexpressing GmALMT5 are increased when grown

in a medium supplied with Ca-P as the external P source (Peng et al.,

2018). Similarly, LaALMT1 is also characterized to be the plasma

membrane-localized malate transporter in white lupin (Zhou et al.,

2020). In addition, several genes encoding citrate transporters have

also been reported in legumes, such as VuMATE in rice bean (Vigna

umbellata) and LaMATE1/3 in white lupin, all of which are induced

by P deficiency (Wang et al., 2013; López-Arredondo et al., 2014;

Zhou et al., 2021). For instance, LaMATE1/3 exhibit the highest

expression in mature cluster root under low-P conditions; mediating

citrate transport when LaMATE1/3 are expressed in oocytes,

suggesting the role for LaMATE1/3 in regulating citrate transport

during low P stress (Zhou et al., 2021). In addition, secreting protons

by legume root can acidify the rhizosphere soil, thereby improving the

bioavailability of insoluble P (Kouas et al., 2009). For example, a

plasma-membrane transporter GmVP2 has recently been reported to

mediate H+ exudation from root of soybean exposed to low P

treatment; overexpression of GmVP2 in Arabidopsis can increase

H+ exudation, promote root growth and increase Pi availability (Xie

et al., 2022).

As mentioned before, about 30-65% of insoluble P in soil exists in

the form of organic P, which can only be utilized by plants via the

participation of various phosphoesterases, such as phosphatases,

phosphodiesterases and nucleotidases (Matange et al., 2015; Tian

and Liao, 2015; Yang et al., 2017). Purple acid phosphatases (PAPs)

are among the most identified phosphoesterases in plants, which

belong to the hydrolases that hydrolyze organic P to release inorganic

Pi for plant uptake (Tian and Liao, 2015; Wu et al., 2018). It has been

demonstrated that the root-associated/secreted PAPs are either

associated with root surfaces or secreted into the rhizosphere,

scavenging Pi from external organic P and increasing Pi availability

(López-Arredondo et al., 2014; Tian and Liao, 2015; Wang and Liu,

2018). The Pi-starvation-increased activity of root-associated/secreted

acid phosphatase is observed in common bean, stylo and peanut

(Arachis hypogaea) (Liang et al., 2010a; Wei et al., 2022; Liu et al.,

2016, 2018).

A set of PSI-secreted PAPs has been identified in legume plants,

for example, LaSAP1/2 from white lupin (Wasaki et al., 2000; Wasaki

et al., 2009), PvPAP3 from common bean (Liang et al., 2010a; Liang
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et al., 2012), and GmPAP7a/7b from soybean (Zhu et al., 2020).

GmPAP14 is a secreted PAP in soybean. GmPAP14 overexpression

increases secreted APase and phytase activities, contributing to

external phytate utilization and growth enhancement (Kong et al.,

2018). Similar roles for GmPAP7a and GmPAP7b have been found in

soybean and these two PAP members exhibit high activities against

adenosine triphosphate (ATP) in vitro. Overexpression of GmPAP7a

and GmPAP7b is able to increase root-associated APase activities,

thereby improving utilization of organic P in soybean (Zhu et al.,

2020). In common bean, PvPAP3 is found to localize to the plasma

membrane and apoplast. The transcript of PvPAP3 is induced by Pi

starvation in roots of common bean, especially in the P-efficient

genotype; and overexpression of PvPAP3 increases the growth and P

content in bean hairy roots and Arabidopsis when ATP and dNTPs

are supplied as the sole external P source, respectively (Liang et al.,

2010a; Liang et al., 2012). In addition, overexpression of MtPHY1 or

MtPAP1 increases the ability of organic P utilization in both white

clover (Trifolium repens) and alfalfa (Ma et al., 2009; Ma et al., 2012).

The roles of other PAP homologues, such as SgPAP7/10/23/26 from

stylo and CaPAP7 from chickpea in organic P utilization have also

been elucidated (Liu et al., 2016; Bhadouria et al., 2017; Liu et al.,

2018). These studies suggest that PSI-secreted PAPs play an

important role in the utilization of external organic P for improved

P acquisition.
2.5 Symbiotic association with soil
microorganisms

In soils, plant roots can interact with many rhizosphere

microorganisms, such as mycorrhizal fungi and phospho-relieving

bacteria, regulating Pi uptake and its utilization (Smith et al., 2003;

Smith et al., 2004; Liang et al., 2014). Most of the legumes can be

infected by mycorrhizal fungi to form a symbiotic system. The

formation of plant-mycorrhizal fungal symbiosis is one of the vital

mechanisms of plant adaption to low P stress (Smith et al., 2003;

Smith et al., 2004), which can improve plant P efficiency (Figure 2). In

plant-mycorrhizal fungi symbiosis, mycorrhizal association generates

a large number of extra-root hyphae which can extend beyond the P-

deficient roots, but also enter into the small soil particle gaps to

improve the spatial utilization of P in soils (Bago, 2000; Wang et al.,

2011). Mycorrhizal fungi can promote Pi uptake and transport by

regulating the expression of PT genes in the extracorporeal filaments

and roots of the host plant. A set of PT homologues are induced by

mycorrhizal fungi inoculation in host plants, such as MtPT4/6 in M.

truncatula, AsPT4 in Astragalus sinicu and GmPT8/9/10/11 in

soybean (Harrison et al., 2002; Tamura et al., 2012; Xie et al., 2013;

Wang et al., 2016; Cui et al., 2019). For example, MtPT4 encoding a

low-affinity Pi transporter is expressed in mycorrhizal roots of M.

truncatula. Complemental analysis shows that MtPT4 can enhance Pi

uptake in yeast (Saccharomyces cerevisiae) cells, suggesting that

MtPT4 is involved in Pi acquisition from arbuscules in M.

truncatula (Harrison et al., 2002; Volpe et al., 2016). In soybean,

GmPT10 and GmPT11 are two mycorrhiza-inducible Pi transporters

that can complement Pi transport in the yeast mutant PAM2, which is

lacked PHO84 and PHO89, two high-affinity Pi transporters (Tamura

et al., 2012). In addition, PAP genes have also been characterized to
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involve in plant-mycorrhizal fungi symbiosis (Li et al., 2017; Li et al.,

2019; Wang et al., 2020). The plasma membrane-localized GmPAP33

is found to be mainly expressed in arbuscule-containing cells;

overexpression of GmPAP33 significantly increases the percentages

of large arbuscules and P content of transgenic soybean when

inoculated with AM fungi (Li et al., 2019).

On the other hand, legumes are able to develop symbioses with

rhizobia to generate a special organ, nodule, which can release an

abundance of protons to acidify the rhizosphere, thereby increasing Pi

availability in soils (Qin et al., 2011; Ding et al., 2012). It has been

reported that the growth and N and P contents are increased in

soybean after inoculating with rhizobia in low-P acid soils (Cheng

et al., 2009). A variety of PSI genes and proteins have been identified

in nodules exposed to P deficiency (Figure 2; Hernández et al., 2009;

Chen et al., 2011; Cabeza et al., 2014; Xue et al., 2018; Zhong et al.,

2023). For example, 1140 and 2055 genes have been found to be

regulated by P deficiency in nodules of M. truncatula and soybean,

respectively (Cabeza et al., 2014; Xue et al., 2018). Among them, a

group of Pi transporter genes have been reported to be involved in

improving Pi uptake in nodules. For example, GmPT7, a nodule-

localized Pi transporter, is induced by low P stress in soybean nodules.

GmPT7 is found to be mainly expressed in the outer cortex and N

fixing zones of the nodules; overexpression of GmPT7 in soybean

increased nodulation, P content and soybean yield, suggesting that

GmPT7 is responsible for direct Pi entry to nodules (Chen et al.,

2019). Unlike GmPT7, GmPT5 is proposed to function in

transporting Pi from roots to nodules, thereby regulating

nodulation and soybean growth (Qin et al., 2012). In addition,

GmPT1/4/11 are also implicated in Pi homeostasis and nodulation

in soybean (Qin et al., 2012; Chen et al., 2019; Lu et al., 2020). In M.

truncatula, MtPT6 is preferentially expressed in vascular bundles,

cortical cells, and fixation zone cells of nodules. Functional analysis

confirms that MtPT6 is a typical Pi transporter and can increase PAE

in plants (Cao et al., 2021). Furthermore, MtPHO1.1 and MtPHO1.2

are expressed not only across the various nodule zones but also the

root vascular system, participating in transporting Pi from infected

nodule cells to bacteroids in M. truncatula (Müller, 2021; Nguyen

et al., 2021). In addition, the transcript of GmPAP12 is gradually

increased during soybean nodule growth. Subsequent analysis shows

that overexpression of GmPAP12 leads to increase nodule number,

shoot dry weight, and N and P content of transgenic composite

soybean plant under low P stress, suggesting the roles of GmPAP12

involved in nodulation and SNF in soybean (Wang et al., 2020).

Among the nine b-expansin members, the expression of GmINS1 is

found to be enhanced by Pi starvation in soybean nodule;

overexpression of GmINS1 increases nodule size and N2 fixation

capacity, ultimately enhancing P content, plant biomass and soybean

yield (Li et al., 2018; Yang et al., 2021b). Although only a few genes

involved in symbiosis have been identified, their function highlights

the importance of symbiosis for improving legume adaption to low

P stress.
2.6 Regulation of Pi signaling network

Physiological and biochemical changes of plants in response to

low P stress are mediated by a complex signaling network, including
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local and systemic sensing and signaling. A set of important

components shown in Figure 1, such as transcription factors and

regulators, have been demonstrated to be involved in the Pi signaling

network. Among them, an R2R3 MYBmember, Phosphate Starvation

Response 1 (PHR1) is the most well-characterized transcription factor

involved in Pi starvation responses in the Pi signaling network (Chiou

and Lin, 2011). PHR1 or PHR1-like is considered as the central

transcription factor of Pi signaling network through the regulation of

a lot of downstream PSI genes (Wang et al., 2009; Bustos et al., 2010;

Wang et al., 2014; Zhong et al., 2018). To date, several PHR1 genes

have been identified in legumes, such as GmPHR1/4/25 from soybean

(Xue et al., 2017; Lu et al., 2020) and PvPHR1 from common bean

(Valdés-López et al., 2008). For example, in soybean, the Pi starvation

up-regulated gene GmPHR25 is an important regulator in the Pi

signaling network that controls Pi homeostasis in soybean; and

overexpressing GmPHR25 results in increasing Pi concentration in

transgenic soybean hairy roots, probably through enhancing the

expression of several high-affinity Pi transporters (GmPTs) and

GmPAP14/21 (Xue et al., 2017). In common bean, PvPHR1 is a

positive regulator of the Pi signaling network. The transcript of

PvPHR1 is increased by Pi starvation in both leaves and roots; and

the knockdown of PvPHR1 leads to a decreased expression of a set of

PSI genes, such as PvPHT1, PvPHO1, Pv4, PvRNS and PvAPC5,

thereby decreasing Pi concentrations in composite common bean

plants (Valdés-López et al., 2008).

In addition, SPX domain-containing proteins also have been

characterized as key sensors and regulators of Pi homeostasis and

signaling in soybean, common bean and M. truncatula (Yao et al.,

2014a; Yao et al., 2014b; Wang et al., 2021; Zhuang et al., 2021). For

instance, in M. truncatula, two SPX domain-containing proteins,

MtSPX1 and MtSPX3, are found to be localized in the cytoplasm and

the nucleus and can also interact with MtPHR2. The expressions of

MtSPX1 and MtSPX3 are increased by Pi starvation in arbuscule-

containing cells. Lost function of MtSPX1 and MtSPX3 results in

decreased root colonization and arbuscule abundance as well as the

expression of Rhizophagus Irregularis Elongation Factor (RiEF) and
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MtPT4, suggesting that MtSPX1 and MtSPX3 play important roles in

maintaining arbuscular mycorrhizal symbiosis in M. truncatula

(Wang et al., 2021). In common bean, PvSPX1 is a positive

regulator in the Pi signaling network. PvSPX1 can regulate a set of

downstream of PSI genes that are involved in Pi transport,

translocation and homeostasis, such as PvPAP1/2/3/4/5, PvPS2:1,

Pv4 and PvPHR1 (Yao et al., 2014b). A similar role of GmSPX3 has

been implicated in soybean (Yao et al., 2014a). In addition to

interaction with PHR, one of the GmSPX members in soybean,

GmSPX5, has been reported to interact with the transcription

factor GmNF-YC4 to activate GmASL6 expression, mediating

nodule development through regulating asparagine metabolic

processes (Zhuang et al., 2021).

Other transcription factors belonging to bHLH, WRKY, SPL,

EIN3, ZAT and GARP families are also involved in the regulation of

PSI genes in the Pi signaling network (Zhang et al., 2014; Scheible and

Rojas-Triana, 2015; Song and Liu, 2015). For example, in soybean,

GmPTF1 is an HLH transcription factor responsible for activation of

GmEXPB2, modifying root architecture during P deficiency (Li et al.,

2014; Yang et al., 2021a). In addition, other regulators, such as

miRNAs and PHO2, have also been reported to be involved in the

Pi-starvation response in many legume plants, such as common bean

(Valdés-López et al., 2010), white lupin (Zhu et al., 2010), soybean

(Zeng et al., 2010),M. truncatula (Boualem et al., 2008) and alfalfa (Li

et al., 2018). For example, PvPHO2, encoding E2 ubiquitin ligase, is a

target that is negatively regulated by miR399 in common bean;

PvPHO2 is suppressed by P deficiency and it negatively regulates

PSI genes, including PvAPC5, PvAP and PvPHT1 (Valdés-López et al.,

2008; Ramıŕez et al., 2013).
3 Strategies for improving PAE
of legumes

Due to the non-renewable, limited P resources and severe

environmental problems associated with excess P mining and
FIGURE 2

Genes involved in symbiotic interactions in the response of legumes to P deficiency. A model for mycorrhizal and rhizobial symbioses is presented. AMF,
arbuscular mycorrhizal fungi.
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fertilizer application, more attention has been paid to improve PAE in

legumes for sustainable agriculture. As discussed before, optimizing

root responses is a key strategy for improving PAE and plant

tolerance to low P stress. Strategies for improving PAE of legumes

can be achieved by conventional breeding, marker-assisted selection

(MAS) breeding or genetic engineering with target gene

transformation (Yan et al., 2004; Ojeda-Rivera et al., 2022).

As conventional breeding for improved crop P efficiency is mainly

based on phenotypic selection for root systems which is difficult and

time-consuming, another important approach for improving plant

PAE of crops in modern agriculture is based on the identification of

QTL for the trait of interest with molecular markers. A pioneering

work in rice has demonstrated that Pi uptake 1 (Pup1) is a key QTL

for improving Pi uptake (Gamuyao et al., 2012). The P efficiency-

related gene, phosphorus-starvation tolerance 1 (PSTOL1),

responsible for the Pup1 QTL, acts as an enhancer of root growth

and Pi uptake in rice and Arabidopsis (Wissuwa et al., 1998; Wissuwa

et al., 2002; Chin et al., 2011; Gamuyao et al., 2012; Neelam et al.,

2017), suggesting the potential use of Pup1 or PSTOL1 in breeding

crop varieties with high P efficiency. In addition, it has been

demonstrated that SbPSTOL1, the homologue of OsPSTOL1 in

sorghum (Sorghum bicolor), not only involves in enhancing root

surface area but also improving root system architecture, contributing

to increase in grain yield under low-P condition (Hufnagel et al., 2014;

Leiser et al., 2014). In common bean, QTL analysis was performed

using RILs population for the root traits, including root-hair density,

root-hair length, H+ exudation and total acid exudation, which shows

that QTL for H+ exudation and total acid exudation are closely linked

with QTL for Pi uptake; and the authors suggest that molecular

markers linked to the target root traits might be potentially used for

screening of phenotypic root traits that contribute to improved P

efficiency in the breeding process (Yan et al., 2004). In addition,

several QTL for root traits and P efficiency have also been identified in

soybean (Liang et al., 2010b; Yang et al., 2019; Seck et al., 2020) and

other legumes, such as chickpea (Varshney et al., 2019). However, the

achievements in identifying QTL for P efficiency are still limited due

to the epistatic effects and their interactions with the environment,

and most QTL regions are needed to be narrowed down so that only

target genes are identified. In addition, genome-wide association

study (GWAS) of root traits associated with P efficiency could also

provide a helpful solution to identify key genes and their interactions

in crops. A recent study has shown that a genetic locus, component of

phosphorus uptake 1 (CPU1) contributes to P efficiency based on

GWAS of PAE in a soybean core collection (Guo et al., 2022).

Furthermore, a SEC12-like gene, GmPHF1, identified as the causal

gene for CPU1, is proven to mediate Pi uptake in soybean (Guo

et al., 2022).

With the rapid development of transgenic techniques, numerous

genes have been successfully introduced into different legumes to

improve PAE, which are summarized in Table 1. For example, in

soybean, GmPT4 is a plasma membrane-localized Pi transporter and

GmPT4-overexpression in soybean plants displays higher PAE and

biomass than the wild type (Guo et al., 2022). Furthermore, transgenic

soybean plants overexpressing GmEXPB2 exhibit an increase in root

length and root hair density, resulting in an increase of PAE in

soybean (Zhou et al., 2014; Li et al., 2015; Yang et al., 2021a).
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GmPAP7a and GmPAP7b possess high activities against ATP in

vitro. Overexpression of GmPAP7a and GmPAP7b improves the

utilization of organic P in soybean (Zhu et al., 2020). In addition,

overexpression of GmETO1 can increase PAE in plants and tolerance

to low P stress (Zhang et al., 2020). Overexpression of PvPAP3

increases the growth and P content in bean hairy roots when

supplied with organic P (Liang et al., 2010a; Liang et al., 2012).

Similarly, both MtPHY1 and MtPAP1 transgenic white clover and

alfalfa plants display high PAE and tolerance to low P (Ma et al., 2009;

Ma et al., 2012). Genes related to organic acid synthesis, such asMDH

in alfalfa and DcCs in Daucus carota can also improve Pi uptake in

transgenic plants (Tesfaye et al., 2001; Tesfaye et al., 2003; Hussain

et al., 2016). Although none of the transgenic plants generated with

high PAE have been released for commercial use, transgenic

techniques are shown to be effective in improving plant PAE. Such

improvements are essential at least to adjust how we manage crop

yield and excess P fertilizer inputs.

In addition to molecular breeding and genetic engineering, the

inoculation of crops with plant growth promoting rhizobacteria

(PGPR) is one of the most effective strategies for improving the

PAE of legumes, such as soybean, common bean, and chickpea

(Pérez-Montaño et al., 2014; Mohamed et al., 2019; Lazali and

Drevon, 2021). PGPR are free-living bacteria from the genera

Pseudomonas and Bacillus that can colonize plant roots, playing

crucial roles in plant growth and development. The PGPR can

promote plant growth by producing phytohormones, enhancing

root development, solubilizing Pi, thereby increasing PAE in plants

(Mantelin and Touraine, 2004; Yang et al., 2009). For example,

Bacillus subtilis and Pseudomonas fluorescence are regarded as the

bio-fertilizers for plants; after inoculation of these bacteria, the yield

and Pi uptake are significantly increased in common bean (Mohamed

et al., 2019). In chickpea, application of PGPR can enhance plant

growth and PAE by increasing exudation of organic acids from roots

(Israr et al., 2016). In addition, Pi-solubilizing bacteria are vital

components of PGPR for legumes to acquire more Pi from soil

(Rosas et al., 2006; Tabassum et al., 2017). For example, inoculating

Pi-solubilizing bacteria, such as Bradyrhizobium japonicum and

Pseudomonas putida, can contribute to improve the shoot and root

growth of soybean by solubilizing Pi from the tricalcium phosphate

(Rosas et al., 2006). Therefore, application of PGPR is a useful strategy

for improving PAE of legumes.
4 Limitations and future perspectives

P is a major nutrient that is essential for crop growth performance

and productivity. As P availability in most agricultural soils is low,

inorganic P fertilizers are overused in intensive cropping systems to

ensure crop production stability, leading to negative environmental

impacts. At the same time, the low availability of P in soils and

insufficient financial support to access P fertilizers in some developing

countries keep many smallholder farmers from growing crops with

high productivity and quality. Legumes possess numerous economic

and environmental benefits in agricultural systems, but their

productivity is severely affected by low P availability in soil. Thus,

developing P-efficient legume cultivars with high yields using less P
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TABLE 1 Genes that have been used in transgenic modification for improving P acquisition efficiency in legumes.

Gene
name Description Species Transformed

plant species
Tissue

expression Main function References

GmEXPB2 b-expansin protein Glycine max Glycine max Root tip
Increased root growth and Pi
acquisition

Guo et al., 2011; Zhou et al., 2014;
Li et al., 2015; Yang et al., 2021a

SgEXPB1 b-expansin protein
Stylosanthes
guianensis

Stylosanthes
guianensis

Root, Seed
Increased root growth and Pi
acquisition

Wang et al., 2023

GmEXLB1
expansin-like B
protein

Glycine max Arabidopsis thaliana Root
Increased root growth and Pi
acquisition

Kong et al., 2019

GmPT4
Phosphate
transporter

Glycine max Glycine max Root
Increased plant growth and Pi
uptake

Guo et al., 2022

GmPT7
Phosphate
transporter

Glycine max Glycine max Nodule
Increased nodulation, Pi uptake
and plant biomass

Chen et al., 2019

MtPT4
Phosphate
transporter

Medicago
truncatula

Medicago truncatula
Mycorrhizal
root

Relative to symbiotic Pi
acquisition and AM symbiosis

Javot et al., 2007

MtPT6
Phosphate
transporter

Medicago
truncatula

Medicago truncatula Root, Nodule
Increased plant growth and Pi
uptake

Cao et al., 2021

SgPT1
Phosphate
transporter

Stylosanthes
guianensis

Arabidopsis thaliana
Root, Stem,
Leaf

Increased plant growth and Pi
uptake

An et al., 2023

AfPhyA Phytase
Aspergillus
ficuum

Glycine max –
Increased phytase activity and Pi
uptake

Li et al., 2009

MtPHY1 Phytase
Medicago
truncatula

Trifolium repens,
Medicago sativa

–
Improved utilization of organic P
and plant biomass

Ma et al., 2009; Ma et al., 2012

SgPAP23 Phytase
Stylosanthes
guianensis

Arabidopsis thaliana
Phaseolus vulgaris

–
Improved utilization of organic P
and plant biomass

Liu et al., 2018

GmPAP7a
Purple acid
phosphatase

Glycine max Glycine max Root
Improved utilization of organic P
and plant biomass

Zhu et al., 2020

GmPAP7b
Purple acid
phosphatase

Glycine max Glycine max Root
Improved utilization of organic P
and plant biomass

Zhu et al., 2020

MtPAP1
Purple acid
phosphatase

Medicago
truncatula

Trifolium repens
Medicago sativa

–
Improved utilization of organic P
and plant biomass

Ma et al., 2009; Ma et al., 2012

PvPAP3
Purple acid
phosphatase

Phaseolus
vulgaris

Phaseolus vulgaris Root
Increased root hair density and
uptake of extracellular organic P

Liang et al., 2010a, Liang et al., 2012

SgPAP7
Purple acid
phosphatase

Stylosanthes
guianensis

Phaseolus vulgaris Shoot, Root
Improved utilization of organic P
and plant biomass

Liu et al., 2016

SgPAP10
Purple acid
phosphatase

Stylosanthes
guianensis

Phaseolus vulgaris Shoot, Root
Improved utilization of organic P
and plant biomass

Liu et al., 2016

SgPAP26
Purple acid
phosphatase

Stylosanthes
guianensis

Phaseolus vulgaris Root
Improved utilization of organic P
and plant biomass

Liu et al., 2016

LASAP2 Acid phosphatase
Lupinus
albus

Tobacco Cluster root
Improved Pi mobilization and
uptake

Wasaki et al., 2009

GmALMT5
Aluminum active
malate transporter

Glycine max Arabidopsis thaliana Root
Increased organic acid exudation
and Pi acquisition

Peng et al., 2018

DcCs Citrate synthase
Daucus
carota

Cajanus cajan –
Improved Pi mobilization and
uptake

Hussain et al., 2016

GmVP2 H+-pyrophosphatase Glycine max Arabidopsis thaliana Root
Increased root H+ exudation, root
growth and Pi availability

Xie et al., 2022

GmSPX3
SPX domain-
containing proteins

Glycine max Glycine max Root
Increased plant growth and Pi
acquisition

Yao et al., 2014a

Gm6PGDH1
6-phosphogluconate
dehydrogenase

Glycine max Glycine max Root, Flower
Increased root growth and Pi
acquisition

Li et al., 2021

(Continued)
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fertilizer inputs could contribute not only to sustainable and

regenera t ive agr icu l ture but a l so to g loba l food and

nutritional security.

As discussed in this review, enhanced PAE through modification

of root growth and response is a key strategy for increasing plant P

efficiency under limited P supply. To date, numerous PSI genes have

been shown to be associated with increasing PAE, such as genes that

are involved in root growth, Pi uptake, and Pi signaling network.

Despite this significant progress in recent years, the current

understanding of the specific mechanisms and regulatory aspects of

controlling root growth response to P deficiency in legumes is

incomplete. Furthermore, it is not easy to develop legume or even

other crop cultivars with desirable root traits by manipulating a single

gene without a trade-off in carbon cost and crop productivity. These

are some of the aspects that need to be considered in improving PAE

of legume crops, and this will require enhanced collaboration between

plant breeders, molecular biologists and plant physiologists.

With the advance in large-scale omics approaches, the application of

the reliable and accurate next-generation sequencing (NGS) and

transcriptomic technologies, as well as in-depth studies on post-

transcriptional regulation can accelerate genetic improvement of crops

that are able to cope with low P stress by identifying novel functional and

regulatory genes related to P efficiency. In addition, QTL analysis and

GWAS of root traits with P efficiency are helpful for identifying candidate

genes in crops. Therefore, making full use of the advantages of these new

approaches might help to develop high P-efficient legume cultivars more

quickly in the near future. Furthermore, in order to fully understand the

mechanisms underlying plant cell response to P deficiency, single-cell

RNA sequencing can be applied to investigate the dynamic responses of

plant cells to Pi starvation.

Although plants display root plasticity during P deficiency with

improved root growth and thus increasing PAE, this active response of

root might occur at a certain P level and can not be maintained during all

growth stages of the plant, especially under severe P deficiency. When Pi

uptake reaches its maximum level, modification of PUE is an important

complementary strategy that is also needed for improving P efficiency in

plants. A higher PUE can be achieved through efficient re-translocation,

re-distribution and re-use of Pi from organic P pools in cells or tissues of

plants, which involves various transport andmetabolic processes, thereby

reducing P depletion from soils as well as the dependence of smallholder

farmers on P fertilizer inputs. Thus, additional research efforts are needed
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to combine PAE with PUE in legumes to improve their adaptation to low

P soils.

To unravel the key mechanisms responsible for complex

interactions among plant root systems, rhizosphere and P status in

soils (e.g., interactions of root exudates with microbes and soil

chemistry to facilitate P mobilization), transdisciplinary research

efforts are needed that will require expertise in plant biology, soil

science, rhizosphere biology and ecophysiology. Furthermore, for

improving P efficiency of legume crops grown in low P soils, basic

and applied research work is needed to find the perfect breeding

approach that incorporates SNF capability, adaptation to climate

variability and change, mono- and intercropping cultivation

models, and agronomic management conditions. In addition, some

legume plants are able to acquire less available forms of soil P and

these legume genotypes could become major focus for future

investigation on gene identification and gene transfer.
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TABLE 1 Continued

Gene
name Description Species Transformed

plant species
Tissue

expression Main function References

GmETO1
Ethylene-
overproduction
protein

Glycine max Glycine max Root
Increased root growth and Pi
acquisition

Zhang et al., 2020

GmPHF1
Phosphate
transporter traffic
facilitator

Glycine max Glycine max Root
Increased plant growth and Pi
uptake

Guo et al., 2022

GmWRKY45
WRKY transcript
factor

Glycine max Arabidopsis thaliana Root
Increased lateral root growth and
Pi uptake

Li et al., 2020

GmWRKY46
WRKY transcript
factor

Glycine max Arabidopsis thaliana Root
Increased root growth and Pi
uptake

Li et al., 2021
Modified from Ramaekers et al. (2010) and Zhang et al. (2014). ‘-’ means not detected.
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