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Deep learning methods for weed detection typically focus on distinguishing weed

species, but a variety of weed species with comparable plant morphological

characteristics may be found in turfgrass. Thus, it is difficult for deep learning

models to detect and distinguish every weed species with high accuracy. Training

convolutional neural networks for detecting weeds susceptible to herbicides can

offer a new strategy for implementing site-specificweed detection in turf. DenseNet,

EfficientNet-v2, and ResNet showed high F1 scores (≥0.986) and MCC values

(≥0.984) to detect and distinguish the sub-images containing dollarweed,

goosegrass, old world diamond-flower, purple nutsedge, or Virginia buttonweed

growing in bermudagrass turf. However, they failed to reliably detect crabgrass and

tropical signalgrass due to the similarity in plant morphology. When training the

convolutional neural networks for detecting and distinguishing the sub-images

containing weeds susceptible to ACCase-inhibitors, weeds susceptible to ALS-

inhibitors, or weeds susceptible to synthetic auxin herbicides, all neural networks

evaluated in this study achieved excellent F1 scores (≥0.995) and MCC values

(≥0.994) in the validation and testing datasets. ResNet demonstrated the fastest

inference rate and outperformed the other convolutional neural networks on

detection efficiency, while the slow inference of EfficientNet-v2 may limit its

potential applications. Grouping different weed species growing in turf according

to their susceptibility to herbicides and detecting and distinguishing weeds by

herbicide categories enables the implementation of herbicide susceptibility-based

precision herbicide application. We conclude that the proposed method is an

effective strategy for site-specific weed detection in turf, which can be employed

in a smart sprayer to achieve precision herbicide spraying.

KEYWORDS

deep learning, convolutional neural networks, weed detection, herbicide susceptibility,
precision herbicide application
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Introduction

Turfgrass is widely grown in urban landscapes, including

institutional and residential lawns, parks, or athletic fields (Potter

and Braman, 1991). The total turfgrass area in the United States is

163,812 km2, which accounts for approximately 1.9% of the whole

terrestrial land of the country (Milesi et al., 2005). Weed control is a

challenging task for turfgrass management. Weeds compete with the

turfgrass for sunlight, moisture, and soil nutrients, reducing turf

aesthetics, surface quality, and functionality (Hamuda et al., 2016;

Liu and Bruch, 2020). Weed management in turfgrass landscapes has

relied heavily on broadcast herbicide application (McElroy and

Martins, 2013), although weeds almost always present in non-

uniform and patchy distributions (Dai et al., 2019; Yu et al., 2019a).

Excessive application of synthetic herbicides could potentially pose a

risk to human health and cause environmental pollution (Slaughter

et al., 2008; Dai et al., 2019; Yu et al., 2019b; Mennan et al., 2020).

Moreover, the application of synthetic herbicides represents a

significant variable cost in turf weed management (Davis and

Frisvold, 2017). These concerns have led to legal regulations

regarding herbicide usage in several countries. For example, the

European Union encourages spot-spraying to reduce the herbicide

input (Busey, 2003; Marchand and Robin, 2019). Additionally, spot-

spraying could effectively minimize the amount reaching off-target

areas (Melland et al., 2016). In the United States, Environmental

Protection Agency has proposed a series of measures, including

prohibiting aerial applications for all atrazine labels to reduce their

chance of runoff from the managed fields (Pimentel and Burgess,

2012; McCullough et al., 2015).

Site-specific weed management is a promising solution for

sustainable weed control (Chen et al., 2022). Precision spraying a

particular type or volume of herbicide onto susceptible weed species

can significantly reduce herbicide input and weed control costs

(Liakos et al., 2018). Site-specific weed management relies on the

accurate identification and localization of weeds (Fennimore et al.,

2016; Wang et al., 2019). Previous researchers explored various visual

characteristics, such as color (Tang et al., 2016), morphological (Perez

et al., 2000), hyper- or multi-spectral (Pantazi et al., 2016; Jiang et al.,

2020), and textural features (Bakhshipour et al., 2017), for weed

detection. However, crops and weeds may exhibit similar visual

characteristics, thus detection and classification of weeds in crops

are inherently challenging (Hasan et al., 2021). In turf, weed detection

is challenging due to the presence of a variety of weed species growing

with turfgrass.

In recent years, deep learning, a subfield of artificial intelligence,

has demonstrated remarkable capability in speech recognition

(Hinton et al., 2012; LeCun et al., 2015), natural language

processing (Collobert and Weston, 2008; Collobert et al., 2011), and

computer vision (Gu et al., 2018; Shi et al., 2020; Zhou et al., 2020).

Deep learning technologies exhibit a tremendous ability to learn

representations from raw data and extract complex features from

images with a high accuracy level (Jordan and Mitchell, 2015; He

et al., 2020; Yang et al., 2022a). Moreover, the improvements in

graphics processing units (GPUs) have facilitated the use of deep

convolutional neural networks (Bao et al., 2017; Bao et al., 2021; Ngo

et al., 2021). Recent studies have investigated the feasibility of using

deep learning in various agricultural domains, including plant disease
Frontiers in Plant Science 02
detection (Martinelli et al., 2015; Saleem et al., 2019), crop yield

prediction (Khaki and Wang, 2019; Van Klompenburg et al., 2020),

plant phenotyping (Atefi et al., 2021; Zhang et al., 2022), and weed

detection (Jin et al., 2021; Peng et al., 2022; Razfar et al., 2022). For

example, Abbas et al. proposed a deep learning-based method for

tomato disease detection. The trained neural network achieved a best

5-class classification accuracy of 99.51 (Abbas et al., 2021). Subeesh

et al. compared four convolutional neural networks, including

AlexNet, GoogLeNet, InceptionV3, and Xception for detecting

various weeds growing in bell peppers (Capsicum annum L.) and

found InceptionV3 achieved the highest accuracy (97.7%) (Subeesh

et al., 2022). For image-based weed detection and discrimination,

previous findings suggest that deep learning methods generally

outperform other methods (Fennimore et al., 2016; Kamilaris and

Prenafeta-Boldú, 2018).

Several studies have investigated the use of image classification or

object detection neural networks for detecting and distinguishing

various weed species in turfgrass (Yu et al., 2019a; Yu et al., 2019b; Yu

et al., 2019c; Yu et al., 2020). Jin et al. demonstrated that VGGNet

effectively detected and distinguished dallisgrass (Paspalum dilataum

Poir.), purple nutsedge (Cyperus rotundus L.), and white clover

(Trifolium repens L.) growing in bermudagrass [Cynodon dactylon

(L.) Pers.] turf, while RegNet is well-performed in discriminating

common dandelion (Taraxacum officinale Web.) (Jin et al., 2022). In

another study, Yu et al. developed effective deep convolutional neural

networks to detect weeds in turf. The authors reported that the image

classification neural network VGGNet reliably classified broadleaf

and grassy weeds growing in bermudagrass turf. In addition, the

object detection neural network DetectNet achieved high overall

accuracy at detecting cutleaf evening-primrose (Oenothera laciniata

Hill) growing in bahiagrass (Paspalum notatum Flugge) (Yu et al.,

2019b; Yu et al., 2019c).

Different weed species exhibit varying susceptibility to a particular

herbicide category (McElroy and Martins, 2013; Yu et al., 2018). For

example, acetolactate synthase (ALS)-inhibiting herbicides generally

provide a narrow weed control spectrum (Yu and Boyd, 2018);

ACCase-inhibiting herbicides are only effective for controlling

grassy weeds (McElroy and Martins, 2013); nonselective herbicides,

such as glyphosate and glufosinate, could nonselectively control all

weeds (Johnson, 1977); and synthetic auxin herbicides, such as 2,4-D,

dicamba, and MCPA, are only effective for controlling broadleaf

weeds (McElroy and Martins, 2013). Therefore, precision spraying

herbicides based on the susceptibility of different weed species to the

herbicides can significantly reduce herbicide input and improve

herbicide use efficiency. Although deep learning has been well-

performed in weed detection and discrimination, previous studies

have generally focused on distinguishing different weed species and

did not establish a direct connection between weeds and herbicides.

Moreover, a variety of weed species with comparable plant

morphological characteristics may be found in turfgrass, thus it is

difficult for the deep learning models to detect and distinguish every

weed species with high accuracy. In the present research work, in

addition to the detection and discrimination of individual weed

species, different weed species growing in bermudagrass turf were

grouped according to their susceptibility to herbicides, and weeds

were detected and distinguished by herbicide categories. The

proposed method would allow precision herbicide application based
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on susceptibility and thereby effectively reduce herbicide input while

achieving the same level of weed control as the broadcast herbicide

application. The objectives of this paper were to (1) investigate the

feasibility of utilizing deep learning for herbicide susceptibility-based

weed detection in bermudagrass turf, and 2) evaluate and compare the

performance of different convolutional neural networks for

distinguishing individual weed species.
Materials and methods

Overview

The image classification convolutional neural networks, including

DenseNet (Huang et al., 2017), EfficientNet (Tan and Le, 2019), and

ResNet(He et al., 2016), were selected for evaluating the feasibility of

using the convolutional neural networks for detecting and

distinguishing individual weed species growing in bermudagrass

turf or detecting and distinguishing weeds susceptible to herbicides.

DenseNet is a convolutional neural network that computes dense and

multi-scale features from the convolutional layers. For each layer, it

obtains additional inputs from all preceding layers and passes on its

feature maps to all subsequent layers. EfficientNet uses a set of fixed

scaling coefficients to uniformly scales all dimensions of depth, width,

and resolution in a principled way. The EfficientNet achieves state-of-

the-art accuracy with 10× better efficiency by utilizing this novel

scaling method. ResNet introduced the concept of residual learning. It

employs an identity-based skip connection in each residual unit.

ResNet eases the flow of information across units and thus can gain

accuracy from very deep networks. In this study, these three

convolutional neural networks were trained and evaluated with the

ultimate goal of site-specific herbicide application.
Image acquisition

The training images of crabgrass (D.igitaria ischaemum L.),

dollarweed (Hydrocotyle spp.), old world diamond-flower (Hedyotis

cormybosa L.), and tropical signalgrass [Urochloa distachya (L.) T.Q.

Nguyen] were acquired at several golf courses in Bradenton (27.49°N,

82.47°W), Riverview (27.86°N, 82.32°W), Sun City (27.71°N, 82.35°

W), and Tampa (27.95°N, 82.45°W), Florida, while the testing images

were acquired at several golf courses and institutional lawns in

Lakeland, Florida (28.03°N, 81.94°W). The training images of

goosegrass (Eleusine indica L.) and Virginia buttonweed (Diodia

virginiana L.) growing in bermudagrass turf were acquired at the

University of Georgia Griffin Campus in Griffin, Georgia, United

States (33.26°N, 84.28°W), while the testing images were acquired at

several golf courses in Peachtree City, Georgia, United States (33.39°

N, 84.59°W). The training images of purple nutsedge were acquired at

sod farms in Jiangning District, Nanjing, Jiangsu, China (31.95°N,

118.85°E), while the testing images were acquired at sod farms in

Shuyang, Jiangsu, China (34.12°N, 118.79°E). The training and testing

images of crabgrass, dollarweed, goosegrass, old world diamond-

flower, tropical signalgrass, and Virginia buttonweed were captured

multiple times from April to November 2018 using a digital camera

(DSC-HX1, SONY®, Cyber-Shot Digital Still Camera, SONY
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Corporation, Minato, Tokyo, Japan). The training and testing

images of purple nutsedge were captured in spring 2021 using a

digital camera (Panasonic® DMC-ZS110, Xiamen, Fujian, China).

The original resolution of the training and testing images was 1,920 ×

1,080 pixels. To enrich the diversity of the training dataset, images

were captured under various illumination conditions, including partly

cloudy, cloudy, or sunny days.
Training and testing

Images containing crabgrass, dollarweed, goosegrass, old world

diamond-flower, purple nutsedge, tropical signalgrass, and Virginia

buttonweed growing in bermudagrass turf were selected to constitute

the training or testing datasets. Images containing a single weed species

were selected for training and testing neural networks. All images were

cropped into 40 equal-sized sub-images by a 5 rows × 8 columns

division. Each sub-image was 240 × 216 pixels. Sub-images of crabgrass,

goosegrass, and tropical signalgrass (Figure 1), purple nutsedge

(Figure 2), dollarweed, old world diamond-flower, and Virginia

buttonweed (Figure 3) at different growth stages and densities, and

sub-images of bermudagrass at varying mowing heights and surface

conditions (Figure 4) were utilized for training and testing the neural

networks. Figure 5 outlines the sequence diagram of image processing

and training and testing the convolutional neural networks for

detecting and discriminating individual weed species or weeds

susceptible to ACCase-inhibitor, ALS-inhibitor, synthetic auxin

herbicides, or bermudagrass without weed infestation (no herbicide).

The convolutional neural networks for detecting and distinguishing

weed species were trained utilizing a total of 21,000 true positive sub-

images (3,000 sub-images for each weed species) containing crabgrass,

dollarweed, goosegrass, old world diamond-flower, purple nutsedge,

tropical signalgrass, or Virginia buttonweed growing in bermudagrass

turf, while a total of 9,000 sub-images containing only bermudagrass

were utilized as the true negative images. To establish the validation or

testing dataset, a total of 3,500 sub-images (500 images for each weed

species) containing crabgrass, dollarweed, goosegrass, old world

diamond-flower, purple nutsedge, tropical signalgrass, or Virginia

buttonweed growing in bermudagrass were utilized as the true

positive images, while a total of 1,500 sub-images containing only

bermudagrass were utilized as the true negative images.

The convolutional neural networks for detecting and distinguishing

weeds susceptible to various herbicides were trained using a dataset

containing four categories of sub-images: weed species susceptible to

ACCase-inhibitors, weed species susceptible to ALS-inhibitors, weed

species susceptible to synthetic auxin herbicides, and bermudagrass

without weed infestation. To establish the training, validation, or testing

dataset, the sub-images containing crabgrass, goosegrass, or tropical

signalgrass, the sub-images containing purple nutsedge, the sub-images

containing dollarweed, old world diamond-flower, or Virginia buttonweed,

and the sub-images containing bermudagrass only were grouped and

labeled as ACCase-inhibiting herbicides, ALS-inhibiting herbicides,

synthetic auxin herbicides and no herbicide, respectively (Table 1).

The training and testing of the convolutional neural networks

were performed in PyTorch (version 1.8.1) deep learning

environment (Facebook, San Jose, California, United States) with an

NVIDIA GeForce RTX 2080 Ti graphic processing unit (GPU).
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Transfer learning seeks to use previously acquired knowledge while

addressing one problem and applying it to a different but similar

problem (Lu et al., 2015). The convolutional neural networks were

pre-trained with the ImageNet dataset to initialize the weights and

bias through the transfer learning technology. To ensure fair

comparisons among the evaluated deep learning models, default

values of hyper-parameters for each neural network were adopted

and used (Table 2).

A binary classification confusion matrix with four conditions,

including the true positive (tp), false positive (fp), true negative (tn),

and false negative (fn), was used to present the training and testing

results of the convolutional neural networks. The performances of the

convolutional neural networks were evaluated and compared against

each other in terms of precision, recall, F1 score, and Matthews

Correlation Coefficient (MCC).

Precision is the ability of the neural networks to detect the

susceptible weed species and was calculated using the tp and fp

(Sokolova and Lapalme, 2009):

precision =   tp
tp+fp (1)

Recall is the effectiveness of the neural networks to detect the

susceptible weed species and was computed using the tp and fn

(Sokolova and Lapalme, 2009):

recall   =   tp
tp+fn (2)
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The F1 score is a commonly used metric for measuring the overall

performance of the neural networks, which was defined using the

following equation (Sokolova and Lapalme, 2009):

F1 =
2�precision�recall
precision+recall (3)

The MCC is the correlation between ground truth labels and

predictions, which was determined using the following equation

(Chicco and Jurman, 2020):

MCC = tp�tn−fp�fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(tp+fp)�(tp+fn)�(tn+fp)�(tn+fn)
p (4)

Frames per second (FPS) measures the number of images, also

known as frames processed by the neural networks each second. A

higher FPS value indicates faster image processing. The FPS value was

adopted as a quantitative metric to evaluate the computational

efficiency of the neural networks.
Results

Detection and discrimination of
weed species

When the convolutional neural networks were trained for detecting

and distinguishing weed species growing in bermudagrass turf,

DenseNet, EfficientNet-v2, and ResNet exhibited excellent
B CA

FIGURE 1

The training and testing sub-images of crabgrass (A), goosegrass (B), and tropical signalgrass (C) at different growth stages and densities.
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performances and achieved high F1 scores (≥0.995) and MCC values

(≥0.994) in the validation datasets for detecting and distinguishing the

sub-images containing dollarweed, goosegrass, purple nutsedge, and

the sub-images containing bermudagrass only (Table 3). In general, a

slight reduction in weed detection performance of all neural networks

was observed in the testing datasets compared to the validation datasets.

For the detection of old world diamond-flower, the recall values of

DenseNet in the validation and testing datasets were 0.994, while the

precision values were 0.984 and 0.980, respectively, in predicting the

correct weed species labels. For the detection of Virginia buttonweed,

the precision values of DenseNet were 0.996 and 0.994, respectively,

while the recall values were 0.984 and 0.978, respectively. Similar
Frontiers in Plant Science 05
trends were observed in the validation and testing datasets for

EfficientNet-v2 and ResNet.

All three neural networks performed poorly at detecting and

distinguishing crabgrass and tropical signalgrass growing in

bermudagrass turf. Because of low precision and recall values, the

F1 scores and MCC values of DenseNet, EfficientNet-v2, and ResNet

never exceeded 0.918, 0.919, and 0.918, respectively, in the validation

and testing datasets. The low F1 scores and MCC values indicate that

the neural networks are more likely to mistakenly classify crabgrass as

tropical signalgrass (or vice versa). This finding could likely attribute

to the similarity in plant morphology between crabgrass and

tropical signalgrass.
B CA

FIGURE 2

The training and testing sub-images of dollarweed (A), old world diamond-flower (B), and Virginia buttonweed (C) at different growth stages and densities.
FIGURE 3

The training and testing sub-images of purple nutsedge at different growth stages and densities.
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Detection and discrimination of weeds
susceptible to herbicides

No obvious differences were observed among DenseNet, EfficientNet-

v2, and ResNet for detecting and distinguishing weeds susceptible to

ACCase-inhibitors, ALS-inhibitors, synthetic auxin herbicides, or

bermudagrass without weed infestation (no herbicide) (Table 4).

DenseNet, EfficientNet-v2, and ResNet achieved high F1 scores

and MCC values (≥0.997) with high precision (≥0.996) and recall (≥

0.997) in the validation datasets. All neural networks had slightly

reduced precision and recall values in the testing datasets, but the F1
scores and MCC values never fell below 0.994.

These results suggest that convolutional neural networks can

reliably detect and distinguish weeds susceptible to particular

herbicides. Furthermore, it can be inferred that training the neural

networks based on the susceptibility of weed species to herbicides
Frontiers in Plant Science 06
could probably minimize the morphological similarity issue and

hence improve weed detection accuracy.
Inference time of the convolutional
neural networks

In addition to the weed detection accuracy, the inference time of

the convolutional neural networks is also critical for real-time

precision herbicide application. The FPS values of DenseNet,

EfficientNet-v2, and ResNet were calculated by averaging the

inference time of images from the testing dataset. Since the original

images were captured at a resolution of 1,920 × 1,080 pixels, the

detection speed with the full images was measured by processing the

sub-images (240 × 216 pixels) with a batch size value of 40 (for

simultaneously processing 40 sub-images).
FIGURE 4

The training and testing sub-images of bermudagrass at different turfgrass management regimes, mowing heights, and surface conditions.
FIGURE 5

Flow diagram illustrates the sequence of image processing and training and testing the convolutional neural networks.
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All convolutional neural networks, including DenseNet,

EfficientNet-v2, and ResNet, had an excellent detection speed

(≥77.94fps) when detecting and distinguishing the sub-images with

a batch size value of 1 (Table 5). DenseNet, with 61.79 full images

detected per second, was 31.59 slower than ResNet but noticeably

faster than EfficientNet-v2 when setting the batch size value as 40.

ResNet demonstrated the fastest inference rate and outperformed the

other convolutional neural networks on detection efficiency.

However, the slow detection of EfficientNet-v2 may limit its

potential applications.
Discussion

Deep learning methods for weed detection typically focus on

distinguishing weed species, but various weed species with

comparable plant morphological features may be found in the

turfgrass. Thus, it is difficult for neural networks to achieve high

accuracy of detection and discrimination for every weed species.

Distinguishing different categories of weed species growing in turf

based on their susceptibility to herbicides reduces the complexity of

weed detection. By training the neural networks according to the

susceptibility of weed species to herbicides, we achieved an excellent

performance in weed detection. Moreover, this strategy allows the use

of specific herbicides for precision spraying susceptible weeds, thus

saving more herbicides.

When training convolutional neural networks for detecting weeds

susceptible to herbicides, weed vegetation was grouped and labeled

into three categories: weeds susceptible to ACCase-inhibitors, weeds

susceptible to ALS-inhibitors, and weeds susceptible to synthetic

auxin herbicides. ACCase-inhibitors, such as diclofop-methyl, can

be applied in bermudagrass turf for POST control of various grassy

weeds, while sethoxydim (cyclohexanedione), another ACCase-

inhibitor, is used for POST control of grassy weeds growing in

centipedegrass [Eremochloa ophiuroides (Munro) Hack.] (Neal
Frontiers in Plant Science 07
et al., 1990; Tate et al., 2021). Synthetic auxin herbicides, such as

2,4-D and mecoprop, are POST herbicides that selectively control

broadleaf weeds in bermudagrass turf (Grichar et al., 2008; Reed et al.,

2013). ALS-inhibitors (e.g. halosulfuron, imazaquin, and

trifloxysulfuron-sodium) can effectively control nutsedge weeds.

However, it should be noted that certain ALS-inhibitors, such as

halosulfuron and trifloxysulfuron-sodium, can also suppress or

effectively control broadleaf weeds (McElroy and Martins, 2013). In

this context, broadleaf and nutsedge weeds could be grouped into the

same category when training the neural network for precision

spraying the ALS-inhibitors that are effective for controlling both

broadleaves and nutsedges growing in bermudagrass turf.

Deep learning neural networks, including image classification and

object detection neural networks, can be developed and potentially

integrated into the machine vision sub-system of a smart sprayer.

Nevertheless, it should be noted that image classification neural

networks alone do not localize weeds on the input images.

Consequently, when utilizing image classification neural networks for

weed detection, a smart sprayer likely generates a considerably larger

spraying output area than the area covered by weeds. In the present

work, localizing weeds with image classification neural networks could

be realized by cropping the input image into multiple grid cells (sub-

images) and identifying the grid cells containing weeds.

In the present study, original images (1,920 × 1,080 pixels) were

divided into 40 grid cells (sub-images with a resolution of 240 × 216

pixels) for training and testing the image classification neural

networks. Spraying areas can be localized by detecting if the grid

cells contain weeds. When developing a precision spraying system,

custom software can be programmed to generate grid cell maps on the

input images and realize precision herbicide application by detecting

if the grid cells contain weeds susceptible to the herbicides. To realize

precision herbicide spraying, a binary (on/off) input command can be

implemented via a nozzle control system to turn off the spray nozzles

over the weed-free cells while the nozzles corresponding to the grid

cells containing weeds need to be turned on.
TABLE 1 The number of sub-images used to establish the training, validation, and testing datasets of the convolutional neural networks.

Dataset ACCase-inhibiting herbicides ALS-inhibiting
herbicides

No herbicide Synthetic auxin herbicides

Crabgrass Goosegrass Tropical
signalgrass

Purple nut-
sedge

Bermudagrass Dollarweed Old world
diamond-
flower

Virginia
buttonweed

Training 3000 3000 3000 3000 9000 3000 3000 3000

Validation 500 500 500 500 1500 500 500 500

Testing 500 500 500 500 1500 500 500 500
The convolutional neural networks were trained to detect and discriminate weed species and the sub-images containing weeds susceptible to ACCase-inhibiting herbicides, ALS-inhibiting herbicides,
synthetic auxin herbicides, or bermudagrass without weed infestation (no herbicide).
TABLE 2 Hyperparameters used for training the convolutional neural networks.

Deep learning architecture Optimizer Base learning rate Learning rate policy Batch size Training epochs

DenseNet SGD 0.001 LambdaLR 16 30

EfficientNet-v2 SGD 0.01 LambdaLR 16 30

ResNet Adam 0.0001 StepLR 16 30
SGD, stochastic gradient descent.
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While the convolutional neural networks achieved high classification

rates for detecting and distinguishing weeds susceptible to herbicides, it

should be noted that when weeds susceptible to different herbicides are

grown too close or occluded, the neural networks would not effectively

distinguish weed categories based on their susceptibility to the herbicides

because the grid cell contains multiple targets. Although such a case may

result in missed detection, this is hardly an issue in field applications

because the weed infestation zone has been detected, and one of the

herbicides will be sprayed onto the susceptible weeds.

It was reported that the training image size could significantly affect

the reliability of image classification neural networks for weed detection

(Zhuang et al., 2021; Yang et al., 2022b). For example, Zhuang et al.

observed increased classification accuracy (high recall values) with

AlexNet and VGGNet when they were trained with images of 200 ×

200 pixels than 300 × 300 or 400 × 400 pixels; however, increasing

training image quantities diminished the differences in detection accuracy

(Zhuang et al., 2021). In the present study, each sub-image (240 × 216

pixels) represented a physical size of 10 cm × 9 cm. When the

convolutional neural networks are integrated into the machine vision

sub-system of smart sprayers for precision herbicide application, the
Frontiers in Plant Science 08
nozzles should generate the same or slightly larger spraying outputs to

cover the grid cells. An additional investigation is needed to investigate

the implications of training image sizes and quantities on the

performances of neural networks for weed detection in turf.
Conclusions

The present research demonstrated the reliability and effectiveness of

using convolutional neural networks to detect and distinguish weeds

growing in bermudagrass turf based on their susceptibility to herbicides.

All convolutional neural networks, including DenseNet, EfficientNet-v2,

and ResNet achieved excellent F1 scores (≥ 0.995) and MCC values (≥

0.994) in the validation and testing datasets to detect and distinguish

weeds susceptible to ACCase-inhibitors, ALS-inhibitors, and synthetic

auxin herbicides, or bermudagrass turf without weed infestation (no

herbicide). In addition, DenseNet, EfficientNet-v2, and ResNet had an

excellent detection speed (≥77.94fps) when detecting and distinguishing

the sub-images with a resolution of 240 × 216 pixels. For detecting the

original/full images (1,920 × 1,080 pixels), ResNet demonstrated the
TABLE 3 Weed species detection and discrimination training results using various convolutional neural networks.

Deep learning architecture Weed species Validation dataset Testing dataset

Precision Recall F1 score MCC Precision Recall F1 score MCC

DenseNet Bermudagrass 1.000 0.998 0.999 0.999 0.999 0.999 0.999 0.999

Crabgrass 0.923 0.940 0.931 0.924 0.920 0.938 0.929 0.921

Dollarweed 0.998 1.000 0.999 0.999 0.996 0.998 0.997 0.997

Goosegrass 0.994 0.996 0.995 0.994 0.990 0.996 0.993 0.992

Old world diamond-flower 0.984 0.994 0.989 0.988 0.980 0.994 0.987 0.986

Purple nutsedge 0.994 0.998 0.996 0.996 0.996 0.994 0.995 0.994

Tropical signalgrass 0.937 0.920 0.928 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.996 0.984 0.990 0.989 0.994 0.978 0.986 0.984

EfficientNet-v2 Bermudagrass 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000

Crabgrass 0.924 0.942 0.933 0.925 0.920 0.938 0.929 0.921

Dollarweed 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.992 0.996 0.994 0.993

Old world diamond-flower 0.986 0.996 0.991 0.990 0.982 0.994 0.988 0.987

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.922 0.931 0.924 0.937 0.918 0.927 0.919

Virginia buttonweed 0.996 0.986 0.991 0.990 0.994 0.982 0.988 0.987

ResNet Bermudagrass 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

Crabgrass 0.922 0.942 0.932 0.924 0.918 0.938 0.928 0.920

Dollarweed 1.000 0.998 0.999 0.999 0.998 0.998 0.998 0.998

Goosegrass 0.998 0.996 0.997 0.997 0.990 0.996 0.993 0.992

Old world diamond-flower 0.986 0.996 0.991 0.990 0.980 0.994 0.987 0.986

Purple nutsedge 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

Tropical signalgrass 0.941 0.918 0.929 0.921 0.937 0.916 0.926 0.918

Virginia buttonweed 0.992 0.986 0.989 0.988 0.994 0.978 0.986 0.984
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fastest inference rate and outperformed the other convolutional neural

networks on detection efficiency (93.38fps). Effective detection and

discrimination of weeds susceptible to herbicides enable the smart

sprayer to spray particular herbicides to control susceptible weeds,

thereby significantly reducing herbicide input. Based on the high-level

performance, we conclude that the proposed method is highly suitable

for integrating into the machine vision sub-system of smart sprayers for

the precision control of weeds while growing in turf.
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TABLE 4 Training and testing results of various convolutional neural networks for detecting and discriminating the sub-images containing weeds
susceptible to herbicides, or bermudagrass without weed infestation (no herbicide).

Deep learning architecture Herbicides Validation dataset Testing dataset

Precision Recall F1 score MCC Precision Recall F1 score MCC

DenseNet ACCase-inhibiting herbicides 0.999 0.999 0.999 0.998 0.997 0.998 0.997 0.997

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Synthetic auxin herbicides 0.999 0.999 0.999 0.998 0.999 0.999 0.999 0.999

EfficientNet-v2 ACCase-inhibiting herbicides 0.999 0.999 0.999 0.999 0.998 0.998 0.998 0.997

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.999 0.999 0.999 0.999 1.000 0.999 0.999 1.000

Synthetic auxin herbicides 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.999

ResNet ACCase-inhibiting herbicides 0.999 0.998 0.998 0.998 0.998 0.995 0.996 0.995

ALS-inhibiting herbicides 0.996 0.998 0.997 0.997 0.996 0.994 0.995 0.994

No herbicide 0.998 1.000 0.999 0.999 0.997 0.999 0.998 0.997

Synthetic auxin herbicides 0.999 0.997 0.998 0.998 0.997 0.997 0.997 0.996
frontie
TABLE 5 The inference time of the convolutional neural networks evaluated in the study.

Deep
learning
architecture

Image type Resolution Batch size FPS

DenseNet Sub-image 240 × 216
1 103.75

40 61.79

EfficientNet-v2 Sub-image 240 × 216
1 77.94

40 38.77

ResNet Sub-image 240 × 216
1 276.08

40 93.38
FPS, frames per second.
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