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Predicting the growth suitability
of Larix principis-rupprechtii
Mayr based on site index under
different climatic scenarios

Ruiming Cheng †, Jing Zhang †, Xinyue Wang,
Zhaoxuan Ge and Zhidong Zhang*

College of Forestry, Hebei Agricultural University, Baoding, China
Larix principis-rupprechtii Mayr (larch) is one of the main afforestation and timber

production species used in North China. Climate change has led to a change in its

suitable distribution and growth. However, the impact of climate change on its

growth suitability is not clear. In this study, using forest resource inventory data and

spatially continuous environmental factor data (temperature, precipitation,

topography, and soil) in Hebei and Shanxi Provinces, China, the random forest

model (RF) was used to simulate the larch site index (SI) and growth suitability

under three shared socioeconomic pathways (SSPs: SSP1-2.6, SSP2-4.5, and SSP5-

8.5) for the current and future (2021–2040, 2041–2060 and 2080–2100). The

results revealed that (1) RF had excellent performance in predicting the regional SI

(R2 = 0.73, MAE = 0.93 m, RMSE = 1.35 m); (2) the main factors affecting the

productivity of larch were the mean temperature of the warmest quarter (BIO10),

elevation (ELEV), mean diurnal range (BIO2), and annual precipitation (BIO12); and

(3) larch currently had a higher SI in the Bashang areas and in the high-altitude

mountains. The areas characterized as unsuitable, poorly suitable, moderately

suitable, and highly suitable accounted for 15.45%, 42.12%, 31.94%, and 10.49% of

the total area, respectively. (4) Future climate warming had an obvious inhibitory

effect on the SI, and the effect strengthened with increasing radiation intensity and

year. (5) The moderately suitable and highly suitable areas of larch growth showed

a downward trend under future climate scenarios. By the end of this century, the

suitable growth areas would decrease by 14.14% under SSP1-2.6, 15.17% under

SSP2-4.5, and 19.35% under SSP5-8.5. The results revealed the impact of climate

change on larch growth suitability, which can provide a scientific basis for larch

forest management.
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1 Introduction

Forest ecosystems play a central role in the global carbon cycle

(Teets et al., 2018; Ameray et al., 2021), climate regulation (Garcıá-

Valdés et al., 2020) and other ecological services (Kumar et al., 2008).

Global climate change may have important impacts on forest

productivity, biomass and phenological periods (Hof et al., 2021;

Guo et al., 2022; Molina et al., 2022). Climate factors are important

drivers of forest productivity, and future climate change may lead to a

decline (Sabatia and Burkhart, 2014; Debaly et al., 2022) or an

increase (Chen et al., 2020) in forest productivity. To assess future

global climate change, the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC AR6)

developed an emission scenario combining a shared socioeconomic

pathway (SSP) and a typical concentration pathway, and this method

has been proven to be reasonable (Meinshausen et al., 2020). The

change trends and impact mechanisms of forest productivity under

different climatic conditions are currently unclear, which challenges

forestry workers in formulating forestry strategies (Ogden and Innes,

2009). Therefore, under the background of continuous global

warming, elucidating the change trend and influence mechanism of

forest productivity has become a current research hotspot.

Accurate assessment of forest productivity is essential for

sustainable forest management (Wang et al., 2015a; Socha et al.,

2021; Achim et al., 2022). The site index (SI) is the most commonly

used measure of forest productivity in forestry (Skovsgaard and

Vanclay, 2008; Yue et al., 2016) and is usually defined as the

dominant tree height or average dominant tree height of a stand at

a given base age (Wang and Wang, 1994; Skovsgaard and

Vanclay, 2008). Site-specific forest productivity is the result of a

combination of biotic and abiotic factors (Sharma and Parton, 2018).

The traditional SI calculations consider only the tree age factor

(Sharma and Parton, 2019), and establish SI guidance curves or by

compiling SI tables (Li and Zhang, 2010), which can accurately

predict forest productivity at a small scale, but the process is very

costly. For large spatial scales, forest productivity prediction accuracy

tends to be low due to changes in site conditions and climatic factors

(Zhu et al., 2019). Therefore, some studies (Bravo and Montero, 2001;

Luis et al., 2003; Álvarez-Álvarez et al., 2011) used indirect methods to

link variables such as topography, climate, and soil to the SI.

Incorporating environmental variables into forest productivity

prediction not only improved the model prediction accuracy but

also increased the model dynamic prediction capability (Sharma and

Parton, 2019). Sharma et al. (2015) simulated the SI of different tree

species in northern Canada and predicted productivity changes under

future climate scenarios; Antón-Fernández et al. (2016) assessed the

SI of various tree species in Norway under the representative

concentration pathway (RCP4.5) climate scenario; and Burkhart

et al. (2018) simulated the future growth of Pinus taeda L. in the

southeastern United States based on climate variables. Accordingly, in

order to improve the predictive accuracy of productivity in different

regions and forest types, we should consider different climate

scenarios and key environmental factors.

To accurately assess forest productivity, various models have

emerged, and the choice of different models may greatly affect the

prediction results (Zhang et al., 2018). The generalized additive model
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(GAM) (Brandl et al., 2018), artificial neural network (ANN) (Aertsen

et al., 2010), multiple linear regression (MLR) (Sharma et al., 2012),

regression kriging (RK) (Watta et al., 2021) and random forest (RF)

(Sabatia and Burkhart, 2014), etc., are widely used in forest

productivity predictions. Among them, RF, proposed by Breiman

(2001), is regarded as one of the most accurate nonparametric

regression prediction methods. It shows good results in

compensating for the shortcomings of parametric models (Aertsen

et al., 2010; Cracknell and Reading, 2014), and exhibits lower

sensitivity to different combinations of variables than other

multivariable linear regression models (Hultquist et al., 2014; Liu

et al., 2019). Because of the excellent prediction performance of RF, it

has been widely used in studies such as larch-scale forest productivity

prediction (Sabatia and Burkhart, 2014; Chirici et al., 2020; Horst-

Heinen et al., 2021), biomass estimation (Ding et al., 2021), and the

determination of the importance variables (Wang et al., 2021b).

Larix principis-rupprechtii (larch) is one of the main conifer

species in North China and plays a key role in wood production,

carbon sequestration, and ecological services (Di et al., 2014; Guo

et al., 2022). It is generally distributed in pure and mixed forests at

medium to high altitudes in alpine areas (Zhao et al., 2019), and

alpine ecosystems have been shown to be more sensitive to climate

change (Oddi et al., 2022). Research by Zhang et al. (2021) showed

that future extreme drought conditions may cause larch growth to

stagnate or even decline. The radial growth of Larix gmelinii (Rupr.)

Kuzen. distributed in the Greater Khingan Mountains has shown a

decreasing trend with increasing temperature (Jiang et al., 2016).

Moreover, some studies have shown that the suitable distribution area

of larch will have a tendency to migrate to high latitudes in the future

(Mamet et al., 2019). The current research on larch productivity is

based mostly on historical climate data (Li et al., 2021), but little is

known about the potential productivity under future climate

scenarios, and this lack of information is not conducive to the

sustainable management of larch. Therefore, simulating the

potential productivity and growth suitability of larch under current

and future climate scenarios may provide a reference for improving

our understanding of larch productivity and forest adaptive

management in the context of climate change.

In this study, RF was used to predict the larch SI in the study area

under current and future climate scenarios based on climatic,

topographic and soil data. The specific objectives of this study were

to (1) explore the main environmental factors affecting the larch SI; (2)

simulate the larch SI under current and future climate scenarios in the

study area; and (3) analyze the suitable growth areas of larch and the

future change trend. Generally, temperature limits tree growth at high

altitudes, whereas precipitation influences tree growth at low altitudes

(Du et al., 2022). Currently, larch is mainly distributed in Bashang

Plateau and mountains, and with future climate change, larch tree

species would migrate to higher latitudes (Cheng et al., 2022). In the

high-altitude suitable distribution area of larch, the effect of

temperature on the larch growth may be more important than that

of rainfall. Additionally, larch growth rate would tend to decrease with

increasing time and emission scenarios (Wang et al., 2022). Therefore,

we hypothesized that: (1) temperature has a greater effect on larch

productivity than precipitation; and (2) larch productivity will be more

inhibited by increasing years and radiation intensities.
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2 Materials and methods

2.1 Study area

The study area is located in Hebei and Shanxi Provinces (110°14′-
119°50′E, 34°34′-42°40′N), which is the native distribution area of

larch in China. Hebei Province is located in the midlatitude coastal

and inland intersection zone. The terrain is high in the northwest and

low in the southeast. There are three major landform types, including

the Bashang Plateau, Yan and Taihang Mountains, and Hebei Plain.

Shanxi Province is located inland. It is a typical mountain plateau

covered by loess. The study area is characterized by a temperate

continental monsoon climate. The annual precipitation is 300-

800 mm, and the annual temperature is 4-14°C. The soil types

include brown soil, cinnamon soil, and chestnut calcareous soil.

The dominant species include larch, Pinus tabulaeformis Carr.,

Populus davidiana Dode, Betula platyphylla Suk., and Quercus

mongolica Fisch. ex Ledeb.
2.2 Data collection

2.2.1 Site index data
The actual larch SI was calculated based on the ninth national

forest inventory data (2016-2020) in Hebei and Shanxi provinces,

field survey data (temporary and permanent sampling plots) and

destructive sampling data. Since most larch was located in nature

reserves, we were unable to obtain tree-cutting permits for all sites.

Therefore, using the research method and experimental data of Li

et al. (2021), 20 larch plots with different site conditions were selected

in the study area. Based on plot data, five dominant and five average

trees were selected to identify destructive sampling trees in each plot.

Finally, one dominant tree and one average tree representing the

stand level in each plot were determined respectively, and then the

destructive sampling data were obtained. The selection criteria for

dominant trees included: good growth, no pests and diseases, the

largest canopy, the thickest diameter at breast height, and the highest

tree height. The selection criteria for average trees included good

growth, no pests and diseases, and diameter at breast height and tree
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height equivalent to the stand mean values. The total tree height

growth increment and average annual growth increment were

calculated based on destructive sampling data. As shown in

Figure 1, the dominant height growth gradually stabilized after

20 a, and the sample size was the largest at 30 a, so the baseline age

was finally determined to be 30 a. From 2015 to 2021, sample plots

ranging in size from 400 m2 to 900 m2 were set up in the study area.

The average height of the stand and the average height of dominant

trees were obtained (100 largest diameter at breast height trees per

hectare). The sample plot data beyond ±3 times standard deviation

was removed. We finally retained 337 plots to establish the mean

stand height and dominant height transformation equation (R2 =

0.9258) (Figure 1B). The transformation equation was: dominant

height=1.00967×average height+2.4015. Using 30 years of larch plot

data obtained from national forest inventory data, the average height

of dominant trees was calculated by the transformation equation. We

finally obtained the actual SI of 2576 plots (Figure 2, Table 1).

2.2.2 Environmental variables
The current and future (2021-2100) climate data with a 30 arc-

second resolution were obtained from the WorldClim database (http://

www.Worldclim.org) (Fick and Hijmans, 2017). Climate data adopted

the SSPs developed by the IPCC AR6, including four core scenarios:

SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 (Waliser et al., 2020; Petrie

et al., 2021). We selected the medium-resolution Beijing Climate Center

Climate SystemModel version 2 (BCC-CSM2-MR), which is widely used

in China, to derive the future climate change scenario data. The SSP2-4.5

climate scenario is more consistent with future climate change trend in

the study area (Lv et al., 2019a). SSP1-2.6, SSP3-7.0, SSP5-8.5 represent

low, medium-to-high, and high emission scenario, respectively. The two

climate scenarios SSP1-2.6 and SSP5-8.5 represent the two extremes.

Therefore, three future climate scenarios, including low radiation

intensity (SSP1-2.6), medium radiation intensity (SSP2-4.5) and high

radiation intensity (SSP5-8.5), were used. We simulated the SI of larch

species in the current and future three periods: 2030s (2021-2040), 2050s

(2041-2060) and 2090s (2081-2100). Finally, 19 bioclimatic variables

related to current and future temperature and precipitation were

obtained. The digital elevation model (DEM) with a 30 arc-second

resolution from the WorldClim database (http://www.Worldclim.org)
A B

FIGURE 1

Coefficient of variation of dominant height growth (A), and conversion equation of average height to dominant height (B) in larch plots.
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was obtained, and ArcGIS 10.2 was used to generate elevation, slope, and

aspect factors (ESRI Development Team, 2019). Soil data were obtained

from the National Earth System Science Data Center shared platform

(http://www.geodata.cn), and 12 soil data were selected: total nitrogen,

total phosphorus, total kalium, available potassium, alkali-hydrolysis

nitrogen, available phosphorus, bulk density, clay, powder grain, sand,

rock fragment and organic matter. Soil data were resampled to raster data

with a 30 arc-second resolution using ArcGIS 10.2.

Pearson correlation analysis and variance inflation factor (VIF)

analysis were used to solve the collinearity of environmental factors

(Radosavljevic et al., 2014; Jiang et al., 2018; Dang et al., 2021).

Environmental factors with |r|<0.8 and VIF < 10 were selected.

Finally, 19 environmental factors were retained (Table 2).
2.3 Data analyses

2.3.1 Random forest model
The RF model is an ensemble model that combines multiple

decision trees (Breiman, 2001), which improves the accuracy and

stability of the model. The final output is the average of all decision

tree results. The “RandomForest” package was used in R 4.1.2 (R Core

Team, 2022). RF contains three important model parameters: the

number of features tried at each node (mtry), the number of trees

(ntree), and the minimum node size. In this study, the number of

features tried at each node (mtry) was set to the default value (1/3 of

the total number of predicted variables), the minimum node size was
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selected according to the literature (Wang et al., 2015b), and 1000

value of ntree were constructed to ensure the stability of the results

(Sabatia and Burkhart, 2014; Yang et al., 2016). Nineteen factors

related to climate, topography and soil were included in the RF model

for predicting larch SI distribution. 80% of the actual SI data were set

as training data, and the remaining 20% were used as testing data.

Three different criteria, including the coefficient of determination

(R2), root mean square error (RMSE), and mean absolute error

(MAE) were used to evaluate the simulation accuracy (Castaño-

Santamarıá et al., 2019; Li et al., 2021).

2.3.2 Importance of environmental factors
In this study, the importance function in the “randomForest”

package in R 4.1.2 was used to calculate the average value of the mean

decrease accuracy (%IncMSE) and mean decrease gini

(IncNodePurity) for each environmental factor. “%IncMSE” is the

percentage increase in the mean squared error, which is considered

more important when the prediction error of the model increases for

each randomly assigned variable. Thus, a larger value indicates a

greater importance of the variable. However, IncNodePurity is

measured by the residual sum of squares. The higher the node

purity is, the more important the variable is. The larger the value is,

the higher the importance of the variable (Angermueller et al., 2016;

Niu et al., 2021). Due to the difference in the evaluation results of the

importance of the two variables, the most important environmental

factors affecting the SI were finally determined according to the

consistency results of “%IncMSE” and “IncNodePurity”.
TABLE 1 Summary statistics of forest inventory data.

Items Number of plots Minimum Maximum Mean Standard deviation

Average height/m 337 3.70 28.12 15.81 3.69

Dominant height/m 337 3.88 31.03 18.35 3.87

Site index/m 2576 5.53 22.10 9.67 2.59
FIGURE 2

Study area and sample plot locations.
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2.3.3 Division of suitable growth areas for larch
RF was used to simulate the SI of larch under different climate

scenarios. We imported the prediction results into ArcGIS 10.2 and

drew maps of the suitable growth areas for larch. We used the raster

calculator in ArcGIS 10.2 to normalize the SI results so that the raster

values ranged from 0 to 1. The growth characteristics of larch were

regrouped into four classes of suitable growth areas: unsuitable area

(0.00-0.20), poorly suitable area (0.20-0.40), moderately suitable area

(0.40-0.60), and highly suitable area (0.60-1.00) (Li et al., 2021).

Moreover, we explored the change trend of the suitable areas for larch

under future climate scenarios, and statistical analysis was carried out

on the areas with different suitability values.
Frontiers in Plant Science 05
3 Results

3.1 Importance of environmental factors

Environmental variable importance was ranked according to the

“%IncMSE” and “IncNodePurity” values in the RF model (Figure 3).

The consistency of the two results showed that the mean temperature

of the warmest quarter (BIO10), elevation (ELEV), mean diurnal

range (BIO2), and annual precipitation (BIO12) had the greatest

impact on the larch SI. The total relative importance of the four

environmental variables in the two evaluation indicators of “%

IncMSE” and “IncNodePurity” were 41.55% and 59.17%,
TABLE 2 Environmental factors used for building models.

Environment variables Code Variable name Unit

Temperature BIO2 Mean diurnal range (mean of monthly (max temp – min temp)) °C

BIO4 Temperature seasonality (standard deviation × 100) -

BIO10 Mean temperature of warmest quarter °C

Precipitation BIO12 Annual precipitation mm

BIO17 Precipitation of warmest quarter mm

Terrain ELEV Elevation m

SLP Slope °

ASP Aspect %

Soil AK Soil available potassium mg·kg-1

AN Soil alkali-hydrolysis nitrogen mg·kg-1

AP Available phosphorus mg·kg-1

TK Soil total kalium g·kg-1

TN Soil total nitrogen g·kg-1

TP Soil total phosphorus g·kg-1

SOM Soil organic matter %

GRAV Soil rock fragment %

CLAY Percentage of clay in soil %

SAND Percentage of sand in soil %

BD Soil bulk density g/cm3
fronti
FIGURE 3

Importance of environmental factors for larch site index based on random forest results.
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respectively. BIO10 (%IncMSE = 45.92%, IncNodePurity = 2229.93)

and BIO12 (%IncMSE = 38.62%, IncNodePurity = 838.73) both had

the most important impact on the SI. Among the soil variables, soil

organic matter (SOM) had the greatest impact on the SI.
3.2 Model accuracy evaluation

For training data, the R2, MAE, and RMSE values were 0.93,

0.48 m, and 0.72 m, respectively. For test data, the R2, MAE, and

RMSE values were 0.73, 0.93 m, and 1.35 m, respectively (Figure 4).

The results showed that the model fit was excellent and could

accurately estimate the larch SI in the study area.
3.3 Current site index and growth suitability

Under the current climatic conditions, the actual SI of larch in the

study area was in the range of 6.0-17.8 m, and the simulation results

were in the range of 5.9-18.9 m (Figure 5). The simulation results were

consistent with the actual values. The areas with a higher SI were

mainly concentrated in the Bashang and high-altitude mountain

areas, while scattered in the Yanshan Mountain, Taihang Mountain,

and Lvliang Mountain. The SI was below mean in most areas of the

North China Plain. According to the growth suitability classification

of larch, the unsuitable area, poorly suitable area, moderately suitable

area, and highly suitable area accounted for 15.45%, 42.12%, 31.94%,

and 10.49%, respectively (Figure 6).
3.4 Site index and change trend under
future climate scenarios

The growth distribution areas changed significantly under the

future climate scenarios (p<0.05) (Figure 7). The high-growth areas

would be mainly distributed along the mountains. Additionally, there

was a tendency for the high growth area to shrink over time. Among

the scenarios, the SSP5-8.5 climate scenario had the most significant

performance at the end of the century (2090s), and the SI values of

larch in the study area ranged from 6.8 to 12.2 m, with a mean value of

8.4 m. The SI of larch was below 8.4 in most areas, accounting for
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68.8% of the total area. However, the SI remained high (>8.4) only in

the sporadic mountain tops, accounting for 31.2% of the total area.

The potential SI distribution trend line was drawn to further

understand the current and future potential SI changes for larch

(Figure 8). Under each climate scenario, the area of the low growth

distribution areas (SI<7) showed inapparent change, increasing peak

for the moderate growth distribution areas (7<SI<9), whereas the area

of the high growth distribution areas (SI>9) showed a decreasing trend

from the current to the 2090s periods. With the increase in radiation

intensity, the growth distribution areas with high SI decreased more

sharply, and the change in the low value was not obvious.
3.5 Growth suitability distribution and area
change trend under future climate scenarios

The suitable areas showed different degrees of changes over time

and with the increase in radiation intensity (Figure 9). In the same

climate scenario over time, the highly and moderately suitable areas

significantly decreased, and the poorly suitable areas and unsuitable

areas showed an increasing trend (p<0.05). With the increase in

radiation intensity, there was a shrinkage phenomenon in the highly

suitable growth area, which was the most significant under the SSP5-

8.5 climate scenario (p<0.05). In 2090, the highly suitable area of larch

was scattered only in Wutai Mountain, Lvliang Mountain, Taihang

Mountain, and Wuling Mountain. More than 80% of the study area

would be transformed into unsuitable and poorly suitable areas.

The change rule of the unsuitable area was not obvious, while the

poorly suitable area showed an increasing trend. The largest area

increase occurred in the SSP5-8.5 climate scenario, from 42.12% to

62.39% until 2090 (Figure 6). Both highly and moderately suitable

growth areas showed a downward trend. By the end of this century,

the total moderately suitable area under the SSP1-2.6, SSP2-4.5 and

SSP5-8.5 climate scenarios decreased by 5.82%, 6.42%, and 10.26%,

respectively, and the highly suitable area was only 2.17%, 1.75%, and

1.40%, respectively.
3.6 Environmental factor response curve

The potential SI of larch gradually decreased with increasing

BIO10, and showed a stable stage between 17 and 21°C, and then
FIGURE 4

Comparison between observed and predicted values of SI for larch in training (left) and validation (right). Solid lines indicate the regression fitting results.
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showed a downward trend (Figure 10). The potential SI of larch

showed an increasing trend with BIO12, and was in a stable stage

between 400 and 550 mm, and then increased with increasing

precipitation. The mean diurnal range (BIO2) in the study area was

between 11 and 14°C, and the difference was small. The potential SI

showed a significant downward trend with increasing BIO2 and then

remained in a relatively stable state.
4 Discussion

In this study, based on a large number of sample plots, we

obtained the actual SI through the mean stand height and

dominant height transformation equation and achieved a good

fitting effect (R2 = 0.9258) (Figure 4). However, compared with Li

et al. (2021), who used the transformation equation to calculate the SI
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of larch plantations in northern Hebei Province, the equation fitting

effect was poor. The possible reason for this difference was that the

environmental differences caused by the large regional scale in this

study led to the inconsistent growth of larch. Another reason may be

that Li et al. considered only the larch plantation. Using the model to

simulate the forest SI requires the model to explain at least 50% of the

SI variation while satisfying the accessibility of auxiliary variables

(Blyth and Macleod, 1981). We used RF to build a model based on the

actual SI of the stand and environmental factor data. The model

explained 73% of the SI variation and had a good prediction

performance. Spatially explicit maps of larch SI constructed by RF

model can help forest managers to clarify the distribution pattern of

l a r c h f o r e s t p r o d u c t i v i t y a n d t o d e v e l o p s p e c ifi c

management strategies.

Our study found that climate was the main factor affecting the

productivity of larch in the study area. The results were highly
FIGURE 5

Spatial distribution pattern of larch SI (left) and suitable areas for larch growth (right) in current climate condition.
FIGURE 6

Area proportions of different suitable growth regions of larch over different periods (current, 2030s, 2050s, and 2090s) under SSP1-2.6, SSP2-4.5, and
SSP5-8.5 climate scenarios.
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FIGURE 7

Spatial distribution patterns of larch SI under future climate scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5).
FIGURE 8

Area proportions of the distribution regions with different larch SI values for current and future periods (2030s, 2050s, and 2090s) under SSP1-2.6, SSP2-
4.5, and SSP5-8 climate scenarios.
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FIGURE 9

Spatial distribution patterns of larch suitable growth areas under different climate scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8) in different future periods
(2030s, 2050s, and 2090s).
FIGURE 10

Response curves for the four factors included in larch SI model. The mean (red line) and standard deviation (light red area) of the probability presence.
The prediction value of SI is shown as a function of each variable while all other variables are held at their median values at presence locations.
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consistent with other studies (Zang et al., 2016; Duan et al., 2022). The

climatic factors affecting the site index of larch were mainly the

temperature of the warmest quarter (BIO10), the mean diurnal range

(BIO2), and the annual precipitation (BIO12) (Figure 3). BIO10 was

the most important climatic factor affecting the SI of larch, which

supported our first hypothesis. The study area has the highest

temperature in summer, which is also the forest growing season.

From the response curve, it was found that the growth of larch was

not promoted with increasing temperature; in contrast, the growth of

larch was inhibited with increasing temperature. Bowman et al.

(2014) believed that suitable summer temperatures may improve

forest productivity by promoting the photosynthesis of trees.

However, when the temperature exceeds the optimum temperature

for tree growth, high temperatures will lead to higher tree respiration

and transpiration, resulting in a decline in forest productivity. It has

also been suggested that high summer temperatures may increase

drought stress, thereby restricting the radial growth of trees, especially

in low and middle latitudes (Jiang et al., 2016). BIO2 reflects the

temperature changes during one day, and the photosynthesis of plants

during the day and respiration at night contribute to the

accumulation of nutrients (Wang et al., 2021a). Some studies have

shown that the diurnal temperature difference also affects the growth

rate of plants (Pan et al., 2020). As the global climate continues to

warm in the future, the limiting effect of temperature on larch growth

may be further strengthened (Zhang et al., 2021). Precipitation has

been proven to have a positive effect on the growth of larch (Shen

et al., 2015; Lv et al., 2019a). In this study, the growth of larch tended

to be stable when BIO12 was greater than 400 mm (Figure 10).

Precipitation is an important restricting factor affecting tree growth,

and it has a great impact on forest productivity in dry areas and a

lower impact on areas with high rainfall (Luo et al., 2017). The

average annual precipitation in most parts of the study area is more

than 400 mm, so precipitation had little effect on the growth of larch.

Xie et al. (2020) also showed that the increase or decrease in rainfall

had little effect on the growth of larch.

Topographical factor, especially elevation, was also the important

factor affecting larch productivity in the study area. The areas with a

higher SI were mainly concentrated in the Bashang and high-altitude

mountain areas, whereas the SI was low in low-altitude areas, for

example, North China Plain. Temperature is the main climatic factor

limiting the growth of trees at high altitudes, and the growth of low-

altitude trees is mainly affected by precipitation (Du et al., 2022). As

future temperature increases, the limiting effect of low temperature on

tree growth is augmented at high altitude (Bai et al., 2019). At low

altitudes, rapid evaporation of soil moisture may occur due to

increasing temperature (Wu et al., 2021). Thus, trees at low

elevations will be more vulnerable to drought stress, forcing them

to migrate to higher elevations (Lv et al., 2019b). Our results indicate

that under future climate scenarios, the highly and moderately

suitable distribution areas of larch will be concentrated mainly in

the high-elevation mountains due to increasing temperature and

precipitation, while the low-elevation areas and plains areas will be

transformed into poorly suitable and unsuitable area due to drought

stress. Lv et al. (2019b) used a species distribution model to predict

the suitable distribution areas of larch in Hebei province under future
Frontiers in Plant Science 10
climate scenarios, and the conclusions also showed a trend of

migration to higher elevation areas in the future, consistent with

the results of this study. Larch can maintain a distribution of highly

suitable area for growth in alpine areas, which is in line with its

growth characteristics (Fang et al., 2019).

Under different climate scenarios in the future, the highly and

moderately suitable areas of larch showed a downward trend, and with

the increase in time and radiation intensity, the growth inhibition effect

increased (Figure 9). Our finding supported the second hypothesis and

was consistent with Wang et al. (2022) that the radial growth of larch

distributed in northeast China will show a decreasing trend with

increasing periods (from 2020s to 2080s) and increasing emission

scenarios (from RCP2.6 to RCP8.5). Another similar study showed

that larch productivity was higher under low-concentration climate

scenario (RCP 2.6), and lower under high-concentration climate

scenarios (RCP6.0 and RCP8.5) in the future (Shen et al., 2015).

Increasing temperatures and decreasing rainfall during the growing

season will cause frequent drought events in the future, which in turn

will cause tree species to shift to north and higher elevations (Falk and

Hempelmann, 2013). Our results verified this trend. This geographical

shift resulted in a continuous decrease in the area of suitable habitats for

larch from the SSP1-2.6 to the SSP5-8.5 climate scenario. The decline

trend of larch productivity was consistent with the suitable distribution

trend analyzed by the species distribution model under different

climatic scenarios in the study area (Cheng et al., 2022). Therefore,

we speculated that future climate warming may cause widespread

mortality of larch in unsuitable and poorly suitable growth areas.

Ashraf et al. (2013) proved the possibility of our speculation, and

suggested that future climate warming will lead to higher winter

temperatures, increasing the duration and frequency of winter

melting and subsequent refreezing, ultimately leading to tree

mortality. However, some studies suggest that future warming may

promote larch productivity (Sato et al., 2016; Wu et al., 2021). Although

many uncertainties remain, our study suggested that climate change,

especially future climate warming, was an important factor influencing

changes in larch suitable growth areas in Hebei and Shanxi

regions, China.

Our study implied that varied forest management activities

should be applied to maximize multifunctional benefits for larch

forests across different suitable growth areas. In the moderately and

highly suitable areas, increasing afforestation areas and developing

large-diameter timber cultivation using larch trees are the priority,

especially in Bashang areas and high-altitude mountains. Conversely,

in unsuitable and poorly suitable areas, we should reduce larch

afforestation areas and develop nature-based solutions to manage

larch forests to maintain their basic soil and water conservation and

other ecological functions. These specific forest management

strategies are necessary to mitigate the adverse effects of climate

change on larch forests. However, there were some limitations in the

study. For example, we did not consider the impact of anthropogenic

factors on larch productivity, which biased our results; in this study,

we only considered the three most likely emission scenarios for future

climate change, but did not include all climate scenarios. We should

avoid these limitations in future studies to make the results

more informative.
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5 Conclusion

In this study, RF was used to evaluate the growth suitability of L.

principis-rupprechtii in the study area under different future climate

scenarios. The model had good prediction performance, and the results

were highly reliable. The results showed that the suitable growth areas

of L. principis-rupprechtii decreased significantly under different

climate scenarios in the future. Under the SSP5-8.5 climate scenario,

it was expected that by the end of this century (2090s), the unsuitable

area, poorly suitable area, moderately suitable area, and highly suitable

area would account for 14.54%, 62.39%, 21.67%, and 1.40%,

respectively. Through the evaluation of the importance of

environmental factors, it was concluded that temperature was the

main driving factor affecting the potential SI of L. principis-

rupprechtii, in which its growth was more stable when the

temperature of the warmest quarter (BIO10) was between 17 and 21°

C. The research results have guiding significance for the sustainable

management and decision-making of L. principis-rupprechtii.
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Garcıá-Valdés, R., Estrada, A., Early, R., Lehsten, V., Morin, X., and Dornelas, M.
(2020). Climate change impacts on long-term forest productivity might be driven by
species turnover rather than by changes in tree growth. Glob. Ecol. Biogeogr. 29, 1360–
1372. doi: 10.1111/geb.13112

Guo, H., Lei, X., You, L., Zeng, W., Lang, P., and Lei, Y. (2022). Climate-sensitive
diameter distribution models of larch plantations in north and northeast China. For. Ecol.
Manage. 506, 119947. doi: 10.1016/j.foreco.2021.119947

Hof, A. R., Montoro Girona, M., Fortin, M. J., and Tremblay, J. A. (2021). Using
landscape simulation models to help balance conflicting goals in changing forests. Front.
Ecol. Evol. 9. doi: 10.3389/fevo.2021.795736

Horst-Heinen, T. Z., Dalmolin, R. S. D., ten Caten, A., Moura-Bueno, J. M., Grunwald,
S., de Araújo Pedron, F., et al. (2021). Soil depth prediction by digital soil mapping and its
impact in pine forestry productivity in south Brazil. For. Ecol. Manage. 488, 118983.
doi: 10.1016/j.foreco.2021.118983

Hultquist, C., Chen, G., and Zhao, K. (2014). A comparison of Gaussian process
regression, random forests and support vector regression for burn severity assessment in
diseased forests. Remote Sens. Lett. 5, 723–732. doi: 10.1080/2150704x.2014.963733

Jiang, X. L., An, M., Zheng, S. S., Deng, M., and Su, Z. H. (2018). Geographical isolation
and environmental heterogeneity contribute to the spatial genetic patterns of Quercus
kerrii (Fagaceae). Heredity (Edinb) 120, 219–233. doi: 10.1038/s41437-017-0012-7

Jiang, Y., Zhang, J., Han, S., Chen, Z., Setälä, H., Yu, J., et al. (2016). Radial growth
response of Larix gmelinii to climate along a latitudinal gradient in the greater khingan
mountains, northeastern China. Forests 7, 295. doi: 10.3390/f7120295

Kumar, P., Sukhdev, P., and Al, E. (2008). The economics of ecosystems and
biodiversity (TEEB). Rensselaer Working Papers Economics 36, e34–e35. doi: 10.4324/
9781849775489

Li, W. B., Lv, Z. G., Huang, X. R., and Zhang, Z. D. (2021). Predicting spatial
distribution of site index for Larix principis-rupprechtii plantations in the northern
hebei province. Sci. Silvae Sin. 57, 79–89. doi: 10.11707/j.1001-7488.20210308

Liu, D., Fan, Z., Fu, Q., Li, M., Faiz, M. A., Ali, S., et al. (2019). Random forest
regression evaluation model of regional flood disaster resilience based on the whale
optimization algorithm. J. Cleaner Prod. 250, 119468. doi: 10.1016/j.jclepro.2019.119468

Li, C., and Zhang, H. (2010). Modeling dominant height for chinese fir plantation using
a nonlinear mixed-effects modeling approach. Sci. Silvae Sin. 46, 89–95. doi: 10.11707/
j.1001-7488.20100314

Luis, F., Margarida, T., Frank, T., Alistair, Y., Sales, L. J., and Peter, S. (2003). Modelling
the Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) site index from site factors in
Portugal. Forestry 76, 491–509. doi: 10.1093/forestry/76.5.491
Frontiers in Plant Science 12
Luo, D., Huang, J.-G., Jiang, X., Ma, Q., Liang, H., Guo, X., et al. (2017). Effect of
climate and competition on radial growth of Pinus massoniana and Schima superba in
china’s subtropical monsoon mixed forest. Dendrochronologia 46, 24–34. doi: 10.1016/
j.dendro.2017.08.001

Lv, Z., Li, W., Huang, X., and Zhang, Z. (2019a). Larix principis-rupprechtii growth
suitability based on potential NPP under climate change scenarios in hebei province. Sci.
Silvae Sin. 55, 37–44. doi: 10.11707/j1001-7488.20191105

Lv, Z., Li, W., Huang, X., and Zhang, Z. (2019b). Predicting suitable distribution area of
three dominant tree species under climate change scenarios in hebei province. Sci. Silvae
Sin. 55, 13–21. doi: 10.11707/j.1001-7488.20190302

Mamet, S. D., Brown, C. D., Trant, A. J., and Laroque, C. P. (2019). Shifting global Larix
distributions: Northern expansion and southern retraction as species respond to changing
climate. J. Biogeogr. 46, 30–44. doi: 10.1111/jbi.13465

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., et al.
(2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and
their extensions to 2500. Geosci. Model. Dev. 13, 3571–3605. doi: 10.5194/gmd-13-3571-
2020

Molina, E., Valeria, O., Martin, M., Girona, M. M., and Ramirez, J. A. (2022). Long-
term impacts of forest management practices under climate change on structure,
composition, and fragmentation of the Canadian boreal landscape. Forests 13 1292.
doi: 10.3390/f13081292

Niu, L., Guo, Y., Li, Y., Wang, C., Hu, Q., Fan, L., et al. (2021). Degradation of river
ecological quality in Tibet plateau with overgrazing: A quantitative assessment using
biotic integrity index improved by random forest. Ecol. Indic. 120, 106948. doi: 10.1016/
j.ecolind.2020.106948

Oddi, L., Migliavacca, M., Cremonese, E., Filippa, G., Vacchiano, G., Siniscalco, C.,
et al. (2022). Contrasting responses of forest growth and carbon sequestration to heat and
drought in the Alps. Environ. Res. Lett. 17, 045015. doi: 10.1088/1748-9326/ac5b3a

Ogden, A. E., and Innes, J. L. (2009). Application of structured decision making to an
assessment of climate change vulnerabilities and adaptation options for sustainable forest
management. Ecol. Soc 14, 11. doi: 10.5751/ES-02771-140111

Pan, J., Fan, X., Luo, S., Zhang, Y., Yao, S., Guo, Q., et al. (2020). Predicting the
potential distribution of two varieties of Litsea coreana (Leopard-skin camphor) in China
under climate change. Forests 11 1159. doi: 10.3390/f11111159

Petrie, R., Denvil, S., Ames, S., Levavasseur, G., Fiore, S., Allen, C., et al. (2021).
Coordinating an operational data distribution network for CMIP6 data. Geosci. Model.
Dev. 14, 629–644. doi: 10.5194/gmd-14-629-2021

Radosavljevic, A., Anderson, R. P., and Araújo, M. (2014). Making better maxent
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