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Introduction:Nondestructive detection of crop phenotypic traits in the field is very

important for crop breeding. Ground-based mobile platforms equipped with

sensors can efficiently and accurately obtain crop phenotypic traits. In this study,

we propose a dynamic 3D data acquisition method in the field suitable for various

crops by using a consumer-grade RGB-D camera installed on a ground-based

movable platform, which can collect RGB images as well as depth images of crop

canopy sequences dynamically.

Methods: A scale-invariant feature transform (SIFT) operator was used to detect

adjacent date frames acquired by the RGB-D camera to calculate the point cloud

alignment coarse matching matrix and the displacement distance of adjacent images.

The data frames used for point cloud matching were selected according to the

calculated displacement distance. Then, the colored ICP (iterative closest point)

algorithm was used to determine the fine matching matrix and generate point

clouds of the crop row. The clustering method was applied to segment the point

cloud of each plant from the crop row point cloud, and 3D phenotypic traits, including

plant height, leaf area and projected area of individual plants, were measured.

Results and Discussion: We compared the effects of LIDAR and image-based 3D

reconstruction methods, and experiments were carried out on corn, tobacco,

cottons and Bletilla striata in the seedling stage. The results show that the

measurements of the plant height (R²= 0.9~0.96, RSME = 0.015~0.023 m), leaf

area (R²= 0.8~0.86, RSME = 0.0011~0.0041 m2 ) and projected area (R² =

0.96~0.99) have strong correlations with the manual measurement results.

Additionally, 3D reconstruction results with different moving speeds and times

throughout the day and in different scenes were also verified. The results show that

the method can be applied to dynamic detection with amoving speed up to 0.6 m/

s and can achieve acceptable detection results in the daytime, as well as at night.

Thus, the proposed method can improve the efficiency of individual crop 3D point

cloud data extraction with acceptable accuracy, which is a feasible solution for

crop seedling 3D phenotyping outdoors.

KEYWORDS

field crop phenotype, RGB-D camera, point cloud segmentation, dynamic 3D
reconstruction, crop seedling detection
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1 Introduction

Crop phenotyping has become a bottleneck restricting crop

breeding and functional genomics study since the development of

sequencing technology (Yang et al., 2020). To resolve the

shortcomings of traditional crop phenotype identification methods,

which are labor intensive, time-consuming and frequently destructive

to plants, a number of intelligent and high-throughput phenotyping

platforms have been developed to investigate crop phenotypic traits

(Song et al., 2021). Compared with the laboratory environment, the

outdoor environment is much more variable. Because the vast

majority of crops are grown in the field, crop phenotyping in the

outdoor environment remains one of the major focuses for

researchers. Since ground-based phenotyping platforms can obtain

crop phenotypic data outdoors with high accuracy by carrying

multiple sensors, researchers have developed fixed, as well as

mobile ground-based platforms for crop phenotyping (Kirchgessner

et al., 2017; Virlet et al., 2017). The disadvantage of a fixed platform is

that the system can only cover a limited area, which restricts the

application. However, sensors mounted on a moveable platform

could overcome these issues (Qiu et al., 2019).

Among the various phenotypic traits of crops, morphological and

structural phenotypes can directly indicate plant growth. Continuous

measurements of morphological and structural phenotypes play an

important role in contributing to crop functional gene selection

(Wang et al., 2018). Compared with 2D imaging, 3D imaging

techniques allow point cloud acquisition of plants, from which

many more spatial and volumetric traits during plant growth can

be calculated accurately (Wu et al., 2022). In fact, 3D imaging

technologies are the most popular methods to analyze the structure

of plants and organs (Ghahremani et al., 2021). Current 3D imaging

techniques mainly include image-based, laser scanning-based, and

depth camera-based techniques.

The image-based reconstruction technique mainly uses the

structure from motion (SfM) algorithm, in which a 3D point cloud

is reconstructed by pairing relative feature points extracted from

series 2D images of a target. To reconstruct plants, such as wheat

seedlings, cucumber, pepper and eggplant, 60 images taken around

each plant were needed for smaller plants, and 80 images were needed

for taller plants to reconstruct the point cloud stability (Hui et al.,

2018). For example, Nguyen built a 3D imaging system using ten

cameras, a structured light system, and software algorithms (Nguyen

et al., 2015). Approximately 100 images around the tomato plant were

taken for individual tomato plant 3D point cloud reconstruction

(Wang et al., 2022). Image-based 3D imaging approaches can provide

detailed point clouds with inexpensive imaging devices. Nevertheless,

images must be taken from multiple cameras or taken at a high

frequency on a movable platform to obtain sufficient overlaps for

photogrammetry (An et al., 2017).

Light detection and ranging (LiDAR) devices are the main sensors

used for laser scanning-based methods. LiDAR can record the spatial

coordinates (XYZ) and intensity information of a target by measuring

the distance between the sensor and the target with a laser and

analyzing the time of flight (ToF) (Sun et al., 2018). Although the

spatial resolution of the 3D model produced by LiDAR is not as dense

as those obtained by image-based methods, it is sufficient for

extracting most plant morphologic traits (Zhu et al., 2021). As an
Frontiers in Plant Science 02
active sensor, LiDAR can operate regardless of illumination

conditions, and 3D lasers were considered to have lower

throughput for 1-2 minutes were required to collect data at each

plot (Virlet et al., 2017).

Depth camera-based methods have been proposed for crop 3D

phenotyping in recent years. RGB-D sensors, such as Microsoft

Kinect and Intel Realsense cameras, have been widely used due to

their low cost and ease of integration (Paulus, 2019).In addition to the

three color channels (RGB – Red, Green, Blue), RGB-D sensors

provide a depth channel (D), measuring the distance from the

sensor to the point in the RGB image with which the length and

width of a stem or the size of a fruit, can be estimated. Compared with

image-based and laser scanning-based methods, depth camera-based

methods are far superior in terms of data acquisition and

reconstruction speed (Martinez-Guanter et al., 2019). The feasibility

of crop point clouds reconstructed by depth cameras to obtain

information on crop phenotypic traits has been demonstrated

indoors, and the Kinect family of products has been used more

extensively in controlled environments such as greenhouses (Milella

et al., 2019). Soybean and leafy vegetables were reconstructed and

showed high accuracy in predicting the fresh weight of plants (Hu

et al., 2018; Ma et al., 2022). Devices mounted on outdoor mobile

platforms typically used shading devices or record with low light to

avoid inaccuracies in depth camera detection (Andújar et al., 2016)

and have been validated by researchers for detecting corn orientation,

plant height, and leaf tilt information (Bao et al., 2019; Qiu

et al., 2022).

Together with sensors, robotic systems will substantially enhance

the capacity, coverage, repeatability, and cost-effectiveness of plant

phenotyping. Dynamic data collection with robotic movement can

greatly improve the efficiency of crop phenotyping, especially in the

field. Mueller-Sim et al. (Mueller-Sim et al., 2017) established a robot

equipped with a custom depth camera and a manipulator capable of

measuring sorghum stalks while moving between crop rows. An

RGB-D camera was installed on GPhenoVision, a mobile platform

based on a high-clearance tractor for field-based high-throughput

phenotyping, for cotton 3D data acquisition. The results showed that

a Kinect camera with a shadowing device could provide accurate raw

data for plant morphological traits from canopies in the field (Jiang

et al., 2018). Compared with Kinect, the Realsense sensor has also

shown strong capabilities in reconstructing point clouds indoors

(Milella et al., 2019), and its depth information is more accurate

and has a much higher fill rate than the Kinect camera for outdoor

plant detection (Vit and Shani, 2018). Generally, the commonly used

3D sensors for phenotyping robots include stereo vision cameras and

ToF (time of flight) cameras (Atefi et al., 2021). The reason for this

would be that these sensors provide color information along with

depth information. Thus, the plant can be effectively segmented, and

the traits can be effectively measured.

To efficiently and accurately acquire 3D phenotypic traits of

individual plants in an outdoor environment, it is necessary to

collect multiple frames of data during the movement of mobile

platforms and reconstruct the data continuously. In this study, a

method of dynamic detection of individual plant phenotypic traits in

a row from the top in an outside environment based on a consumer-

grade RGB-D sensor is proposed. Using a Realsense camera equipped

on a mobile platform to acquire color and depth information of crops
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from the top, the specific objectives were to (1) dynamically acquire

and verify the robustness of the reconstructed plant point cloud data

within different conditions and (2) segment individual plant point

clouds to obtain plant phenotypic traits and verify the accuracy of the

point cloud reconstruction method.
2 Material and methods

An RGB-D sensor was installed on an automatic movable

platform for 3D crop reconstruction. Depth information and RGB

images were continuously acquired during the movement of the

platform to reconstruct the point cloud of each frame. To

reconstruct the point clouds of crop rows completely and

accurately, it is necessary to match the adjacent point cloud during

the movement process. In this study, scale-invariant feature

transform (SIFT) was used to pick up the features for matching and

to calculate the displacement of homonymous points in the

neighboring image continuously.

When the platform moves forward with different speeds, the

displacement of homonymous points detected by SIFT in neighboring

images on both the X and Y axes of the platform will be calculated

based on which data frames of the RGB-D sensor will be selected for

crop row point cloud reconstruction. Point clouds of the selected

frame were rotated through the coarse matching matrix, which was

computed from displacement on the X and Y axes, and then the

colored iterative closest point (Colored_ICP) algorithm was used to

calculate the fine matching matrix between two point cloud frames.

Finally, the discrete points in the point cloud were processed using

filters to obtain a high-quality point cloud. The point cloud of each

plant was segmented to obtain the height, projected area, and partial

leaf area of each plant. Figure 1 shows the data collection and

processing procedure of crop 3D phenotypic traits.
2.1 Data acquisition

Data acquisition was performed by a movable platform with an

independent four-wheel drive developed in our laboratory. The

platform is capable of moving automatically with an integrated

visual, inertial guidance and GPS navigation solution at various

speeds in the field environment, up to a maximum speed of 1.2 m/

s. A RGB-D camera (INTEL RealSense D435i, Intel Corporation,

Santa Clara, CA, USA) sells for about $299 was equipped on the

platform to perform data acquisition.

In this study, image acquisition software with the PyQt5 interface

was developed, which is capable of capturing color images and depth

images. The minimum working distance of the Realsense D435i

camera is 0.11 m, and good depth image quality can be achieved

within 1.5 m of the camera. To ensure the quality of the depth image

for creating accurate 3D point clouds, the camera was placed 1.1 m

away from the ground. The positive direction of the X-axis of the

sensor is opposite to the direction of the platform movement, and the

Z-axis of the sensor is perpendicular to the ground. The platform can

move along with plant rows at different speeds during the data

acquisition process. Depth images, as well as RGB images, were

acquired automatically, and resolutions were both set as 1280×720
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pixels at a frequency of 30 Hz in this study. The plants involved in this

study were maize, tobacco, cotton and Bletilla striata. Cotton was

planted in the field, while other crops were planted in pots that were

managed in an outdoor environment. The movable platform was

equipped with a notebook computer (Surface Pro 4 i5 8 + 256G),

which was connected to the Realsense D435i depth camera and

controlled the camera to acquire and store depth images and color

images continuously. The data acquisition scenarios are shown

in Figure 2.
2.2 Point cloud match

Point clouds of each frame from the RGB-D sensor were

combined by depth image and color image. To reconstruct the

point clouds of crop rows precisely and completely during the

moving process, it is necessary to match the point clouds of

adjacent frames. However, during the matching process between

two frames, a relatively accurate coarse matching matrix must be

provided for the neighboring point clouds as a starting position for

fine matching to avoid fine matching falling into local optima, which

will lead to matching errors (Li et al., 2020).

In this study, the sensor data acquisition frequency was set as

30 Hz, which means that when the platform moved through the crop

canopy with different speeds, the number of frames acquired was

different for the same plant. More frames of one plant will be captured

if the platform moves at a lower speed than that of a faster speed. To

improve the data processing efficiency while ensuring the matching

accuracy, and make sure the method can be applied to various mobile

platforms with different speeds, not all the collected frames were used

for point cloud matching. Data frames for matching were selected by

analyzing the collected adjacent RGB images automatically.

Frames selected for the crop row point cloud reconstruction and

adjacent point cloud coarse matching matrix were both determined

by the shift of the homonymous points between adjacent color images

acquired by the RGB-D sensor during the moving process of the

platform. To calculate the physical distance of the homonymous point

offset in adjacent images accurately, the scale for calibration was

photographed before data acquisition, and the conversion coefficient I

of each pixel in the RGB image relative to the real world was

calculated before the experiment by a calibration plate.

The SIFT operator was calculated separately from the original

RGB images of two selected frames for matching. Descriptor sets of

reference image Ri=(ri1,ri2,ri3,⋯,ri128) and observation image Ci=(ci1,

ci2,ci3,⋯,ci128) were created, and the descriptors of feature points

within the two sets were measured by Euclidean distance (Eq. 1).

Through the experiment, feature points in the observation image with

a distance less than 0.3 from the reference image are retained.

d Ri,Cið Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
128

j=1
rij − cij
� �2s

Eq:1

Due to the perspective relation in color images, each pixel shows a

different scaling ratio with a different distance away from the target.

Because the RGB-D camera can acquire RGB images, as well as depth

images, to avoid different conversion coefficients of the detected locations

in color images with different depths, it is necessary to filter the (x,y)
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information of the detected descriptive sub locations to keep the points in

the field of view that adapt to the conversion coefficient I . The internal

reference rotation matrix of the depth image (Hir ) and color image (Hrgb

) and the rotation matrix R and the translation matrix T of the depth

image aligned with the color image are available in the SDK of the
Frontiers in Plant Science 04
Realsense D435i camera. Here, we use Equation 2 to make the spatial

coordinates of the depth image align with the same point spatial

coordinates of the color image by translation and rotation.

Prgb = RPir + T Eq:2
A

B

C

FIGURE 1

Overall process of crop 3D reconstruction and phenotyping. (A-1) The sketch of data acquisition. (A-2) Images capture from Realsense D435i, the
original of depth image was saved as unit16 format, we have enhanced the depth image to facilitate readers’ understanding in the figure. (B-1) Multi-view
point cloud reconstruction from sequentially depth and RGB image. (B-2) The coarse rotation matrix calculate from adjacent image. (B-3) Result of fused
point cloud captured in row. (C-1) Part of original point cloud in row. (C-2) Point cloud with preprocessed method. (C-3) Crop point cloud in row. (C-4)
Results of individual plant by cluster method. (C-5) The plant height is from the point cloud plane to the top point. (C-6) ① The surface reconstruction
result. ② Image of crop leaf. (C-7) Binary image of crop projection area ① view of maize point cloud ② view of maize top image.
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Pir = H−1
ir pir Eq:3

Prgb = H−1
rgbprgb Eq:4

pir = H−1
ir prgb − T

� �
R−1Hir Eq:5

Pir (Eq. 3) and Prgb (Eq. 4) are brought into (Eq. 2); the depth

information of each pixel in the RGB image (prgb ) represented by the

corresponding depth image pixel pir can be related to (Eq. 5). Then,

the depth information for all similar pairwise descriptors of the RGB

image was calculated. In this study, some of the frames acquired were

selected to reconstruct the plant point clouds. First, the first frame was

recorded with both depth images and RGB images. Then, the distance

of the platform moving along the working direction away from the

position of the first frame was calculated by comparing homonymous

points in different images by the SIFT algorithm. When the calculated

distance was in the setting range, the current frame was chosen for the

reconstruction. Then, the translation rotation matrix S was

constructed as follows.

S =      

1 0 0 −△ x

0 1 0 −△ y

0 0 1 0

0 0 0 1

     

0
BBBBB@

1
CCCCCA

By using the calculation method described above to obtain the depth

information of each feature pixel in the RGB image, we can obtain

depth information of each point in the image, and a point cloud with

color can be produced after the fusion of depth information and RGB

information. During the process of coarse matching, the point cloud

was multiplied by the translation rotation matrix S to ensure that the

point cloud had a better initial position for the fine-matching step.

The colored ICP algorithm of Park et al. (Park et al., 2017), which was

a derived matching scheme of ICP for reconstructing point clouds

from RGB-D images, was used in the fine-matching part. The fine-

matching part using the structure information and the color
Frontiers in Plant Science 05
information from adjacent point cloud to calculate a new rotation

translation matrix, to make sure the adjacent point cloud accurately

merging together. The process of crop row point cloud matching is

shown in Figure 3, and the reconstruction results of crop row in

different scenarios is shown in Figure 4.
2.3 Point cloud preprocessing and individual
plant segmentation

The original data of the depth sensor inevitably contain noise, and

the point cloud alignment process also induces noise. Thus,

preprocessing procedures are needed to remove noise from the

produced point cloud. In this study, statistical filters were used to

remove noise values and obvious outliers from the point cloud first.

Then, a radius filter was used to define the topology of the point cloud,

and the number of points within 0.002 m of each point was calculated

to filter out the points with fewer than 12 neighboring points. Finally,

the point cloud was packed into a 0.001 m side voxel grid by a voxel

filter, and coordinate positions of the points in each voxel were

averaged to obtain an accurate point (Han et al., 2017). Since plant

rows were reconstructed by the proposed method, it is necessary to

separate the point cloud of individual plants from the whole row data

to acquire single-plant 3D phenotyping traits. Here, the clustering

method was applied to segment the point cloud of each plant.

To cluster individual plants in the plant row point cloud, the plane

of the crop row point cloud was corrected to make the plane in the

point cloud parallel to the plane in the real world to accurately calculate

the phenotypic traits. We used the random sampling consistency

(RANSAC) method to extract the plane in the point cloud and

obtain the plane equation. The normal vector of the plane in the

point cloud was extracted, and the point cloud was transformed to

ensure that the normal vector was parallel to the Z axis in the point

cloud. Then, the downsampling method was used to speed up the point

cloud clustering. We cluster the points with a minimum of 40 points
A B

C

FIGURE 2

Data acquisition based on the movable platform; (A) Schematic diagram of data acquisition (B) Data acquisition in the field; (C) Data acquisition in pot
field.
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and a critical distance of 0.04 m according to the density clustering

method. However, the clustering method will lead to excessive plant

segmentation of the point cloud. To merge the parts of a single plant

cluster from the point cloud, the maximum and minimum values of

XYZ in each c lus te red po int se t were saved as Ci=

[X min, X max, Y min, Y max, Z min, Z max] . The center of the Y axis of

each cluster was calculated at the same time by Y i_center= Y i_max

− Y i_min . All the clusters were compared in order if the Y i_center of

cluster Ci is between the maximum value Y max and minimum value

Y min of cluster Cj . This indicates that cluster Cj contains cluster Ci , and

the boundary data of cluster Ci will be deleted. The process is repeated

until the Y i_center value of any cluster is not within the range of

maximum value Y max and minimum value Y min of other clusters. The
Frontiers in Plant Science 06
point cloud of each cluster was saved, and the original point cloud was

segmented according to the boundary of each cluster by

[X min, X max, Y min, Y max, Z min, Z max]+0.002 . The segmentation

result between the plant and the ground was obtained as the individual

plant point cloud. Individual plant was extracted from the point cloud

of the crop row according to the clustering method mentioned above,

and the Otsu algorithm was used to segment the foreground point

cloud and the background point cloud for plants. Then, each point in

the three-dimensional point cloud was segmented by using the 2G-B-R

model through point cloud color information to obtain the point cloud

of the plant area. The area outside the plant was also segmented by

color to obtain the point cloud data of the soil layer. The results of point

cloud preprocessing for different crops outdoors are shown in Figure 5.
A

B

E D

C

FIGURE 3

Process of crop row point cloud matching.
A

B

FIGURE 4

Results of crop row point cloud reconstruction (A) Reconstruction result of maize planted in pot (B) Reconstruction result of maize planted in the field.
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3 Experiments and results

3.1 Point cloud reconstruction with different
moving speeds

Seedling plants, including corn, tobacco, cotton, and Bletilla striata,

were chosen for this study. Cotton was planted in the field, while other

crops were planted in pots that were managed in an outdoor

environment. Experiments were conducted to verify the effects of

different moving speeds of the platform by the method proposed in

this study. The platform was set to three speeds of 0.2 m/s, 0.4 m/s, and

0.6 m/s, with coherent speeds for field data acquisition. The method can

automatically select data frames for 3D point cloud reconstruction with

different moving speeds, and the reconstruction results are shown in

Figure 6. The results indicated that the method can stably reconstruct the

point cloud from different speeds set in the experiment. The point cloud

excluding the pot under the plant shows a uniform and clear state.

Therefore, the reconstruction method proposed in this study has good

robustness and can achieve a more complete point cloud reconstruction

of the crop with different vehicle speeds, which can be used for data

acquisition according to different data analysis requirements.
3.2 Point cloud reconstruction at different
times of the day

The moving platform was set as a speed of 0.2 m/s to investigate

the robustness of date acquisition and point cloud reconstruction

within different lighting environments. Since it is difficult to obtain

plant color information at night, the LED light was equipped on the

movable platform to obtain data at night. Potted maize and tobacco

plants at the seedling stage were used as experimental objects. Data

acquisition was performed in March 2022 for tobacco and in June

2022 for maize. The experiment was divided into three time periods:

in the morning, in the afternoon, and at night for validation. Figure 7

shows the data acquisition scene during different periods of the day.

As seen in Figure 8, the point cloud reconstructed from data

captured in the morning is lighter than that of other times because the
Frontiers in Plant Science 07
illumination in the morning is weaker than that in the afternoon, so

more detailed information on plant structures, such as leaf veins and

lower yellow leaves, can be shown. In the afternoon, the illumination

was stronger than that in the morning, and the leaf shape was clearer

than that in the morning during the reconstruction results. In the data

acquisition experiment at night, it is difficult to obtain the complete

detailed texture of the target in a dark environment. Therefore, the

accuracy of the target depth information will be affected, and the

reconstruction results were missing, especially for the part covered by

leaves. Overall, the reconstruction results of the target at night were

still complete, and the reconstructed plant point cloud was similar to

that in the daytime.

The results show that the method we propose in this paper can

obtain point clouds all day long, and the RGB-D camera shows a high

potential advantage in reconstructing plant point clouds. Proper

illumination is helpful for selected RGB-D cameras to acquire

depth information, and the method can also achieve normal results

at night.
3.3 Comparison of point clouds with
different methods

To verify the effectiveness of the method proposed in this study,

potted plants of corn and Bletilla striata were used to collect data out

of the door using a LIDAR from FARO and a Canon 77D cameras,

respectively. Five stations were set up to scan while using a laser beam

to scan corn and Bletilla striata plants, and the SCENE software

developed by FARO was used to merge multiple sites to obtain the

best quality point cloud information. Images were taken by a Canon

77D camera with a lens of 18-135 mm, and the image resolution was

6000×4000 pixels. The camera was mounted on the platform to

capture images of plant rows vertically and continuously

downward. During image processing, the software Visual-SfM was

used for sparse reconstruction (Zheng and Wu, 2015), and the

multiview stereo (MVS) algorithm developed by Furukawa and

Ponce was used for dense plant reconstruction (Furukawa and

Ponce., 2010).
FIGURE 5

Results of point cloud preprocessing for different crops.
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As shown in Figure 9, the number of point clouds obtained by the

3D scanner based on LIDAR was relatively sparse in this experiment,

and a certain number of point clouds can be seen missing from the

top view, but the overall point cloud was relatively complete and

uniform. For the image-based 3D reconstruction method, 127 images

for a single Bletilla striata plant and 140 images for a single corn plant

were taken for 3D reconstruction. Due to the wrinkles on the surface

of maize leaves, the reconstruction effect was relatively poor, and

there were also many missing details in the reconstruction of Bletilla

striata. In comparison, the proposed method could obtain a dense

point cloud, but its reconstruction effect was not as good as that of

LIDAR. However, it can reflect more details of plants and leaves than

the method of image-based reconstruction.
Frontiers in Plant Science 08
3.4 Effectiveness of phenotypic
trait extraction

3.4.1 Evaluation of plant height
Theoretically, plant height is defined as the shortest distance

between the upper boundary (the highest point) of the main

photosynthetic tissues (excluding inflorescences) and the ground

level (Pérez-Harguindeguy et al., 2016). The distance between the

surface of the soil layer and the individual plant top was measured as

the plant height in this experiment. The RANSAC method was used

to fit the soil layer plane, and the distance from the highest point of

the plant area to the plane was calculated as the calculated height of

each plant compared with the actual value measured manually.
A B

FIGURE 7

Scene of data acquisition during three periods of a day (A) Data acquisition in the day time (B) Data acquisition at night.
A

B

C

FIGURE 6

Results of dynamic reconstruction for corn at speeds of 0.2 m/s, 0.4 m/s, and 0.6 m/s. (A–C) are different views of single crop reconstruction in plant
rows with different speeds.
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Seedlings of tobacco, potato, corn and Bacillus striata were tested in

this experiment. The results are shown in Figure 10. The test samples

include 12 cotton, 45 corn, 16 tobacco and 12 Bletilla striata. Plant

height showed strong agreement in cotton (R2 > 0.96), corn (R2 >

0.95), tobacco (R2 > 0.95) and Bletilla striata (R2 > 0.90) and with a

good error index for cotton (RMSE = 0.017 m), corn (RMSE =

0.023 m), tobacco (RMSE = 0.015 m) and Bletilla striata (RMSE

= 0.022).

3.4.2 Evaluation of plant leaf area
To verify the 3D reconstruction effect of the proposed method,

the scanned crop leaves were manually removed. To get the ground

truth of plant leaf area, we put leaves under a glass plate with a scaled

background one-by-one to shoot the images. Processing was

performed using Adobe Photoshop software to mark the leaf area,

and the pixel number within the leaf area was counted to calculate real

area for each leaf. In the reconstructed point cloud data, the leaf point

cloud was manually clipped using CloudCompare software to obtain

the area of each leaf by faceting. The test samples include 16 cottons, 7

corns, 49 tobaccos and 15 Bletilla striatas. As shown in Figure 11, the

correlations (R2 ) of the final data were all higher than 0.8, and the

maximum root mean square error (RSME) was 0.0041 m2 for cotton,

Bletilla striata, maize and tobacco.

3.4.3 Evaluation of plant projection area
The projected plant area of the canopy can reflect various growth

information of plants, which can be used for plant growth monitoring

(Jia et al., 2014). The 2D image was obtained by the camera above the

target plant. The non-green leaf part of the plant was removed from
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the image using Adobe Photoshop software. In the 3D point cloud,

part of the point cloud of the target plant was processed, the Z-axis

information of the point cloud was deleted, a grid of 0.001 m×0.001 m

was divided under the XY coordinate system, and the number of grids

occupied by the point cloud was counted to quantify the projected

area of the point cloud. The test samples include 12 cottons, 41 corns,

16 tobaccos and 12 Bletilla striatas. The results from 2D image and

point cloud processing are shown in Figure 12, and the correlations

(R2 ) between the two were distributed from 0.96 to 0.99 for cotton,

Bletilla striata, maize and tobacco.
4 Discussion

In this study, we propose a method that can reconstruct the 3D point

cloud of plant seedlings with a low-cost depth camera from the plant top

view by attaching it to a movable platform. The study verified the

feasibility of using a Realsense D435i depth camera with different moving

speeds and at different periods of a day for 3D reconstruction in outdoor

environments. The accuracy of the proposed reconstruction method was

demonstrated by comparing multiple acquisition device reconstruction

results and individual plant features extracted with manual

measurements. In the experiment, the sensor was directly equipped on

the movable platform exposed to the external environment with no

shading, which poses a great challenge to the sensor itself. This sensor

showed good resistance to the outdoor environment, as shown in the

study by Vit et al. (Vit and Shani, 2018). The proposedmethod provides a

potential solution for continuous monitoring of phenotypic information

of plant growth in all weather in the field.
A

B

C

FIGURE 8

Results of the dynamic reconstruction of crops throughout the day of the experiment. (A, B) are different views of individual corn seedlings in the
reconstructed point cloud. (B) shows different views of individual tobacco seedlings in the reconstructed point cloud.
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In the dynamic reconstruction experiment with different speeds, we

found that the reconstruction effect was affected by the crop growth stage.

The results of 3D reconstruction were different when data from the same

plant with the same moving speed and collection method in various

growth stages were collected. The main reason for this was that the plant

height and canopy projection area of crops were different at different

stages. It is necessary to ensure that the sensor is approximately 0.6 m

away from the crop canopy to ensure the 3D reconstruction result. Thus,

the position of the sensor needs to be raised to detect a higher plant,

which will cause the larger distance between the sensor and the ground to

affect the accuracy of the lower part of the plant. Moreover, the lower part

will be blocked by upper leaves, or data of side leaves cannot be captured

completely which can be leading to the loss of point clouds. This will limit

the proposed method, which is mainly applicable to crop seedlings. The

problem may be solved by adding multiple sensors in the side view for

data collection. In addition, a speed that is too fast will lead to insufficient

frames collected for the final data reconstruction, so the maximum speed

of this experiment was set as 0.6 m/s, which was restricted by the sensor

performance. This problem will be resolved gradually with the advent of

new types of depth sensors.

We also compared the results of plant 3D point clouds captured by

LIDAR and image-based reconstruction methods. During the

experiment, we found that LIDAR is suitable for large-scale 3D data

acquisition of plants, but LIDAR requires much more time to scan the
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crop (about 10mins each scan position in our research). The disturbance

of crops due to the influence of wind during the scanning process cannot

be avoided. Therefore, the method has difficulty describing the point

cloud of an individual plant in detail. We also used the image-based

reconstruction method proposed by Jay et al. (Jay et al., 2015) for 3D

reconstruction. It was found that this method can achieve high-quality

data for relatively small crops (such as Bletilla striata), but for crops with

relatively high plant height (such as corn seedlings), many more images

are needed to reconstruct a high-quality point cloud. However, it is

difficult to obtain a large number of high-quality images for a single plant

in a field with intensive crop planting. Moreover, the processing of 3D

reconstruction was time- and resource-consuming. The method we

proposed was also inevitably affected by natural wind during the data

collection; because the collection speed was faster than that of the LIDAR

and image-based methods, the impact was greatly reduced.

Experiments were carried out outdoors. Compared to the indoor

experiments conducted by Hu et al. using Kinect (Hu et al., 2018), the

proposed method performed a lower correlation (R2 ) and root mean

square error (RSME) of the data obtained for the plant height. This is

mainly because indoor environments, such as lighting and

background, are controllable, which benefits the accuracy of data

acquisition. In the outdoor environment, dynamic data acquisition is

affected by the changing light and wind, which will cause errors

between sensing data and manual measurement values. The analyzed
A

B

D

C

FIGURE 9

Comparison of LIDAR-based, image-based and proposed methods for 3D reconstruction. (A, B) are different views of corn point clouds, and (C, D) are
different views of Bletilla striata point clouds.
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leaf area had a lower correlation than the plant height with the actual

value, which may be influenced by the different leaf attitudes and

angles causing occlusion at the position of the blade root during the

shooting process. Therefore, it was difficult to obtain complete point

cloud data for each plant blade. Disturbances are inevitable outdoors

and will also affect the results. This presents higher requirements for

point cloud processing methods. A better method to process the
Frontiers in Plant Science 11
obtained crop point cloud to judge and supplement the point cloud of

incomplete leaves will improve the detection accuracy of the leaf area.

In this study, the inaccuracy of camera depth was reduced by

reconstructing the point cloud from multiple viewpoints. The results

are sufficient to demonstrate the feasibility of this method for high-

throughput point cloud data acquisition in field environments at a

low cost. It provides a reliable and cost-effective solution for breeders
FIGURE 10

Correlation analysis of tobacco, potato, maize and Bletilla striata plant height data.
FIGURE 11

Correlation analysis of leaf area of cotton, maize, Bletilla striata and tobacco.
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to acquire high-throughput plant 3D phenotyping traits in field

environments and for related agricultural practitioners to acquire

plant growth data.
5 Conclusion

This study proposes a dynamic field 3D phenotyping method

suitable for various crops during the seedling stage by using a

consumer-grade RGB-D camera installed on a ground-based

movable platform. The results provide evidence of the method’s

robustness with different moving speeds and different periods of a

day for various kinds of crops. The experimental results show that (1)

the image coarse matching algorithm based on the SIFT operator can

provide a good initial point for fine matching, and the method can

calculate the physical distance of adjacent frames, which was also

effective for selecting matching frames. Combined with the colored

ICP algorithm to compute a final match matrix, the whole process has

shown effectiveness in the 3D reconstruction of seedling crops in the

field environment. (2) The RGB-D camera-based method is suitable

for various crops in the seedling stage with different moving speeds at

different periods of the day. Compared with LIDAR and image-based

3D reconstruction methods, the proposed method can improve the

efficiency of individual crop 3D point cloud data extraction within an

acceptable accuracy, which may become a potential solution for crop

3D phenotyping outdoors. (3) The measurement of 3D phenotypic

traits for corn, tobacco, potato and Bletilla striata in the seedling stage

have a strong correlation with manual measurement results. The

plant height (R²= 0.9~0.96, RSME = 0.015~0.023 m), leaf area (R²=

0.8~0.86, RSME = 0.0011~0.0041 m2 ) and plant projection area (R²

= 0.96~0.99). Thus, the method can be applied as a reliable and cost-

effective solution for high-throughput crop 3D phenotyping in

field environments.
Frontiers in Plant Science 12
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

PS: conceptualization, writing original draft, review and editing.

ZL: data curation, methodology, writing original draft. MY:

methodology, experimental. YS: methodology, experimental. ZP:

methodology, experimental. WY: funding acquisition, writing –

review and editing. RZ: project administration, methodology,

software, writing – review and editing. All authors contributed to

the article and approved the submitted version.
Acknowledgments

This work was supported by the National Key R&D Program of

China (2022YFD2002304), the key Research & Development

program of Hubei Province (2020000071), National Natural Science

Foundation of China (U21A20205), Key projects of Natural Science

Foundation of Hubei Province (2021CFA059), and Fundamental

Research Funds for the Central Universities (2662019QD053,

2021ZKPY006), HZAU-AGIS Cooperation Fund (SZYJY2022014).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
FIGURE 12

Correlation analysis of the projected area data of single crops obtained based on 3D point cloud for cotton, maize, Bletilla striata and tobacco.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1097725
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2023.1097725
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Plant Science 13
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
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