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Citrus reticulata Blanco ‘Orah’ is grown throughout southern China and provides

enormous economic value. However, the agricultural industry has suffered

substantial losses during recent years due to marbled fruit disease. The present

study focuses on the soil bacterial communities associated with marbled fruit in

‘Orah’. The agronomic traits andmicrobiomes of plants with normal andmarbled

fruit from three different orchards were compared. No significant differences

were found in agronomic traits between the groups, except for higher fruit yields

and higher quality of fruits in normal fruit group. Additionally, a total of 2,106,050

16S rRNA gene sequences were generated via the NovoSeq 6000. The alpha

diversity index (including the Shannon and Simpson indices), Bray–Curtis

similarity, and principal component analyses indicated no significant

differences in microbiome diversity between normal and marbled fruit groups.

For the healthy ‘Orah’, the most abundant associated phyla were Bacteroidetes,

Firmicutes, and Proteobacteria. In comparison, Burkholderiaceae and

Acidobacteria were the most abundant taxa with the marbled fruit group. In

addition, the family Xanthomonadaceae and the genus Candidatus Nitrosotalea

were prevalent with this group. Analysis using the Kyoto Encyclopedia of Genes

and Genomes pathways showed that several pathways related to metabolism

significantly differed between the groups. Thus, the present study provides

valuable information regarding soil bacterial communities associated with

marbled fruit in ‘Orah’.
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1 Introduction

Soil health is a vital factor for plants and provides for a central

living ecosystem and crop yields (Lehmann et al., 2020). Soil health

can be affected by climate, mineral composition, organic content,

and biotic factors (Turmel et al., 2015; Lal, 2016). Recent studies

have shown that soil microbiota influence plant growth and yields

(Bulgarelli et al., 2013; Khodakovskaya et al., 2013; Tkacz and Poole,

2015). Microbiota are complex systems of microbial communities

that provide important proteins, such as enzymatic resources, for

plant roots (Gianfreda and Rao, 2008). The rapid development of

next-generation high-throughput sequencing and bioinformatic

technologies has revealed new information about the function of

microbiota. The connections between plants and the soil microbiota

around their roots are critical for nutrient absorption, metabolism,

and growth (Hacquard et al., 2015; Chialva et al., 2022).

Citrus reticulata Blanco ‘Orah’ is a small, fruiting citrus tree that

was bred by Spiegel-Roy and Vardi (Usman and Fatima, 2018; Qin

et al., 2022). To date, this variety has been planted throughout

southern China and has produced substantial income for farmers

and high-quality fruits for consumers (He et al., 2022). Although

‘Orah’ orchards have been expanding rapidly in recent years, the

plants suffer from several diseases, such as marbled fruit (Liu et al.,

2020b). Marbled fruit occurs in several citrus varieties and results in

shrunken and light-weight fruit. Boron deficiency and citrus yellow

vein clearing virus can also lead to marbled fruit (Liu et al., 2019).

Furthermore, grafting, scions, seedlings, and indirect contact by

tools can spread the disease, causing large financial losses.

Therefore, understanding the pathogeny of this disease would

improve the production of ‘Orah’.

Identification of soil-based probiotics provides potential

therapies for plant diseases (Wu et al., 2020). For example,

irrigation of plant roots with Bacillus subtilis has been found to

alleviate wilt disease in watermelon (Citrullus lanatus) (Ge et al.,

2021). Bacillus amyloliquefaciens inhibits pathogenic bacteria,

including Gymnosporangium asiaticum, Phytophtora parasitica,

and Pythium helicoides (Asari et al., 2016; Ngalimat et al., 2021).

Furthermore, investigation of soil microbiomes from the roots of

diseased plants may identify possible pathogens, thereby aiding in

providing precise and specific therapies for marbled fruit disease.

Unfortunately, data on the microbiome remains scarce, resulting in

a lack of key evidence regarding the pathogeny of marbled fruit

disease in ‘Orah’.

Nevertheless, this is among the most concerning diseases in

‘Orah’. The current treatment strategies include increasing nutrition

by fertilizing, replenishing the beneficial microbiome, sod-culture,

and hormonal control (Qin et al., 2022). These therapies provide

clear effects against marbled fruit disease; however, they still have

several defects. First, these therapies are concerned with the whole

environment of the plants rather than the inhibition of a specific

pathogen. Additionally, these therapies are complicated to use.

Thus, more details are required regarding the pathogenesis of

marbled fruit disease in ‘Orah’. In the present study, we

compared normal, healthy fruits (NF) and marbled fruits (MF)

from three different orchards. The plant and fruit morphologies of

the NF and MF groups were examined. In addition, the soil
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microbiomes from the roots of these groups were evaluated via

16S rRNA gene sequencing using a next-generation approach.

Finally, we analyzed the differences in diversity, taxa, and

functions of the microbiome between NF and MF. This

information will will provide potential information of marble fruit

disease for ‘Orah’.
2 Materials and methods

2.1 Field experiments and sampling

The tested ‘Orah’ trees were growing in three different orchards

in Wuming, Naning, China, specifically Guangxi Jiacai Ecological

Agriculture Co., Ltd (Wuming, Nanning, China; named JC),

Guangxi Nanning Wanjin Agriculture Co., Ltd (Wuming,

Nanning, China; named WJ), and Xiaoleima village (Wuming,

Nanning, China; named XLM). The plants were sampled from

2019–2021. All the trees were four years old and randomly selected

in the present study. The plants were managed following

standardized fertilization and management techniques as

described by (Huang et al., 2022). All the samples and tested

groups was blind to the investigators in the study. Twenty

individuals from each group were included in the study. The soil

samples were collected from the root of the tree in 20 cm depth. For

each group, 100 g soil samples from 5 trees were collected and 3

replications were performed. We used 0.5 g soil from each sample

for DNA extraction. For analysis of agronomic traits, 10 fruits from

each tree were used for the present study. The soil samples were

talking about the soil around the plant roots.
2.2 Measurements of plant and fruit quality

The plant height, stem diameter, leaf thickness, leaf length, leaf

width, number of fruits, and percentage of NF were calculated

following the methods of (He et al., 2022). Leaf chlorophyll content

was determined as described by (Zhu et al., 2020) using a SPAD-502

chlorophyll meter (Konica Minolta Inc., Japan).

The histology of leaves and fruit peel from the NF and MF

groups were observed via paraffin section as described by (Zhang

et al., 2021). Briefly, the leaf and fruit peel tissues were cut into 2–3

mm sections and embedded in paraffin. The tissues were then cut

into 5 mm slices. Subsequently, the slices were dewaxed using xylene

and the tissues were stained using safranine and fast-green followed

by neutral gum sealing. Finally, the sections were observed and

photographed using a DM2500 optical microscope (Leica

Microsystems, USA).
2.3 DNA extraction and sequencing

DNA was extracted from the samples using a TIANamp Soil

DNA Kit (TIANGEN, China) according to the manufacturer’s

protocols. The quality of the DNA was measured using a 1%

agarose gel and NanoDrop 2000 spectrophotometer (NanoDrop,
frontiersin.org
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USA). The 16S rRNA genes from partial bacterial DNA fragments

were amplified via touchdown polymerase chain reaction (PCR).

The primers for amplification of the variable regions, which

included V3-V4 of the 16S rRNA genes, were 341F: 5′-
CCTAYGGGRBGCASCAG and 806R: 5 ′-GGACTACNN

GGGTATCTAAT (Chialva et al., 2022). Three biological

replicates of the groups were included in the study. For each

sample, PCR was performed on three replicates in a reaction

system with a total volume of 30 mL, composed of 15 mL of

Phusion® High-Fidelity PCR Master Mix (New England Biolabs),

2.5 mL of each primer (10 mM), sterile water, and 10 mL of DNA (1

ng/mL). The reaction was performed as follows: initial denaturation

at 98°C for 30 s, followed by 25 cycles (98°C for 10 s, 55°C for 30 s,

and 72°C for 30 s), and a final extension at 72°C for 5 min. The

products were purified using agarose gel and Agencourt Ampure

XP beads (Beckman, USA) according to the manufacturer’s

instructions. The DNA samples were assayed using a PicoGreen

dsDNA quantitation assay (Thermo Fisher, USA). Sequencing

libraries were constructed using a TruSeq® DNA PCR-Free

Sample Preparation Kit (Cat number: FC-121-3003, Illumina,

USA) following the manufacturer’s instructions, with the addition

of index codes assayed using a Qubit@ 2.0 fluorometer (Cat

number: Q33216, Thermo Fisher, USA) and Agilent Bioanalyzer

2100 (Cat number: 2100-1, Agilent, USA). Finally, the prepared

DNA libraries were sequenced using an Illumina NovoSeq 6000

platform (Illumina, USA).
2.4 Bioinformatic analysis

The raw reads were first filtered to remove low-quality sequences,

tags, and primers; subsequently, the non-bacterial ribosome

sequences and chimeras were removed. The pair-end reads were

assembled using FLASH v1.2.11 (Liu et al., 2021) and the assembled

sequences were clustered into operational taxonomic units using the

CD-HIT algorithm within the UCLUST program (USEARCH V11;

https://www.drive5.com/usearch/). The alpha and beta diversity

comparisons were performed using QIIME2 plugins. The similarity

matrices were used Bray-Curtis distances and the s distances on

square-root transformed abundance data were calculated using

R packages “phyloseq”, “dplyr” and “ggplot2” (Yin et al., 2013).

Functional analysis utilizing the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways was performed using

MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/

MicrobiomeAnalyst/home.xhtml).
2.5 Statistical analysis

The statistical analysis and plotting were performed using R

project (V4.2.1). The alpha and beta diversities were normalized

prior to analysis using the read counts. The Shannon diversity index

was used to reflect the alpha diversity. The Bray–Curtis dissimilarity

matrix and permutational analysis of variance were used to assess

the beta diversity which were analyzed by PRIMER v. 6 (PRIMER-
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E, UK). For the different groups, a principal component analysis

(PCA) graph was plotted to show the clustering of the bacteria.
3 Results

3.1 Plant and fruit quality of ‘Orah’

First, the trees that produced normal and marbled fruit were

compared (Figure 1A). The plant heights, tree trunk, leaf

thicknesses, leaf lengths, leaf widths, and leaf chlorophyll contents

showed no significant differences between the NF and MF from the

three orchards (p>0.05, Table 1). The leaf histology did not differ

between the NF and MF groups; however, the fruit peel contained

more lignin in MF than that in NF (Figure 1B).

The MF contained more lignified cells than did the NF, which

are shown stained red by Safranine in Figure 1A. However, the

number of fruits produced did not significantly differ between the

NF and MF groups (p>0.05, Figure 1C). The percentage of NF was

significantly higher in the NF group than that in the MF group

(p<0.05, Figure 1D).
3.2 Alpha and beta diversity analyses

The present study obtained a total of 2,106,050 16S rRNA gene

sequences, including 1,754,017 sequences (83.28%) that represented a

total of 7,889 effective operational taxonomic units (Supplementary

Table S1), which were mostly assigned to 10 phyla (91.29–94.62%):

Firmicutes, Chloroflexi, Proteobacteria, Bacteroidetes, Acidobacteria,

Actinobacteria, Verrucomicrobia, Cyanobacteria, Thermotogae, and

Thaumarchaeota (Supplementary Table 2).

We used the alpha diversity to calculate the Shannon and

Simpson indices of the different genera. The Shannon index

indicated no significant differences in the average diversity of the

NF and MF groups at all orchards (p>0.05, Figure 2A). In addition,

similar results were found when using the Simpson index to

compare these groups (p>0.05, Figure 2B). To compare the

overall divergence in the bacterial community compositions

among the tested groups, the Bray-Curtis similarity and PCA

were utilized (Figures 2C, D). Both analyses suggested that in the

XLM, the NF and MF groups were highly similar to each other.

However, in WJ and JC orchards, the NF and MF groups were most

similar to the fruit same group from the other orchard.
3.3 Bacterial diversity in soil from roots of
healthy ‘Orah’

The 10 most abundant phyla associated with the NF groups are

shown in Figure 3. For the three orchards, the predominant

bacterial phylum was Bacteroidetes (24.08%), followed by

Firmicutes (22.13%) and Proteobacteria (16.61%). Moreover, the

most abundant bacterial phylum at XLM was Firmicutes (23.21%),

whereas, at the other two orchards, Bacteroidetes was the most
frontiersin.org
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TABLE 1 comparison of the NF and MF plants from three planting areas.

Groups Plant height
(cm)

Tree trunk (mm) Leaf thickness
(mm)

Leaf length
(mm)

Leaf width
(mm)

SPAD Number of
fruiting-bearing

Ratio of NF
(%)

WJ NF 272.67±6.96aA 76.82±3.65abAB 0.35±0.03abA 9.34±0.48aA 4.82±0.37aA 79.26±1.56aA 371.00
±116.29aA

99.48±3.25aA

XLM
NF

218.00±16.35bB 65.49±7.62cBC 0.33±0.01abA 7.85±0.05bB 4.35±0.09abA 75.68
±0.54abA

316.00
±68.13abA

100.00±3.53aA

JC NF 204.67±7.30bB 62.59±2.38cC 0.31±0.01bA 8.15±0.33bAB 4.46±0.18abA 73.33±4.63bA 252.33
±66.54abA

100.00±3.53aA

WJ MF 282±22.37aA 81.71±5.75aA 0.37±0.03aA 8.47±0.82abAB 4.25±0.30bA 74.49
±1.12abA

203.67±81.44bA 28.39±16.20bB

XLM
MF

226.33±2.11bB 65.36±0.65cBC 0.33±0abA 8.19±0.45bAB 4.51±0.04abA 75.55
±2.20abA

229.00
±41.54abA

1.69±2.41cC

JCJ MF 203.67±8.48bB 70.60
±3.69bcABC

0.33±0.03abA 8.01±0.38bAB 4.43±0.36abA 75.91
±3.46abA

193.00±36.79bA 0±3.53cC
F
rontiers in
 Plant Science
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The lowercase letters and uppercase letters after the values showed significant differences at p < 0.05 and p < 0.01, respectively.
A

B

DC

FIGURE 1

Comparisons of leaves and fruits between MF and NF groups. (A) The fruits in the MF and NF groups at the WJ, XLM, and JC orchards. (B) Histology
of the leaves and fruit peel of MF and NF groups, which were analyzed via safranine and fast-green. (C) Statistical analysis of the number of fruits
produced in the MF and NF groups at WJ, XLM, and JC. (D) Percentage of NF in the MF and NF groups at WJ, XLM, and JC. The asterisks show the
significant differences between the two groups (P<0.05) by t-test.
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FIGURE 3

The 10 most abundant phyla of the NF group at JC, WJ and XLM.
A B

DC

FIGURE 2

Alpha and beta diversity analyses of the samples from the MF and NF groups. (A) Shannon index and (B) Simpson index for alpha diversity of the
samples in the MF and NF groups. (C) Correlations of beta diversity and (D) PCA among the groups in the present study.
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abundant phylum (23.78% at JC and 25.50% at WJ). The top three

phyla comprised 62.82% of the observed taxa in the three orchards.

Only 5.95% of observed taxa were not among the top 10 phyla,

which were Bacteroidetes, Firmicutes, Proteobacteria, Chloroflexi,

Acidobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria,

Thaumarchaeota, and Thermotogae (Figure 3).
3.4 Comparing of the microbiomes of NF
and MF groups

To analyze the differences in the soil microbiome between the

NF and MF groups, a linear discriminant analysis of effect size was

conducted. The results show that Burkholderiaceae and

Acidobacteria were abundant in the MF groups. These two

bacterial taxa also showed significantly different abundances

(p<0.05, Student’s t-test; Figure 4). At the family level,

Xanthomonadaceae was significantly more abundant in all the

MF groups compared to that in the NF groups (p<0.05).

SAGMCG-1 was significantly more abundant in the MF groups

from JC and WJ than in the MF group from XLM (p<0.05,

Figure 5A, Supplementary Table 3). At the genus level,

Candidatus Nitrosotalea was overrepresented in all the MF groups

compared to that in the NF groups (p<0.05, Figure 5B,

Supplementary Table 4).
3.5 Function of prokaryotic communities in
soil from roots of ‘Orah’

KEGG analysis was performed to predict and investigate the

functional profiles of the prokaryotic communities. The results

showed that 21 pathways were significantly different between the

NF and MF groups (p<0.05, Figure 6, Supplementary Table 5).

Several metabolic pathways were significantly more enriched in the

NF groups than those in the MF groups, such as tetracycline

biosynthesis, glyoxylate and dicarboxylate metabolism, flavonoid

biosynthesis, xylene degradation, limonene and pinene degradation,

lysine degradation, metabolism of xenobiotics by cytochrome P450,

and chloroalkane and chloroalkene degradation. The KEGG

pathways for dioxin degradation, phosphonate and phosphinate

metabolism, phosphotransferase system, linoleic acid metabolism,

ethylbenzene degradation, prolyl 4-hydroxylase, and benzoate

degradation were more enriched in the MF groups than those in

the NF groups (Figure 6).
4 Discussion

In the present study, ‘Orah’ trees with healthy fruit and marbled

fruit were sampled to reveal their differences in agronomic traits

and soil microbiome in the root regions. To assess potential

pathogenic microbes related to marbled fruit disease, PCA and

clustering analyses were conducted to determine the diversity of the
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microbiome. Marbled fruit disease, which occurs due to multiple

factors, such as pathogenic microbes, can be relieved by soil-based

probiotic treatments (Vuong et al., 2017). Finding and utilizing

beneficial microorganisms to improve the quality of citrus fruit is a

worthwhile research task. Three different orchards were included in

the present study to eliminate the effects of varied natural

growth conditions. Moreover, the cultivation and management

techniques were similar among these orchards, which

approximated those of commercial production. However, under

these conditions, 5–10% plants still developed this disease and

knowledge on its occurrence from a microbiome view is limited.

Therefore, this study investigated the differences in agronomic

variables and soil microbiomes from the root regions of NF and

MF groups of ‘Orah’.

Many investors who bear the risks brought by MF disease desire

to solve this issue. A previous study showed that approximately

57.14% of plants with MF also suffered from yellow vein disease and

100% were infected with the Citrus tristeza virus (Bettini et al.,

2018). Furthermore, several diseases in citrus that occur due to

microbial or viral infections affect fruit production. In America, a

stubborn disease of citrus caused by Spiroplasma citri results in

smaller, deformed fruits with lower yields (Mello et al., 2010). Citrus

yellow vein clearing virus causes yellow vein disease in lemons,

which leads to yellowing, bright veins, and leaf drop, resulting in a

decrease in yield (Liu et al., 2020a). This virus can be spread by

grafting, tools, seedlings, and scions (Zhen et al., 2015).

Additionally, Aphid leguminosae and Aphid spiraea can spread

this disease in lemons (Tannice and Eric, 2013; Garcıá et al.,

2016). Some lemon trees are cut down once MF occurs. To date,

specific treatments for MF disease are lacking. Furthermore, the

pathogenesis of MF may result from a virus or other microbes. The

common treatment strategies, such as hormonal treatment and

additional fertilization, cannot cure the disease (Banyal and Sharma,

2015; Garcıá et al., 2016). Hence, developing new probiotics is

important for this disease (Luang-In et al., 2020). Hence, the present

study compared the agronomic characteristics of the leaves and

fruits of plants with and without MF disease. The disease did not

affect the leaf histology, but only lead to low fruit yields. PCA

indicated that the difference in microbiomes was higher among the

orchards than that between the NF and MF samples. Therefore,

these results imply that MF disease affects fewer aspects than

previously considered. Although the Shannon and Simpson

indices were higher in the MF groups than those in the NF

groups at WJ and XLM, no significant difference in the diversity

of the soil microbiomes of NF and MF groups was found at JC.

Previous studies showed that diversity indicators, such as the

Shannon and Simpson indices, were affected by plant

biostimulant treatment for endemic huanglongbing (also known

as citrus greening disease) (Castellano-Hinojosa et al., 2021) and

reared host plants (Meng et al., 2022). Surprisingly, the present

results showed no significant differences in diversity between the

soil from the roots of the NF and MF groups. We propose that the

different conditions such as temperature, water and location among

the orchards affected the results.
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The taxonomic analysis of healthy ‘Orah’ microbiomes showed

that the predominant taxa in three orchards were Bacteroidetes,

Firmicutes, and Proteobacteria; this is similar to previous studies.

For example, in a study regarding the microbial profiles of affected

intensive citrus orchards in Shuitianba town (31°4′ N, 110°41′ E),
Frontiers in Plant Science 07
Zigui City, Hubei, China, the five predominant phyla were

Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, and

Actinobacteria (He et al., 2022). This similarity shows that the

compositions of the microbiome are similar among various citrus

orchards, and these predominant phyla dominate the microbial
A

B

D

E

F

C

FIGURE 4

Differences in bacterial taxa abundances in the samples of the MF and NF groups. The forest plots show the linear discriminant analysis score (effect
size), indicating the significant differences between the MF and NF groups from (A) JC, (B) WJ, and (C) XLM. The cladograms, which were generated
using the linear discriminant analysis of effect size method, indicate the phylogenetic distribution of microbes in the MF and NF groups from (D) JC,
(E) WJ, and (F) XLM.
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community. The microbiome analysis of NF and MF groups of

‘Orah’ suggested that Burkholderiaceae and Acidobacteria were the

most abundant in MF groups. Burkholderiaceae includes several

plant pathogens, including Rhizobium spp. and Agrobacterium spp.

(Krimi et al., 2002; Deakin and Broughton, 2009). Moreover, at the

family and genus levels, Xanthomonadaceae and Candidatus

Nitrosotalea, respectively, were significantly more abundant in the

MF groups and those in the NF groups. Within the

Xanthomonadaceae family, genera such as Xanthomonas and

Stenotrophmonas contain several species that are plant pathogens

(Ryan et al., 2009). Members of the genus Candidatus Nitrosotalea,

which includes Candidatus Nitrosotalea devanaterra and

Candidatus Nitrosotalea sp. Nd2, have been found in acidic soils

as ammonia-oxidizing archaea (Lehtovirta-Morley Laura et al.,

2016). Candidatus Nitrosotalea spp. were also found in soil

microbial community structures in the soil of rice-frog cultivation

and high-quality grassland topsoils (Yi et al., 2019). The functions

of these microbes are associated with nitrogen cycle. Nevertheless,

the mechanism causing the high concentrations of these microbes

in the soil around MF plants remains understudied. We propose
Frontiers in Plant Science 08
that Candidatus Nitrosotalea has a novel function in MF that

requires further investigation. Additionally, the present study

found functional differences in several metabolic pathways in the

prokaryotic soil communities between the NF and MF groups. The

enriched pathways in the NF groups, including flavonoid

biosynthesis and metabolism of xenobiotics by cytochrome P450,

contributed to fruit yields, whereas the enriched pathways in the

MF groups, such as linoleic acid metabolism, ethylbenzene

degradation, prolyl 4-hydroxylase, and benzoate degradation were

a possible reason for the low weight and quality of the fruit.
5 Conclusion

The agronomic characteristics and soil microbiomes from the

root areas were compared between NF and MF groups of ‘Orah’

trees. The plants showed no significant differences between groups;

however, the fruits of the MF group were lower quality and lighter

weight than those of the NF group. The microbiomes showed no

significant differences between the two groups, which was inferred

from the alpha and beta diversity analyses. The taxonomy of the

microbiomes showed that Burkholderiaceae and Acidobacteria

were predominant in the MF groups. At the family and genus

levels, Xanthomonadaceae and Candidatus Nitrosotalea,

respectively, were significantly more abundant in the MF groups

than those in the NF groups. The functional analysis by KEGG

pathways suggested that the most abundant differing pathways

between both groups were those related to metabolism. Thus,

these findings provide valuable information regarding the control

of MF disease.
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FIGURE 5

Extended error plots identifying significantly different taxa at the (A) family and (B) genus levels.
FIGURE 6

Heatmap of the KEGG analysis of the functional profiles of the
prokaryotic communities.
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