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Background: Considerable attention has been given to how different aspects of

biodiversity sustain ecosystem functions. Herbs are a critical component of the

plant community of dryland ecosystems, but the importance of different life form

groups of herbs is often overlooked in experiments on biodiversity-ecosystem

multifunctionality. Hence, little is known about how the multiple attributes of

diversity of different life form groups of herbs affect changes to the

multifunctionality of ecosystems.

Methods: We investigated geographic patterns of herb diversity and ecosystem

multifunctionality along a precipitation gradient of 2100 km in Northwest China,

and assessed the taxonomic, phylogenetic and functional attributes of different life

form groups of herbs on the multifunctionality.

Results: We found that subordinate (richness effect) species of annual herbs and

dominant (mass ratio effect) species of perennial herbs were crucial for driving

multifunctionality. Most importantly, the multiple attributes (taxonomic,

phylogenetic and functional) of herb diversity enhanced the multifunctionality.

The functional diversity of herbs provided greater explanatory power than did

taxonomic and phylogenetic diversity. In addition, the multiple attribute diversity of

perennial herbs contributed more than annual herbs to multifunctionality.

Conclusions: Our findings provide insights into previously neglected mechanisms

by which the diversity of different life form groups of herbs affect ecosystem

multifunctionality. These results provide a comprehensive understanding of the

relationship between biodiversity and multifunctionality, and will ultimately

contribute to multifunctional conservation and restoration programs in dryland

ecosystems.
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1 Introduction

Biodiversity is a result of the interaction among the species and

their environment and ecological processes (Hector and Bagchi, 2007;

Manning et al., 2018). Additionally, ecosystem functions refer to the

various roles embodied by ecosystems, such as chemical cycling,

energy flow and information transfer (Byrnes et al., 2014; Hautier

et al., 2018). With species extinctions accelerating globally, there is

growing concern that reduced biodiversity affects ecosystem functions

(Jing et al., 2015; Delgado-Baquerizo et al., 2016). The multiple

dimensions of biodiversity include taxonomic diversity,

phylogenetic diversity reflecting evolutionary history, and

functional diversity reflecting resource utilization strategies (Willig,

2011; Richter et al., 2021; Suter et al., 2021). In recent decades,

ecologists have realized that the traditional sense of taxonomic

diversity, i.e. the number of species, ignores the differences in

evolutionary history and ecological functions of species, and

therefore phylogenetic and functional diversity have received

considerable attention (Loewen et al., 2020; Nicholson et al., 2020).

Although the multiple attributes of biodiversity are not necessarily

correlated (Le Bagousse-Pinguet et al., 2019), an integrated

assessment of the relationship between biodiversity and ecosystem

multifunctionality in different dimensions is needed. This can help

further understanding of the evolutionary history and loss of

ecosystem functions due to future species extinctions, and

maximize the potential for conservation effectiveness (Gonzalez

et al., 2020; Scherer-Lorenzen et al., 2022).

There is growing evidence that the diversity of functional traits in

communities is often more important than species richness. This is

because higher functional trait diversity is considered a strong

environmental filter against gradients in resource use strategies or

climatic gradients, for example, specific leaf areas (SLA) (Iknayan

et al., 2014; Cadotte et al, 2015; Laughlin et al., 2020). In contrast to

species taxonomic diversity, knowledge of functional trait diversity

provides researchers with an objective measure of organism roles in

ecosystem function through their impact on species growth,

reproduction and survival (Cadotte, 2017; Krishnadas et al., 2018).

The strength and specific form of the role of species taxonomic diversity

concerning ecosystem function is also determined (number of Species)

(Dıáz et al., 2013). Furthermore, although functional diversity is

promising, the number of measurable traits that contain relevance to

ecosystem function is often relatively low, and whether specific traits

are functionally important, for example for species interactions, is often

unclear (Roscher et al., 2011). Assuming that many traits are

phylogenetically conserved (Burns and Strauss, 2012; Tucker et al.,

2017), phylogenetic diversity can be integrated to account for multiple

functional differences between plant species, and thus can be used as a

parsimonious and robust indicator of biodiversity. Previous studies

have shown that communities with high phylogenetic diversity are

more stable and have ecosystems that function with higher productivity

and more species at different trophic levels (Cadotte et al., 2015; Flynn

et al., 2011; Srivastava et al., 2012). In contrast, low levels of

phylogenetic diversity reflect communities that are relatively

vulnerable to environmental change, less productive and relatively

homogenous in terms of species variety and structure (Cadotte,

2015). Hence, by highlighting the different community components

that may influence ecosystem functions, the quantification of multiple
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into the mechanisms of action underpinning how biodiversity affects

multifunctionality (multifunctionality is the ability of an ecosystem to

provide multiple functions and services simultaneously) (Bullock

et al., 2011).

Among the most exciting findings in the study of biodiversity and

ecosystem multifunctionality over the past decade is that the number

of species, regardless of their status, can significantly affect ecosystem

functioning (i.e. the cycling of energy, nutrients and organic matter

that keeps ecosystems functioning) (Le Bagousse-Pinguet et al., 2019).

The implication of this concept (richness effect) is that species

loss usually harms ecosystems (Fay et al., 2008; Grime, 1998).

Nonetheless, there has been debate about whether the effects of

biodiversity on ecosystem functioning primarily reflect the effects of

species richness (Moi et al., 2021). However, those studies ignore that

even in species-rich vegetation, most of the plant biomass may be

found in a few dominant species the characteristics of which can

determine the inputs to the primary production of the ecosystem. In

other words, much biomass depends on the trait and functional

diversity of dominant plants and is insensitive to the relative

abundance of subordinate and transitional plants (mass ratio effect)

(Ma et al., 2021; Grime, 1998). This means that declines in diversity

may be associated with less apparent effects, which may arise through

the failure of filters and founder effects (Grime, 1998; Avolio et al.,

2019). In particular, we suspect that vegetation dynamics and

ecosystem reassembly continue in a context of reduced propagules,

leading to a possible progressive loss of function. Under this

hypothesis, the importance of plant diversity concerning the

deterioration of ecosystem function may derive primarily from the

effect on the recruitment of dominant species rather than from any

direct effect of richness per se (Wardle et al., 2013; Chaves et al., 2021).

Consequently, whether we are considering the taxonomic, functional

or phylogenetic dimensions of diversity, the influence of dominant

and subordinate plant species on multifunctionality should be more

fully understood in conjunction with richness and mass ratio effects.

Dryland is defined as an area with an aridity index (AI) of less

than 0.65. Drylands store 20% of the global carbon pool, and their net

primary production (NPP) accounts for 30–35% of global NPP

(Reynolds et al., 2007), which is closely associated with dryland

plants. In Northwest China, arid, semi-arid, and semi-humid arid

ecosystems (i.e. drylands) experience a continuous natural vegetation

gradient from desert to meadow grassland and account for over 35%

of China’s land area (Su et al., 2021). Unfortunately, global climate

change, which cause changing amount of precipitation and this cause

changing land use and desertification (Dai, 2013; Su et al., 2021).

These changes may have significant impacts on biodiversity

and associated ecosystem functions. Moreover, as an essential

component of dryland ecosystems, herbs (herb refers to plants with

underdeveloped xylem in the stem, few lignified cells and weak

support force) account for about 67% of the total flora of the

Northwest drylands in China (Dang and Pan, 2002; Li et al., 2013;

Meng and Zhang, 2013; Meng et al., 2015). Additionally, herbs are not

only important indicator species for the resource and environmental

status of the region (Luo et al., 2021; Zhou et al, 2020) but also have

unique roles and special status in supporting material cycling,

maintaining ecosystem functions and coping with climate change in

ecologically fragile and sensitive environments (Li et al., 2021; Nie
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et al., 2019). Herbs include different life form groups (i.e. perennial

and annual herbs) (He et al., 2016). Because different life form groups

of herbs use environmental resources differently, the factors that lead

to changes in ecosystem functions may differ among those groups

(Gómez-Aparicio, 2009).

Recent studies of ecosystem multifunctionality in the region have

indicated that herb richness is increasing with the increasing amount

of annual precipitation through different regions, and drives over 30%

of ecosystem function (Hu et al., 2021; Su et al., 2021). Furthermore,

there are differences in the effects of the diversity of different types of

herbs on ecosystem multifunctionality, which may be due to their

different life history strategies indirectly regulating changes in

multifunctionality (i.e. herbs of different groups differ markedly in

the numbers, phenology and trait characteristics affected by the

environment, This also reflects the dynamic balance between

resource accessibility and conservative strategies of herbs on the

environmental gradient.) (Meng et al., 2015; Wang et al., 2022).

Despite this, it is currently unclear which types of herb play a

dominant role in influencing multifunctionality. Thus, improving

our understanding of the impact of diversity of different herb types on

multifunctionality in the Northwest Chinese drylands. It will improve

our ability to predict resistance or resilience of the communities. To

address these knowledge gaps, we first used multiple attributes of

diversity indicators to explain the changes in taxonomic, functional

and phylogenetic diversity of total, perennial and annual herbs

driving multifunctionality. Naturally, to reveal the influence of

dominant species (mass ratio effect) and subordinate species

(richness effect) of different groups on multifunctionality, we

selected weighted and unweighted indicators of diversity for

quantitative analysis. Ultimately, we combined abiotic factors

(climate, soil and geography) to holistically assess the extent to

which different life form groups of herbs diversity affect

multifunctionality at a spatial scale of 2100 km in the drylands of

northwest China. The following hypotheses were proposed:

H1: Mass ratio and richness effects are mainly used to elucidate

the relationship between the diversity and multifunctionality of

dominant and subordinate species. The mass ratio and richness

effects of different life form groups of herbs will drive the

relationship with multifunctionality, i.e. perennial herbs will be

dominated by the mass ratio effect and annual herbs by the

richness effect.

H2: The multiple attribute diversity of perennial herbs makes a

more significant contribution than does that of annual herbs in

explaining multifunctionality.
2 Materials and methods

2.1 Study site description

This study was conducted along a 2100-km west–east transect

over arid and semi-arid regions in northern China, which exhibits a

contrasting precipitation gradient from 65 to 443 mm (Figure S1).

The study area covered six deserts in northern China, namely the

Gurbantungut, Badangilin, Ulanbuhe, Kubuchi, Mawusu and Tengri

deserts. It also covered a large diversity of vegetation and soil types

(Hu et al., 2021). The dominant shrubs were Haloxylon
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ammodendron and Nitraria tangutorum, the dominant herbaceous

plants were Agriophyllum squarrosum and Stipagrostis pennata. Our

study focused on herbs in the study area, and there was significant

variation in herb richness of different life form groups of herbs (2–14

herbs in total per site, average = 6.36; 2–5 perennial herbs per site,

average = 3.93; 2–9 annuals per site, average = 4.21). The soil types in

the study site were predominantly grey and loess, and the climate was

mostly temperate continental (Hu et al., 2020; Su et al., 2021).
2.2 Field investigation and sampling

Vegetation surveys were performed during the growth peak of the

vegetation season (June–July 2021) according to the local phenology.

The field survey was based on an east-west lateral route, with 50 sites

set up at 30–50 km intervals along precipitation gradients (all sites

were set up in hilly lowlands where the vegetation was in good

condition and undisturbed). A 30 × 30 m plot was set up at each site,

and five 2 × 2 m herb subplots were set up at equal distances within

each plot, using a five-point sampling method (five biological

repetitions). Afterwards, recorded all vascular plant species, except

woody species found in the aboveground vegetation. Leaf length (LL,

cm), leaf width (LW, cm) and plant height (H, cm) were also

measured for all species. In addition, five intact leaves were

collected from each plant, and leaf area (LA) was measured using a

leaf area meter (LI-3100 area meter, LI-COR, Lincoln, USA). After

obtaining the leaf dry mass content (LDM), specific leaf area (SLA)

was calculated from the LA and LDM. Finally, the herbs surveyed in

the subplots were harvested. After being brought back to the

laboratory, they were dried in an oven at 60°C for 12 h and

their aboveground biomass and leaf chemical characteristics

were determined.

A prominent feature of drylands is the ‘fertility island’ effect due

to the discontinuous distribution of plants. To avoid a high degree of

heterogeneity in soil properties, five cores from 0-10 cm depth were

taken at each subplot, and afterwards this five replicates were mixed.

Thus we had five aggregated samples from each plots. When brought

back to the laboratory, five cores were mixed to create one replicate.

This procedure was replicated five times within the five subplots to

generate five biological replicates. Finally, the collected soil samples

were air-dried in preparation for soil property analysis.
2.3 Plant and soil property measurements

For each plant individuals in each subplot, a total carbon analyzer

was used to determine the total carbon content of the plant leaves.

Leaf total nitrogen and total phosphorus contents were determined

using a continuous-flow ion auto-analyzer (Auto-Analyzer 3,

Germany) (Lambers, 2021).

The soil organic carbon (SOC) content was determined using the

dichromate oxidation method (Urbansky, 2001). Soil total nitrogen

(TN), inorganic nitrogen (IN), organic nitrogen (ON) and alkali-

hydrolyzable nitrogen (AN) contents were determined using a

continuous-flow ion auto-analyser (Shamrikova et al., 2022). Soil

total phosphorus (TP) content was measured with the HClO4-H2SO4

ammonium molybdate-ascorbic acid method (Lambers, 2021). The
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molybdenum counterstain method was used to determine the soil

content of activated phosphorus (AVP) and inorganic phosphorus

(IP) (Gilbert et al., 2009). In addition, soil pH was measured using a

pH meter (FiveEasy FE20, Switzerland) placed in a 1:2.5 (v/v) soil/

water extract. Soil water content (SWC) was calculated from soil

weight, indicated as soil moisture as a percentage of dry soil mass

(Ritchie, 1981; Luo et al., 2021).
2.4 Multiple attribute indicators
of biodiversity

Taxonomic diversity is the most intuitive and commonly used

measure of biodiversity, and is determined mainly by the number of

species (Wang et al., 2021). We used species richness to indicate

taxonomic diversity.

Functional diversity in this study included FDis (functional

dispersion, the mean distance in multidimensional trait space of

individual species to the centroid of all species), w.FDis (weighted

by species abundance functional dispersion) and CWM (community-

weighted mean) (Lavorel et al., 2008). For the calculation of FDis, leaf

length, leaf width and plant height were used as functional traits; they

all reflect light retention and water tolerance (Westoby et al., 2002). In

addition, for the calculation of CWM, we chose SLA, which relates to

the relative growth rate and nutrient acquisition and utilization of the

plant (Wright et al., 2004).

Phylogenetic diversity is relevant to species evolution. We

determined the phylogenetic diversity indices using the ‘picante’

package (1.8.2), including MNTD (mean nearest taxon distance)

and w.MNTD (mean nearest taxon distance weighted by species

abundance) (Webb et al., 2002; Kembel et al., 2010).

Richness effects include species richness, FDis and MNTD.

Quality ratio effects include weighted w.FDis, w.MNTD

and CWM.SLA.
2.5 Ecosystem multifunctionality

Multifunctionality is a composite measure of an ecosystem’s

ability to maintain multiple functions simultaneously (Le Bagousse-

Pinguet et al., 2019). Twelve functions, grouped into three functional

categories (C-cycle, N-cycle and P-cycle) were used for calculations

(Table S1). These variables form a good proxy for the biological

productivity and nutrient cycling of ecosystem functions. We used

multiple thresholds to assess the effects of plant diversity on

multifunctionality. Multi-threshold-based calculations provide a

powerful and flexible method for assessing multifunctionality,

which enables the number of well-performing functions to be

captured and the nature and extent of multifunctionality in an

ecosystem to be assessed quantitatively, even when there are trade-

offs between those functions.
2.6 Abiotic variables

In terms of climate, mean annual precipitation (MAP) and

temperature (MAT) were obtained from the World Climate Database
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The aridity level of each site was calculated as an AI (ratio of

precipitation to potential evapotranspiration), which obtained from

the Global Drought Index and Potential Evapotranspiration Climate

Database (https://cgiarcsi.community/) (Hu et al., 2021). For soil

variables, we used soil water content and pH. In addition, longitude,

latitude and elevation were recorded at all plots and applied as spatial

variables. These indicators play a crucial role in the availability of

dryland ecosystem functions. For example, MAP and MAT have

important effects on vegetation and soil properties in drylands, which

in turn directly or indirectly regulate multifunctionality.
2.7 Statistical analysis

We assessed the impact of different types of herb diversity on the

multifunctionality of drylands. First, all variables were z-cores

normalized. We calculated the correlations between the

multifunctionality indicators. Afterwards, among the plant diversity

and environmental indicators. When a correlation coefficient above

0.6 for a pair of candidate variables was observed, one variable was

eliminated to avoid high autocorrelation between variables. The

correlation between plant diversity indicators was not significant.

For indicators related to environmental and multifunctionality, we

excluded latitude, drought index (AI), inorganic phosphorus (IP),

alkaline nitrogen (AN) and organic nitrogen (ON) (Table S1, S2).

Because of the high correlation coefficients.

In terms of the relationship between diversity (taxonomic,

functional and phylogenetic diversity) and multifunctionality in

different life form groups of herbs, we used the ‘multifunc’ package

to calculate slopes (Byrnes et al., 2014). The slopes were used to fit a

linear mixed model to estimate the linear relationships, which was

replicated at thresholds from 0 to 100% (at 1% intervals). The linear

relationship predicted the number of functions that performed at or

above the threshold by the function used to indicate diversity. This

approach is used to investigate how the shape of the fitted curve

changes at different thresholds and to determine the interval from the

minimum threshold to the maximum threshold variation (Byrnes

et al., 2014). The minimum threshold, Tmin, is the minimum

threshold at which the slope is statistically significantly greater or

statistically significantly less than 0 when diversity affects

multifunctionality. The maximum threshold, Tmax, is the threshold

at which the effect of diversity on multifunctionality becomes

insignificant as the threshold increases, i.e. the maximum threshold

at which the slope is not 0. We took the same approach for climate

(MAT and MAP), soil (SWC and pH) and geography (longitude and

elevation) variables.

To assess the effect of mass ratio and richness effects on

multifunctionality, comparisons were made between the absolute

values of their standardized regression coefficients and the sum of

the standardized regression coefficients of all variables (Le Bagousse-

Pinguet et al., 2019). The significance was represented as the

percentage of variance explained. This is similar to a partitioned

analysis of variance. The net effect of diversity was calculated as the

sum of the standardized regression coefficients for all biodiversity

indicators during the model selection process. We then examined the

following identifiable variance scores: climate (MAT and MAP), soil
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(SWC and pH) and geography (longitude and elevation) and each of

the biodiversity indicators.

Finally, multiple regression models were used to assess the

relationships between different life form groups of herbs diversity

and multifunctionality. We fitted the models to all predictor variables

using the maximum likelihood (ML) method within the ‘MuMin’

package (Le Bagousse-Pinguet et al., 2019; Wang et al., 2021). The

models were also subjected to a selection procedure based on DAICc <
2 using AICc (Akaike Information Criteria) to determine the best

predictor variables for ecosystem functioning. All statistical analyses

and visualizations were conducted in R (R Development Core

Team 2017).
3 Results

3.1 The relationship between diversity and
multifunctionality of different life form
groups of herbs

The 95% confidence intervals around the estimated slopes reveal

whether the estimates overlap 0, giving a test of the threshold values at

which diversity has no effect on multifunctionality. Across the

transect, according to the results of the multiple threshold analysis,

the species richness, FDis and CWM.SLA of all herbs together were

positively correlated with Tmin 45%–Tmax 95%, Tmin 46%–Tmax

96% and Tmin 57%–Tmax 98% of the multi-thresholds of ecosystem

functioning (Figure S2). Perennial herbs species richness, FDis,

w.FDis and CWM.SLA were correlated with Tmin 46%–Tmax96%,

Tmin44%–Tmax92%, Tmin41%–Tmax92% and Tmin56%–

Tmax99% of multifunctionality (Figure S3). The annual herb

diversity indicators were more correlated with multifunctionality

than were the perennial herbs, with species richness, FDis and

CWM.SLA explaining Tmin41%–Tmax92%, Tmin43%–Tmax96%,

and Tmin56%–Tmax 96% of the multi-thresholds (Figure S4). We

also found that the MNTD and w.MNTD of herbs did not correlate

with the multifunctionality of the whole threshold.
3.2 Explanation of the mass ratio and
richness effects of different life form groups
of herbs on multifunctionality

Biodiversity effects caused by dominant and subordinate species

may explain the relationship with ecosystem functioning in greater

depth. Our study quantified mass ratio and richness effects for

different types of herbs within an overall threshold interval. The

richness effects of total and annual herbs (both 97%) better explained

multifunctionality than did the mass ratio effect (Figures 1A, C). In

contrast, the mass ratio effect for perennial herbs contributed more to

multifunctionality (53%) than to the richness effect (47%) (Figure 1B).

This suggests that the richness effect due to subordinate species of

annual herbs is the best predictor of multifunctionality, while the

dominant species of perennial herbs play a significant role in the

impact of multifunctionality in the northwest drylands (Figure 1).

With increasing thresholds, the net effect and multifunctional

relevance of the different life form groups of herbs gradually increased
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(Figure 2). The peak was reached at 94, 83 and 92% of the threshold

for total, perennial and annual herbs (Figure 2), despite the weaker

net effect of diversity on multifunctionality at lower thresholds.

However, the multiple attributes of overall diversity enhanced the

multifunctionality of the ecosystem.
3.3 The contribution of herb diversity
attributes to multifunctionality

When climate, soil and geographical variables were considered,

total, perennial and annual herb diversity explained 41, 49% and 47%

of the multifunctional variation (Figure 3). Of these, perennial herbs

contributed more to multifunctionality than did annual herbs. In

addition, functional diversity had the most substantial impact on

multifunctionality among the multiple attributes of diversity.

Functional diversity explained 33, 40 and 36% of the variation

(Figure 3). Although taxonomic and phylogenetic diversity

explained minor multifunctionality, they also contributed to

ecosystem function. These results highlight the need to combine

specific combinations of diversity attributes to understand

ecosystem multifunctionality.

The predictive variables analysis, species richness, FDis and

CWM.SLA of different life form groups of herbs were positively

correlated with multifunctionality (p<0.05). In contrast, MNTD and

w.MNTD were not correlated with multifunctionality (p>0.05)

(Figure 4). Annual herbs, of w.FDis also behaved similarly (Figures 4A,

C). This may be due to the different survival strategies developed by

different life form groups of herbs to adapt to the dryland environment,

leading to inconsistent patterns of effects on multifunctionality.
4 Discussion

Understanding the relationship between herb diversity and

multifunctionality in different life form groups of herbs provides a

better understanding of the complex influence of herbs on dryland

ecosystem function. Our study synthesized the effects of the multiple

biodiversity attributes (taxonomic, phylogenetic and functional

diversity) of herbs on multifunctionality in the drylands of northwest

China. In larger-scale geographic and climatic environments, perennial

and annual herbs drive changes in multifunctionality in terms of mass

ratio and richness effects. Furthermore, perennial herbs diversity

explains multifunctionality better than annual herbs. Such results

emphasize that an integrated consideration of multiple attributes is a

critical step towards understanding the potential mechanisms of

multifunctionality. Comprehensive studies of different life form

groups of herbs provide additional evidence for the multifunctionality

of dryland ecosystems.
4.1 Mass ratio effects and identification
of the richness effects of
ecosystem multifunctionality

The simultaneous effects of multiple biodiversity attributes on

multifunctionality emphasize the need to move from a single
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taxonomy to a more multidimensional biodiversity perspective, which

is essential for restoring and managing dryland ecosystems.

Considering different life form groups of herbs also provides insight

into the complex effects of diversity attributes on ecosystem function.

Our results suggest that herb diversity in terms of multiple attributes

significantly affects the number of functions at the 41–99% threshold

(weighted and unweighted indicators were considered). Some studies

have shown mass ratio and richness effects of different life form groups

of herbs on ecosystem functioning, which is consistent with our results

(Bhattarai and Vetaas, 2003; Wang et al., 2021). As hypothesized, the

effect of total and annual herb diversity on multifunctionality was

mainly driven by richness effects (subordinate species). This may be

because spring snowmelt stimulates more annual herbs to

simultaneously emerge in large numbers of subordinate species, thus

maximizing multifunctionality. In other words, probably the

complementarity of ecological niches strongly drove the relationship

between annuals and multifunctionality (Stehli et al., 1969). Because

subordinate plants will exhibit a high degree of fidelity of association

with a particular vegetation groups, i.e. such plants are smaller in

stature, make rational use of resources to a more limited extent, and
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tend to occupy microhabitats defined by associated dominant species

and phenology (Grime, 1998; Soliveres et al., 2014). This is also

consistent with the general pattern of species distinctiveness in the

region (Wang et al., 2021).

Mass ratio effects (dominant species) are critical in driving the

multifunctional impact of perennial herbs diversity (Valencia et al.,

2015). There is evidence that dominant plants recur in specific

vegetation groups, are relatively large individuals, and exhibit a

wide range of resource use and, as individual species, an enormous

contribution to biomass (selection effect) (Grime, 1998). This

conclusion agrees with our results. For perennial herbs, which are

less influenced by the environment, their nutrient cycling and

phenotypic plasticity are more stable than are those of annuals (Hu

et al., 2022). The mass ratio effect was, therefore, more strongly

correlated with multifunctionality. Our results extend the study of

richness and mass ratio effects in dryland herbs. Although there are

differences in how different life form groups of herbs influence

ecosystem function, our results reinforce the idea that dryland

perennial and annual herbs drive ecosystem multifunctionality with

different survival strategies (Hu et al., 2021).
FIGURE 1

Mass ratio and richness effects of herbs were significant for multifunctionality. The significance of the predictor variables is expressed as the percentage
of variation they explain and is based on the absolute value of their standardized regression coefficients (A, total herbs; B, perennial herbs; C, annuals
herbs). Abbreviaions are as in Table S2.
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4.2 The diverse biodiversity attributes of
different life form groups of herbs enhance
ecosystem multifunctionality

When multiple biodiversity attributes are considered

simultaneously, biodiversity is generally observed to positively affect

multifunctionality (Cadotte et al., 2011). The net effect of herb

diversity within different life form groups were positively correlated

with multifunctionality. This positive relationship may depend on the

particular groups of dryland ecosystem function (Bond and Chase,

2002; Wang and Loreau, 2016). A recent study has demonstrated

that the net effect of herbs were positively correlated with

multifunctionality in the deserts of the Abbey Lake region of China

(Wang et al., 2021). This finding is consistent with our own. We

speculate that herbs consisting of different herb groups are more likely

to contain ecotone broad competitors (Isbell et al., 2018). Positive

relationships occur when competitors contribute more to ecosystem

functions of interest (e.g. C, N and P cycling) (Jiang et al., 2008). In

contrast to our results, in a global dryland study the impact of

multiple biodiversity attributes on multifunctionality was relatively

weak (Le Bagousse-Pinguet et al., 2019). This weaker relationship may

be caused by differences in functional and biodiversity attributes
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associated with biogeochemical cycling. This evidence suggests that

factors affecting multifunctionality depend not only on the

combination of functions associated with ecosystems but also on

the characteristics of the assessed biodiversity attributes.

Interestingly, in our study, the net effect of total and annual herb

diversity on ecosystem multifunctionality was higher than the effect of

perennial herb diversity. This may be related to the life history strategies

of annual herbs. Small amounts of precipitation can rapidly enhance

species abundance (Schwinning and Sala, 2004; Levine and

HilleRisLambers, 2009). Thus, higher abundance enhances the net

effect of annual herbs overall. In contrast, although perennial herbs

drive dryland ecosystem multifunctionality with a mass ratio effect,

their relatively low abundance may be the main reason for this

difference. This may be the result of different strategies for resource

accessibility and conservatism across the environmental gradient for

different life form groups of herbs. Similar to our findings, Isbell et al.

(2018) found that increasing the number of species enhanced

ecosystem function in an experiment on grassland plant diversity.

This implies that ignoring the effects of various attributes encompassed

by biodiversity measures, such as richness and mass ratio effects, may

affect our ability to predict the impact of biodiversity on ecosystem

functioning in drylands.
4.3 Functional diversity is the primary
variable driving ecosystem function, and
perennial herbs better explain dryland
multifunctionality than do annuals

Our ecosystem multifunctionality results track that have

previously found multiple attribute diversity. Previous studies and

the present study found that functional diversity of herbs has a

stronger relationship with multifunctionality than taxonomic and

phylogenetic diversity. (Zuppinger-Dingley et al., 2014; Zhu et al.,

2016; Santala et al., 2022). In line with this, previous studies have

defined biodiversity as a variety of functional traits in communities or

ecosystems rather than the number of species (Reiss et al., 2009;

Aubree et al., 2020). This trend is underpinned by growing evidence

that taxonomic richness typically has only a weak impact on

ecosystem function. Particularly at relatively large geographical

scales, functional traits are increasingly considered to be a more

appropriate biodiversity indicator. Furthermore, in our results,

phylogenetic diversity explains much less of the multifunctionality

than does taxonomic and functional diversity. This is not surprising

in a study of dryland ecosystems. Environmental constraints and the

large number of emergent annual herbs that have difficulty tolerating

environments of high-intensity droughts result in a high degree of

relatedness between individual plants (species redundancy)

(Boulangeat et al., 2012; Schellenberger Costa et al., 2017). This was

also verified in our previous survey of plants, with annual herbs being

dominated by Asteraceae. For perennial herbs, although more

tolerant of extreme drought, it may be that the lower level of

species and trait variability encompassed by phylogenetic diversity

does not make them a better predictor of ecosystem function than

does taxonomic and functional diversity.

As pred ic t ed by our second hypothes i s , mul t ip l e

attribute diversity in perennial herbs explained more ecosystem
A

B

C

FIGURE 2

Net effect of biodiversity attributes multifunctionality. The net effect is
calculated as the sum of the standardized regression coefficients for
all biodiversity indicators selected in the model selection process (A,
total herbs; B, perennial herbs; C, annuals herbs).
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FIGURE 3

Relative importance of climate, geography, soil variables and biodiversity indicators on multifunctionality (A, total herbs; B, perennial herbs; C, annuals herbs).
A B

C

FIGURE 4

Standardized regression coefficients and associated 95% confidence intervals for the multifunctional model predictor variables. Standardized regression
coefficients were derived from the model averaging procedure and averaged over the threshold range (0-100%). Confidence intervals that do not cross
the zero line indicate that the predictor variables considered are associated with a statistically significant (p < 0.05). See Table S3 for the mean thresholds
of the standardized regression coefficients for each predictor variable. (A, total herbs; B, perennial herbs; C, annuals herbs).
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multifunctionality than did multiple attribute diversity in annual

herbs. We found that the FDis of all herbs and the FDis of annual

herbs were the main variables explaining multifunctionality. There

was evidence that communities composed of species with similar trait

values would have lower FDis, while communities composed of

species with divergent traits would have higher FDis (Villéger et al.,

2008; Laliberté and Legendre, 2010). Our results may be explained by

higher species richness in annual herbs, resulting in similar patterns

in all herbs and annual herbs. In addition, annual herbs are subject to

environmental filtering and dispersal constraints, resulting in

stronger ecological niche zonation. As a result, species composition

produces larger variation in traits (e.g. plant height) (Gross et al.,

2017). Perennial herbs are highly adaptable to their environment.

Although they are also subject to environmental filtering and

dispersal limitations, different species have developed similar

drought-tolerant traits throughout long-term evolution, resulting in

functional redundancy. This functional redundancy may limit the

survival strategies of plants and thus reduce the effects of FDis on

multifunctionality (Zheng et al., 2022). Interestingly, perennial herbs

of w.FDis significantly influenced multifunctionality. Although there

is an effect of species redundancy, the traits of dominant species may

be more critical. Strong experimental evidence supports the

hypothesis that dominant plant traits strongly influence ecosystem

function. In a comparative study of the resistance and resilience of

herbs to drought, late frost and fire (MacGillivray et al., 1995),

multiple ecosystem functions were found to be strongly correlated

with the functional traits of the dominant contributors. Moreover,

functional differences between co-occurring dominant species can

profoundly impact ecosystems in terms of maintenance of

productivity. We also noted that the CWM.SLA of different life

form groups of herbs also positively affected multifunctionality.

Although weakly explained, it represents a filter for plants along a

resource use strategy gradient or a climate gradient (Hart and Chen,

2008; Reich et al., 2012).
5 Conclusions

This study provides empirical evidence that the richness effect of

annual herbs and the mass ratio effect of perennial herbs are

essential factors driving multifunctionality in natural dryland

ecosystems. Our findings also suggest that multiple biodiversity

attributes positively affect multifunctionality. On a relatively large

geographical scale, functional diversity was the best indicator for

explaining multifunctionality, and the diversity of perennial herbs

explained more multifunctional variation than did that of annual

herbs. Our results further emphasize the need to consider multiple

attributes of diversity (exceptionally functional diversity) to

understand the relationship between biodiversity and ecosystem

multifunctionality. Moreover, the importance of different life form

groups of herbs in sustaining multifunctional change cannot be
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overlooked when analyzing mechanisms. In an era of a biodiversity

crisis, our findings provide an ecological perspective for maintaining

biodiversity and optimizing ecological restoration processes, and

contributing to improved management and policy action

in drylands.
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