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Grassland restoration measures control soil degradation and improve soil quality

(SQ) worldwide, but there is little knowledge about the effectiveness of

restoration measures affecting SQ in arid areas, and the restoration rate of

degraded grasslands to natural restoration grasslands and reseeded grasslands

remains unclear. To establish a soil quality index (SQI) to evaluate the effects of

different grassland restoration measures on SQ, continuous grazing grassland

(CG) (as a reference), grazing exclusion grassland (EX), and reseeding grassland

(RS) were selected and sampled in the arid desert steppe. Two soil indicator

selection methods were conducted (total data set (TDS) and minimum data set

(MDS)), followed by three SQ indices (additive soil quality index (SQIa), weighted

additive soil quality index (SQIw), and Nemoro soil quality index (SQIn)). The

results indicated that SQ was better assessed using the SQIw (R2 = 0.55)

compared to SQIa and SQIn for indication differences among the treatments

due to the larger coefficient of variance. The SQIw-MDS value in CG grassland

was 46% and 68% lower than that of EX grassland and RS grassland, respectively.

Our findings provided evidence that restoration practices of grazing exclusion

and reseeding can significantly improve the SQ in the arid desert steppe, and

native plant reseeded can accelerate soil quality restoration.

KEYWORDS

ecological restoration, restoration rate, soil quality, native species reseeded,
desert steppe
Abbreviations: SQ, soil quality; SQI, soil quality index; TDS, total data set; MDS, minimum data set; SQIa,

additive soil quality index; SQIw, weight additive soil quality index; SQIn, Nemoro soil quality index; CG,

continuous grazing grassland; EX, grazing exclusion grassland; RS, reseeding grassland.
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1 Introduction

The restoration of degraded land is a worldwide concern.

Grazing is the main use way of grassland (Mottet et al., 2017).

Grazing land covers about a quarter of the global land area, mostly

in arid and semi-arid lands (Gan et al., 2012; Mcsherry and Ritchie,

2013). Unfortunately, overgrazing has resulted in natural grassland

soil degradation worldwide (Xie et al., 2020). The Northwest China

desert steppe located in an arid and rainless zone has experienced

severe soil degradation driven primarily by inappropriate grazing

(Liu et al., 2014; Yu et al., 2018a). So far, numerous vegetation

restoration programs have been implemented worldwide to reduce

land degradation. In the context of “sustainable intensification”, to

improve soil conditions and restore the ecosystem, China has

implemented the Returning Grazing Land to Grassland Project

(abbreviated as “Grassland Conservation”) (Liu et al., 2008;

Ministry of Forestry, 2014). The main measures for engineering

the return of cultivated land to grassland in Northwest China

include abandonment of cropland, grazing exclusion, and

reseeding with local vegetation species (Shang et al., 2014).

Among all the types of vegetation restoration programs studied,

degraded grassland management measures are mainly based on

natural restoration (e.g., grazing exclusion), but such measures

often have long restoration cycles and unstable implementation

effects (Zhang et al., 2020). Grazing exclusion occurs through

natural succession, while reseeding occurs through the restoration

of the target community (Bakker et al., 2007; Li et al., 2009).

Reseeding is one of the important measures for the restoration of

degraded grasslands (Necpálová et al., 2013). Grassland restoration

be accelerated by reseeding native species, and grassland ecosystem

functioning and soil quality can be restored (Wang et al., 2023).

Therefore, for example, Agropyron mongolicum Keng., Lespedeza

potaninii Vass., and Astragalus melilotoides have been used widely

in the restoration project of degraded grasslands in arid areas of

Northwest China (Xie et al., 2015).

Degraded grassland management practices are a major factor

affecting soil quality (SQ) and soil productivity sustainability

(Raiesi, 2017). Maintaining good vegetation to maintain or

improve water and air quality is the premise of sustainable

utilization of soil (Karlen et al., 1997). SQ indicators are strongly

related to land-use type and management factors (Liu et al., 2018;

Valle and Carrasco, 2018). Many studies focused primarily on the

restoration management of individual soil physical properties (Yu

et al., 2014) or soil nutrients (Deng et al., 2018). However, the

interaction among soil properties and their response to grassland

restoration management is complex and responds differently to

management practices (Raiesi, 2017). The single evaluation of

several different soil properties may complicate the interpretation

of the results considerably. Reseeding of legumes increased nitrogen

effectiveness and improved grassland biodiversity and plant

community biomass when compared to grazing sites (Li et al.,

2015). However, other studies have shown that soil disturbance

during reseeding may stimulate organic matter decomposition

leading to a reduction in soil nutrients (Conant et al., 2007). To

fully understand the effects of reseeding on the recovery of degraded
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grasslands, it is necessary to combine soil properties into an overall

single index of perception to assess these relationships, which may

make the assessment more meaningful and practical. A reliable and

exact SQ assessment is essential to evaluating soil deterioration and

restoration potential in the desert steppe (Yu et al., 2018b).

However, little attention is currently being paid to the impact of

restoration measures (e.g., grazing exclusion and reseeding) on SQ.

Therefore, the effect of the conversion from continuous grazing

grassland to grazing exclusion and reseeding grassland on SQ has

yet to be quantified in arid areas of Northwest China.

SQ must be evaluated by several soil properties due to high

variability in soil properties and function (Andrews et al., 2004). For

the comprehensive evaluation of SQ, the soil quality index (SQI) has

been widely used at various scales and locations because of its

flexible quantification and convenience to use (Qi et al., 2009;

Bretzel et al., 2016; Yu et al., 2018b). As an effective tool for

selecting the most important soil properties and dimension

reduction, principal component analysis (PCA) is widely used for

defining the minimum data set (MDS) (Andrews et al., 2002a).

Generally, the MDS method could select the indicators that best

represent SQ and reduce data redundancy and should fully

represent the total data set (TDS) (Cheng et al., 2016).

Meanwhile, an MDS reduces subjective anthropogenic

interference and the time and cost of the SQ evaluation (Rezaei

et al., 2006; Zhang et al., 2016). After the soil indicators in the MDS

are determined, the data need to be normalized with scoring

function (linear and non-linear scoring), and the non-linear

scoring method was considered the superior method to scoring

SQ indicators to the linear method (Andrews et al., 2002a). The

integration of dimensionless indicators (obtained after

normalization by the scoring functions) into SQI is possible

through many procedures based on the additive soil quality index

(SQIa), the weighted additive soil quality index (SQIw), and Nemoro

soil quality index (SQIn) approaches (Askari and Holden, 2014;

Rahmanipour et al., 2014; Zhang et al., 2016; Nabiollahi et al., 2017;

Nabiollahi et al., 2018). The additive soil quality index (SQIa), the

weighted additive soil quality index (SQIw), and the Nemoro soil

quality index (SQIn) are used to integrate dimensionless indicators

into the mass index (Nabiollahi et al., 2018). The SQIa is a

summation of the scores of indicators (Doran and Parkin, 1994).

SQIw takes into account the importance of each indicator and

specifies the weight of each indicator in the score indexing process

(Nabiollahi et al., 2017). SQIn emphasizes the influence of soil

quality constraints without considering their weights (Qi et al.,

2009; Rahmanipour et al., 2014). Although SQIs are effective

methods to reflect SQ changes in the conversion of land uses,

there is little available information on SQ evaluation along with the

conversion from continuous grazing grassland to grazing exclusion

and reseeding grassland in arid areas of Northwest China.

The responses of SQ to different grassland restoration

managements are of great significance for improving the

sustainable development of grassland. Nevertheless, there are few

studies on SQ changes during the transformation of degraded

grassland (i.e., overgrazing grassland) to grazing exclusion

grassland and reseeded grassland in the desert steppe, and the
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restoration rate of degraded grasslands to natural restoration

grasslands and reseeded grasslands remains unclear. The SQ

monitoring provides an opportunity to evaluate the effect of

grassland restoration management, and it is important to choose

appropriate desert steppe restoration management in fragile

regions. In this study, we hypothesized that the improvement of

SQ would be promoted more quickly by artificial restoration

management (e.g., reseeding and reestablishment) compared with

grazing exclusion management. Thus, the purposes of this study

were as follows: 1) to investigate the effects of grazing exclusion and

reseeding on degraded desert steppe soil physical and chemical

properties, 2) to identify the most appropriate integration

procedure (SQIa, SQIw, and SQIn) for different restoration

managements in the desert steppe, and 3) to quantify the SQ

under the natural and artificial restoration managements of the
Frontiers in Plant Science 03
degraded desert steppe and provide pertinence and theoretical basis

for the rational management and soil restoration.
2 Materials and methods

2.1 Study area

The study was conducted in Yanchi County (37°28′–37°29′N;
106°56′–106°57′E), Dashuikeng Town, located in the Mu Us Desert

in Northwest China (Figure 1). This area has a temperate

continental monsoon arid climate, with an average annual

temperature of 7.6°C and mean annual precipitation of 290 mm.

The potential evaporation is approximately 2,132.0 mm. The frost-

free period is approximately 162 days. The soil type in this region is
FIGURE 1

(A) Location of the study area in desert steppe. (B) Grazing exclusion grassland. (C) Continuous grazing grassland. (D) Reseeded grassland. (E) Air
temperature (filled lines) and precipitation (bars) recorded in 2011-2020 at the study site.
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mainly dominantly desertification sierozem, slightly alkaline,

classified based on USDA Soil Taxonomy (Soil Survey Staff,

2014). The zonal vegetation is the desert steppe. The most

common natural grassland-dominated species include A.

mongolicum Keng., Leymus secalinus (Georgi) Tzvel., Aster

altaicus Willd., L. potaninii Vass., Stipa bungeana Trin.,

Pennisetum flaccidum Grisebach., and Artemisia scoparia Waldst.

et Kit.

The study site is 200 ha of open and flat natural grassland. In the

early 1990s, it was grazed continuously by Tan sheep, but the

characteristics of soil and vegetation cover were relatively uniform.

The restoration project was started in 2002, and the exclusion

project was established in 2002. In the initial livestock removal

process, the dominant plant species in the whole area were grasses

and legumes.
2.2 Experimental design and soil sampling

Three land-use types were established in this study, including

continuous grazing grassland (CG) (100 ha), grazing exclusion

grassland (EX) (20 ha), and reseeded grassland (RS) (55 ha)

(Figure 1). The land uses in the study area have similar slope

aspects and parent materials. Before 2002, the permanent

grassland was mainly used as grazing grassland, and overgrazing

led to grassland degradation. To protect the natural grassland and

restore the degraded overgrazing grassland, grassland grazing is

excluded all year round, but some continue grazing. The detailed

information about these grassland-use treatments is as follows: 1)

CG is a grazing regime of continuous grazing throughout the year,

and the annual stocking rate has been 3–3.5 sheep ha−1 since 1982.

2) EX was started in the year 2002. Before grazing exclusion, the

site was used as grazing land as that of the CG grassland. 3) RS

reseeded native perennial grass species based on grazing exclusion

in May 2017. According to the previous survey of the nearby non-

degraded grassland, the reseeding amount was determined

according to the dominant plant species density in the non-

degraded grassland. Seeds of local ecotypes were produced from

the arid areas of Northwest China. According to the vegetation

survey data of nearby non-degraded grasslands, the ratio of

Gramineae to legumes is 6:4. The RS grassland was seeded with
Frontiers in Plant Science 04
2.5 kg ha−1 of three native plant seed mixtures. The seed mixtures

contained, by weight, 60% K. A. mongolicum, 20% V. L. potaninii,

and 20% P. A. melilotoides. The reseeded holes were 3 cm deep and

spaced 20 cm apart. The vegetation coverage measures 33% before

the reseeded treatment.

In early August 2020, within each grassland-use treatment site,

three distinct replicate plots (20 × 20 m) were established for

sampling. The distance between any two plots was >2 km to

ensure that the repetitions were representative. All plots were

surrounded by a buffer zone (6–8 m) to avoid the influence of the

edge on adjacent plots. Within each plot, five subplots (1 m × 1 m)

were randomly established, at the four corners and the center,

investigating the dominant grass species, height, above-ground

biomass, density, geographical location, and altitude (Table 1).

After the above-ground biomass and litter were removed, five soil

samples from subplots were randomly collected with a soil core

sampler (4.0-cm diameter) from each 0–20-cm layer in each plot

and mixed thoroughly to produce a composite sample. The soil

samples were air-dried at room temperature, and the root materials

and other visible debris were removed and passed through a 2-mm

sieve before the following chemical and physical analyses. Five

undisturbed soil samples were collected at a depth of 0–20 cm with

100-cm3 corers, which were used to determine soil bulk density,

porosity, and soil holding capacity. At the same sampling points, the

same number of undisturbed soil samples were obtained at depths

of 0–20 cm and then sealed in a plastic box to avoid being squeezed

and impacted during transportation back to the laboratory for the

determination of soil aggregate indicators.
2.3 Soil analyses

To characterize the study area as a whole, 120 samples were

collected from the soil layer (0–20 cm). Twenty soil properties were

measured for each sample (Table 2): porosity, water holding

capacity (WHC), granulometric analysis (sand, silt, and clay

percentage), soil bulk density (BD), pH, electrical conductivity

(EC), cation exchange capacity (CEC), geometric mean diameter

(GMD), mean weight diameter (MWD), soil organic carbon (SOC),

total nitrogen (TN), total phosphorus (TP), available nitrogen

(AN), available phosphorus (AP), and available potassium (AK).
TABLE 1 Basic information of experimental plots.

Grassland uses CG EX RS

Position coordinates
N37°28′58″ N37°29′37″ N37°29′15″

E106°57′37″ E106°56′35″ E106°56′05″

Vegetation coverage (%) 44.40 ± 2.96a 49.00 ± 2.72a 47.00 ± 1.35a

Above-ground biomass (g·m−2) 35.51 ± 1.16b 37.62 ± 4.46b 58.61 ± 1.69a

Mean vegetation height (cm) 5.77 ± 0.12c 8.67 ± 0.19b 10.47 ± 0.67a

Vegetation density (plant·m−2) 73.20 ± 3.85c 132.33 ± 3.38b 149.00 ± 5.69a

Restored years 0 (not restored) 18 3
Results are shown as the mean ( ± SD).
CG, continuous grazing grassland; EX, grazing exclusion grassland; RS, reseeded grassland.
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The dry-sieving macroaggregate (DSMA) was calculated using

the following equation:

DSMA   ( % ) =
Mr

Mt
� 100,

where Mr is the mass of dry-sieving aggregates >0.25 mm (g)

and Mt is the total mass of the dry-sieving soil (g).

The MWD and GMD of soil aggregates were calculated by the

following equation (Kemper and Rosenau, 1986):

MWD =o
n

i=1
XiWi,

GMD = exp(o
n
i=1(lnXi)Wi

on
i=1Wi

),

where Xi is the mean diameter of each size fraction (mm)

and Wi is the proportion of the total sample mass in the

corresponding size fraction after deducing the stone mass as

indicated above.

The soil erodibility (K value) was calculated by the following

equation (Dou et al., 2020):

K = 7:954

� 0:0017 + 0:0494� exp½−0:5� (
logGMD + 1:675

0:6989
)2�

� �
,

where GMD is the geometric mean diameter, and 7.954, 0.0017,

0.0494, 1.675, and 0.6989 are the constant terms.
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2.4 Soil quality index assessment

2.4.1 TDS and MDS
TDS and MDS were used to determine the appropriate

indicators. First, 19 properties were analyzed by one-way

analysis of variance (ANOVA) to evaluate the effects of

different grassland use on soil properties. Second, the

properties with a significant difference (p< 0.05) between the

three land uses were selected as the TDS indicators for

formulating the SQ indices. Third, PCA was applied to the

standardized data matrix of the TDS to reduce data

redundancy and determine the most important indicators of

the MDS (Raiesi, 2017). Only the PCs with eigenvalues ≥ 1 and

those that explained at least 5% of the variation in the data were

deployed to identify the MDS (Sharma et al., 2005). However, if

all the properties with weighted absolute values within 10% of

the highest indicator value for each PC were selected, then the

MDS will lead to data verbosity. According to Andrews and

Carroll (2001), the use of PCA to calculate the factor load usually

only considers the load of a certain indicator on one PC, and

there will be lost information on the indicator on other PCs with

eigenvalues ≥ 1 (Yemefack et al., 2006). To avoid lengthy data

and loss of important information, this defect can be overcome

by calculating the norm value (vector norm) of the variable. The

geometric meaning of the norm value is the magnitude (length)

of the vector norm of the variable in the multi-dimensional space

composed of PCs. The higher the norm value, the greater the

comprehensive load of the variable on all PCs, and the stronger

the explanatory power of variables to the overall SQ information.
TABLE 2 The methods and references for laboratory analysis of SQI used in the study.

Soil properties Analytical methods Reference

Soil bulk density (BD)
Cutting ring water immersion method Zhang et al., 2021

Soil porosity, capillary porosity, and non-capillary porosity

Water holding capacity (WHC) Gravimetric with oven drying method Gong et al., 2015

Granulometric analysis (sand, silt, and clay percentage) MasterSizer 2000 method Deng et al., 2016

pH Soil/water solution of 1:5 Yu et al., 2014

Electrical conductivity (EC) Soil/water solution of 1:5 Yu et al., 2014

Cation exchange capacity (CEC) Ammonium acetate at pH 7 USDA, 1996

Geometric mean diameter (GMD)
Wet sieving method Kemper and Rosenau, 1986

Mean weight diameter (MWD)

Soil organic carbon (SOC) Potassium dichromate oxidation Zhu et al., 2014

Total nitrogen (TN) Automatic Kjeldahl method Liu and Jiang, 1996

Total phosphorus (TP) Wet digestion with sodium hydroxide Smith and Bain, 1982

Available nitrogen (AN) NaOH hydrolysis Stanford, 1982

Available phosphorus (AP) Sodium bicarbonate Olsen, 1954

Available potassium (AK) Ammonium acetate Thomas, 1982
SQI, soil quality index.
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Norm value was calculated using the following equation (Chen

et al., 2013):

Nik =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok

i (U
k2
i lk)

q
,

where lk is the eigenvalue of the PC and Uik is the loading of soil

variable i on the PCk. Indicators receiving Nik within 10% of the

highest norm values were selected for the MDS.

2.4.2 Indicator scoring and weighting the
MDS indicators

After the indicators of TDS and MDS were determined, the

non-linear scoring function transforms the soil indicators into unit-

less scores within 0–1. The sigmoidal function was applied

(Andrews et al., 2002b) as follows:

SNL =
a

1+(x=x0)
b ,

where a is a maximum score equal to 1 in this study, x is the soil

variable value, x0 is the mean value of the variable, and b is the slope

assumed to be −2.5 for “more is better” functions and +2.5 for “low

is better” ones (Yu et al., 2018b).

2.4.3 Developing and validating soil
quality indices

For TDS and MDS, the transformed indicator scores were

integrated into three SQIs, including the SQIa (Andrews et al., 2002b),

SQIw (Askari and Holden, 2014), and SQIn (Qi et al., 2009), as follows:

SQIa =
on

i Ni

n
,

SQIw =o
n

i=1
WiNi,

SQIn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pave2+Pmin2

2

r
� n−1

n
,

where Ni is the non-linear indicator score, n is the number of

indicators, Wi is the weighting factor for the soil indicator derived

from the factor analysis, Pave is the average, and Pmin is the

minimum of the scores of the selected indicators at each sampling

point. Higher SQI values mean better soil function and soil process

and reflect the positive effects of grassland restoration measures.

2.4.4 Stage increase rate of SQI
The restoration rate of the SQI was computed as follows (Zhang

et al., 2012; Guo et al., 2018):

RSQI = DSQI=(Dt� SQIref )� 100,

where DSQI refers to SQI at the start and end of a recovery stage
and Dt represents the restoration time for each restoration type.

SQIref refers to SQI for continuous grazing grassland.
2.5 Statistical analysis

ANOVA and least significant difference (LSD) were used to

assess statistically significant differences (p< 0.05) under different
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grassland uses. The correlation between soil indicators and SQIs

was analyzed by using Pearson’s correlation. The PCA method was

used to select the most suitable soil indicators for evaluating SQ.

Before statistical analysis, the normality and equal variance of all

data sets were tested to meet the assumptions of statistical analysis.

All statistical analyses were conducted using Microsoft Excel 2010

and SPSS 20.0 (IBM, USA) software.
3 Results

3.1 Changes in measured soil physical and
chemical properties

No remarkable difference was found for NCP, silt+clay,

sand, and pH among the three grassland-use types (Figure 2).

Furthermore, 16 soil indicators (namely, BD, CP, TOP,

WHC, GMD, MWD, K, DSMA, EC, CEC, SOC, TN, TP,

AN, AP, and AK) differed significantly (p< 0.05); thus, they

were selected as values of the TDS for PC among the three

grassland uses.

Significantly lower BD, GMD, MWD, and DSMA content were

observed in RS compared with the EX and CG (p< 0.05). However, a

similar trend was observed for the GMD, MWD, and DSMA

content, which ranked as EX > CG > RS, and EX and CG were

not significantly different (p > 0.05) (Figure 2). RS treatment had

significantly higher CP, TOP, WHC, K, and CEC values than EX

and CG (p< 0.05), yet there were no significant differences in CP,

TOP, WHC, K, and CEC values between EX and CG (p > 0.05). The

highest SOC, AP, and AK values were observed in EX soils (p<

0.05). The highest and lowest TN content were observed in EX and

CG. The positive effects of RS on TP and AN were significantly

stronger than those on EX (p< 0.05).
3.2 Indicator selection for MDS

The 15 soil quality properties considered in the PCA were

grouped into components. According to the results of this study, the

first four PCs had eigenvalues > 1, each explaining at least 5% of the

data variation and accounting for 94.1% of the data of total variance

(Table 3). Soil property communalities indicated that the MDS can

replace the full data set for the soil quality evaluation of different

grassland uses.

According to the factor loading (≥0.50), these soil properties

were divided into four PCs. If the load of an index in different PCs is

>0.5, then the index will be incorporated into a group with a low

correlation with other indices. Group 1 included BD, TOP, MWD,

K, DSMA, and CEC. The K had the highest norm value (5.10), and

the norm values of BD, TOP, MWD, DSMA, and CEC were all

within the 10% fluctuation range of the K norm value. A significant

positive correlation was found between BD, TOP, MWD, DSMA,

and K. No significant correlation exists between K and CEC

(Figure 3); thus, K and CEC were included in the MDS. Group 2

contained CP, EC, SOC, TN, and TP. The norm value of TP (4.88) is

the highest, and no other indicators were within 10% of this value.
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Therefore, TP, which has the highest norm value, was selected for

inclusion in the MDS. Group 3 included WHC and GMD. No

significant correlation exists between the two indices, and the norm

value of GMD was within the maximum 10% of the norm value of

WHC (4.66). WHC and GMD were included in the MDS. Group 4

included two indicators: AN and AK. No significant correlation
Frontiers in Plant Science 07
exists between the two indicators, and the norm value of AK was

within 10% of the norm value of the AN (3.96). AN and AK were

included in the MDS. Therefore, when combining the PCA and

Pearson’s correlation analysis, the refined MDS included the

following indicators: K, CEC, TP, GMD, WHC, AK, and AN

(Table 3; Figure 3).
FIGURE 2

Soil indicators measured as potential soil quality indicators of desert steppe under different land-use types. CG, continuous grazing grassland; EX,
grazing exclusion grassland; RS, reseeded grassland; BD, soil bulk density; CP, capillary porosity; NCP, non-capillary porosity; TOP, total porosity;
WHC, water holding capacity; GMD, geometric mean diameter; MWD, mean weight diameter; K, the soil erodibility; DSMA, dry-sieving
macroaggregate (>0.25 mm); pH, soil reaction; EC, electrical conductivity; CEC, cation exchange capacity; SOC, soil organic carbon; TN, total
nitrogen; TP, total phosphorus; AN, available nitrogen; AP, available phosphorus; AK, available potassium. The same lowercase letters within the
grassland uses indicate not significantly different (p< 0.05).
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FIGURE 3

Pearson’s correlation coefficients between soil indicators. Indicated values represent the correlation coefficient. The red color indicates a positive
correlation, and the blue color indicates a negative correlation. See Table 3 for abbreviations. * significant at the 0.05 probability levels.
TABLE 3 Results of principal component analysis (PCA) of the total data set and the three soil processes.

Principal component PC1 PC2 PC3 PC4 Norm value Group

BD (g·cm−3) −0.819 0.044 −0.342 0.376 4.629 1

CP (%) 0.565 −0.590 0.431 0.119 4.001 2

TOP (%) 0.797 −0.272 0.392 −0.282 4.727 1

WHC (%) 0.749 −0.374 0.507 −0.104 4.661 3

GMD (mm) −0.732 0.354 0.533 −0.128 4.488 3

MWD (mm) −0.847 0.136 0.417 0.218 4.975 1

K 0.813 −0.353 −0.442 0.031 5.097 1

DSMA (%) −0.800 0.322 0.460 −0.174 4.933 1

EC (ms·cm−1) 0.000 0.890 −0.198 −0.003 3.812 2

CEC (cmol+·kg−1) 0.581 0.741 −0.008 −0.160 4.755 1

SOC (g·kg−1) 0.397 0.744 0.287 0.388 3.955 2

TN (g·kg−1) 0.485 0.746 0.056 0.423 4.357 2

TP (g·kg−1) 0.442 0.875 −0.002 −0.154 4.880 2

AN (mg·kg−1) 0.730 0.097 0.207 0.597 3.955 4

AK (mg·kg−1) −0.320 −0.749 0.100 0.515 3.669 4

Eigenvalue 6.299 4.725 1.756 1.342

Percent 41.997 31.497 11.708 8.944

Cumulative percent 41.997 73.494 85.202 94.146
F
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The data in bold indicate highly weighted variables.
BD, soil bulk density; CP, capillary porosity; TOP, total porosity; WHC, water holding capacity; GMD, geometric mean diameter; MWD, mean weight diameter; K, the soil erodibility; DSMA,
dry-sieving macroaggregate (>0.25 mm); EC, electrical conductivity; CEC, cation exchange capacity; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; AN, available nitrogen;
AK, available potassium.
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3.3 Evaluation of SQIs with TDS and
MDS methods

In Figure 4, PCA was performed for each index of the MDS. K,

CEC, TP, GMD, WHC, AK, and AN have a common factor

variance and weight. The 15 soil indicators were selected through

the PCA for their commonalities and weights in the TDS method.

Through PCA for the TDS method, the weights of the different

indicators varied lower, with the highest weight for the dry-sieving

macoaggregate (DSMA) (0.070) and the lowest weight for EC

(0.059). On the contrary, the MDS method was higher. Overall,

TP was assigned the highest weight (0.175), and the WHC was

assigned the lowest weight (0.095).

As a whole, the results of the regression analysis showed that

there was a significant correlation between the SQIs (SQIa, SQIw,

and SQIn), and the R2 value of the SQIw was greater than that of the

SQIa and SQIn, indicating greater sensitivity (p< 0.01) (Figure 5).

The MDS selected by PCA can quantitatively calculate the changes

in SQ when using non-linear scoring. Further, the correlations

between SQIs-TDS and SQIs-MDS values were significant,

suggesting that the MDS method can better represent the

TDS method.
3.4 Changes in soil quality under different
land uses

In general, The SQIw-TDS values (0.42 for EX, 0.34 for CG, and

0.57 for RS) were always greater than SQIw-MDS values (0.40 for

EX, 0.21 for CG, and 0.44 for RS) in the three different grassland-use

types (Figures 6A, C). SQ in the study area increased among

grassland restoration methods from CG grassland to EX and RS

grassland. The results of the two SQIs all showed that SQ under CG

treatment was significantly lower than that under the EX and RS

treatments (p< 0.05), and no significant differences (p > 0.05) were

found among EX and RS. The RS attained the fastest restoration

rate of 3.75% a−1, while the EX realized a restoration rate of 1.02%

a−1 (Figures 6B, D).
4 Discussion

4.1 Soil properties under different
grassland uses

Changes in the soil physiochemical properties following

grassland-use changes play critical roles in evaluating land

recovery in degraded grasslands (Wang et al., 2021). Therefore,

our SQI assessment was focused on soil structure and fertility. In

relation to soil physical functions, in our study, there are higher BD

values in continuous grazing and grazing exclusion sites, compared

with those in reseeded sites (Figure 2). The enhanced BD in

continuous grazing grassland could be explained by the increased

soil compaction due to foot trampling by livestock (Byrnes et al.,

2018; Benevenute et al., 2020; Botta et al., 2020). Notably, the high
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BD values in the grazing exclusion grasslands, which could be

associated with soil compaction from animal trampling, are not

rapidly relieved by natural processes. The different responses could

be attributed to the short grazing exclusion duration time (18

years). Previous studies have shown that degradation of soil

properties caused by compaction from animal trampling may

persist for more than 100 years (Sharratt et al., 1998). This study

showed that BD from reseeded grassland was lower than that from

the continuous grazing and grazing exclusion grassland uses, while

soil CP, TOP, and WHC showed a reverse trend. On the one hand,

it was mainly due to the cultivation before the reseeding of the

grassland, which could destroy soil structure (Hebb et al., 2017).

On the other hand, plant roots change the soil structure, which

leads to an increase in soil porosity (Shao et al., 2020). The high

WHC content in reseeded sites could be ascribed to the high

vegetation coverage that reduces soil evaporation, which can

maintain more soil water (Jia et al., 2019). Over the past few

decades, the studied native grasslands have been under overgrazing

pressure by sheep, drought stress from low rainfall (approximately

290 mm), and high potential evaporation (approximately 2,132.0

mm), which are important factors contributing to WHC loss in

continuous grazing grassland.

Primary production is the source of C input into the soil

(Li et al., 2022). In the native steppe, selective ingestion by sheep

generally leads to a decrease in plant production and a consequent

reduction in carbon input. In general, grazing exclusion increased

SOC content because grazing exclusion increases carbon input from

the decomposition of litter (Li et al., 2022). Interestingly, our results

found that reseeded grasslands did not improve the SOC content

compared to those in the continuous grazing grassland, but the

above-ground biomass of reseeding grassland was significantly

higher than that of grazing exclusion grassland (Table 1;

Figure 2). This finding can be explained because of lower soil
FIGURE 4

Weight assignment of indicators in TDS and MDS approaches. TDS,
total data set; MDS, minimum data set.
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organic matter input by the corresponding reseeded plant (Wang

et al., 2021). In addition, a possible reason is that seed plants need to

absorb and consume large amounts of soil nutrients to grow in a

short time after reseeding; however, this inference should be further

investigated. In our study, two restoration measures, exclusion

grazing and reseeding, significantly increased TN and AN

contents (Figure 2). Previously, it has been observed that the

trampling by grazing livestock causes soil consolidation and

reduces soil water content, creating poor ventilation conditions,
Frontiers in Plant Science 10
which in turn promotes denitrification and reduces the TN content

(Chai et al., 2019). Furthermore, livestock feeding can increase the

compensatory growth of the plant, increasing soil TP and TN

consumption (Tang et al., 2016). We found that the AN content

was significantly enhanced by reseeded measure compared to the

grazing exclusion measure (Figure 2). Reseeded legume plants

can convert gaseous nitrogen to ammonium nitrogen, thereby

increasing the amount of nitrogen in the soil that can be

absorbed and used by plants (Wang et al., 2021).
B

C D

A

FIGURE 6

Comparison of the weighted additive soil quality index (SQIw) development in this study among different land uses (A, C). Stage recovery rates of the
weighted additive soil quality index (SQIw) (B, D). CG, continuous grazing grassland; EX, grazing exclusion grassland; RS, reseeded grassland. Error
bars correspond to standard deviation. * significant at the 0.05 probability levels (one-way ANOVA) (n = 3). ns, no significant.
FIGURE 5

Linear relationship between SQIs (SQIa, SQIw, and SQIn) calculated using the TDS and MDS methods, and non-linear scoring methods.
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Aggregate stability and soil erodibility factors as important

indicators of soil quality can reflect the stability of the soil’s

physical structure (Dou et al., 2020). The MWD and GMD of soil

aggregates play a vital role in assessing the stability of aggregates.

Overall, continuous grazing and grazing exclusion showed

significantly higher MWD, GMD, and WSMA values in soil

aggregate than in reseeded grassland (Figure 2). This finding is

consistent with the study performed by Wang et al. (2012), who

indicated that natural recovery is an effective measure to improve

aggregate stability compared with reseeded recovery measures.

Accordingly, reseeding creates the risk of reduced soil erosion

resistance of the soil, which reduces the stability of soil aggregates

(Dou et al., 2020). The lower soil aggregate stability and higher K

value in reseeded grassland could be attributed to the following

factors. First, the restoration time of reseeded grassland was short,

and the surface soil layer was loose due to the weak root system of

the reseeded vegetation. Second, when the WHC was high, water

would enter into the soil pore space, making the macroaggregates

swell with water absorption and then be squeezed, leading to

disintegration (Dou et al., 2020). Third, more human interference

damages soil structure, leading to an increase in the possibility and

sensitivity of soil erosion (Wang et al., 2021).
4.2 Selection of MDS indicators

Most soil physical and chemical properties showed statistical

differences among desert steppe uses, which indicated that desert

steppe uses have an important influence on soil properties

(Deléglise et al., 2011; Jian et al., 2015; Deng et al., 2018). The 15

selected soil indicators in response to different land uses did not

have consistent results, which is mainly attributed to different desert

steppe use types leading to different soil processes and functions,

which had complex effects on soil properties (Kooch et al., 2018).

Results showed that grazing exclusion and reseeding restoration

management affected most soil properties evaluated in this study,

except NCP, silt+clay, sand, pH, and AP (Figure 2). Through the

MDS selection, K, CEC, TP, GMD, WHC, AN, and AK were

retained as the most important soil indicators to assess the effects

of land-use treatments on SQ in the current study. The selected SQ

indicators of MDS are the easiest to measure and are more familiar

to soil laboratory specialists and local land users. Overall, these

findings indicate the key roles of soil water holding capacity,

erodibility, and aggregate stability in determining the impact of

grassland-use changes on soil quality. Biological indicators have

attracted more attention because they are more sensitive to

environmental variability (Shao et al., 2020). Nevertheless, due to

the simple analysis methods and the low measurement costs, several

previous studies have selected only soil physicochemical properties

as indicators for soil quality assessment (Guo et al., 2017; Nabiollahi

et al., 2017; Zhang et al., 2019). Many studies reported correlations

between soil biological indicators and physicochemical indicators.

For instance, soil microbial and enzyme activities are often closely

correlated with variations in chemical indicators (soil nutrient
Frontiers in Plant Science 11
content) (Raiesi and Kabiri, 2016). Soil organic matter and

biological properties determine the soil’s physical structure (e.g.,

erodibility and soil aggregate stability) (Yu et al., 2018a).

Consequently, some of the variations in the biological indicators

of the soil can be explained by soil physicochemical indicators.
4.3 Comparison of soil quality
indexing methods

TDS has been widely regarded as a comprehensive SQ

assessment method. However, such a method presents a dilemma

between comprehensiveness and the cost of laboratory analysis for

evaluation results (Raiesi, 2017). In contrast, MDS is an effective

method to assess SQ because there are fewer data reduplication and

great accuracy to quantify the effects of grassland restoration

changes on SQ. Consequently, the establishment of an MDS for

soil quality evaluation is widely accepted (Lin et al., 2017).

Results indicated that in this study area, the SQIw model was

better for SQI computing when compared to the SQIa and SQIn
indices. Compared with SQIn, SQIw applies weights to key soil

indicators, and the scores for each soil indicator were determined

independently (Rahmanipour et al., 2014). The major limitation of

SQIn can probably be attributed to the fact that the lowest scoring

indicator is added to the average scores, thus giving it a higher

weighted value (Qi et al., 2009). Qi et al. (2009) focused on

agricultural land in China, considering the relationship between

SQIw and SQIn, indicating that the SQIw (R2 = 0.65) was better than

SQIn (R2 = 0.57). Such a result was consistent with that of

Rahmanipour et al. (2014) who also assessed that the SQIw
(R2 = 0.34) model was better than the SQIn (R2 = 0.23) model in

agricultural lands of Qazvin Province, Iran. Moreover, SQIa is

simple and easier for mathematical calculations, while its

limitation is that it relies on the subjective judgment of the

researchers (Nabiollahi et al., 2017). Nabiollahi et al. (2018)

evaluated SQ indices and showed that the SQIw (R2 = 0.70)

model was better than the SQIa (R
2 = 0.64) and SQIn (R2 = 0.57),

which is consistent with the results of our study.
4.4 Evaluation of soil quality under
different grassland restoration measures

Grassland restoration measures had significant impacts on the

SQI in the degraded desert steppe (Figure 6). Our results showed

that SQIw-MDS values of grazing exclusion grassland (0.49) and

reseeded grassland (0.57) were significantly higher than those of

continuous grazing (0.34), indicating that short-term colonization

of vegetation resulted in a rapid recovery of SQ in the study area.

The grazing exclusion restoration policy of the SQ of degraded

grassland is a long-term evolutionary process and requires a

significant investment of both time and cost (Lu et al., 2015). In

our research, it took 18 years for the grazing exclusion grassland to

restore SQ, similar to that of the 3-year reseeding grassland.
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Although the SQI value of reseeding grassland was higher than the

SQI value of grazing exclusion grassland, the difference between the

values was not significant (Figures 6A, C). However, it was only 3

years since the continuous overgrazing of grassland changed to

reseeding grassland, and the enhancement of SQ by planting native

grass species was limited. In addition, the restoration rate of the SQI

values of the 3-year reseeding grassland is five to seven times that of

the 18-year grazing exclusion grassland.

Hence, our results verify that the ability of native grass species

planting to enhance SQ may be close to or higher than the long-

term grazing exclusion restoration management after 3 years of

planting. As a consequence, considering the grassland soil

restoration effect and short growth time of reseeding grassland in

this study, native grass species reseeding may be another beneficial

desert steppe restoration management in the study area and other

arid regions. Overall, this study demonstrated that both

grazing exclusion and reseeded restoration could improve SQ and

that artificial reseeded restoration has a better capacity to recover

SQ than natural grazing exclusion restoration in areas of

Northwest China.
5 Conclusion

The grazing exclusion and reseeding restoration measures

changed the soil physicochemical properties of degraded

grasslands, which in turn significantly improved the soil quality

of the semi-arid grazed degraded desert steppe in China. In

addition, the fast restoration rate of SQI in reseeded grasslands

indicates that the soil recovery rate of the reseeded grasslands was

faster than the natural recovery of the grazing exclusion. The SQIw
used these MDS indicators to generate the most reliable SQI. Thus,

the present study suggests that in the semi-arid desert steppe,

natural recovery and reseeding are effective restoration measures

for degraded desert steppe in the semi-arid area. We suggest that

reseeding can recover soil quality faster in the short term. Moreover,

the changes in soil quality after long-term reseeding need to be

further elucidated by long-term monitoring, which will thereby

enable us to identify the best measure to restore degraded

desert steppe.
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