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Castor (Ricinus communis L.) is an important nonedible industrial crop that

produces oil, which is used in the production of medicines, lubricants, and other

products. However, the quality and quantity of castor oil are critical factors that can

be degraded by various insect pest attacks. The traditional method of identifying

the correct category of pests required a significant amount of time and expertise.

To solve this issue, automatic insect pest detection methods combined with

precision agriculture can help farmers in providing adequate support for

sustainable agriculture development. For accurate predictions, the recognition

system requires a sufficient amount of data from a real-world situation, which is

not always available. In this regard, data augmentation is a popular technique used

for data enrichment. The research conducted in this investigation established an

insect pest dataset of common castor pests. This paper proposes a hybrid

manipulation-based approach for data augmentation to solve the issue of the

lack of a suitable dataset for effective vision-based model training. The deep

convolutional neural networks VGG16, VGG19, and ResNet50 are then adopted to

analyze the effects of the proposed augmentation method. The prediction results

show that the proposed method addresses the challenges associated with

adequate dataset size and significantly improves overall performance when

compared to previous methods.

KEYWORDS

precision agriculture, data augmentation, machine vision, deep learning, insect pests
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Introduction

Castor (Ricinus communis L.) cultivation is one of the oldest

farming activities in India. India is one of the major castor-producing

countries (18.47 lakh tonnes) in the world, followed by Mozambique

(0.85 lakh tonnes) and china (0.36 lakh tonnes) in 2020–2021. It

contributes a total of 0.15% of the total production of vegetable oil.

Castor seeds contain approximately 50% of nonedible vegetable oil. It

is a good natural source of hydroxylated and nonhydroxylated fatty

acids, which are widely used in chemicals, food, and cosmetics (Salihu

et al., 2014). Among the different types of environmental factors faced

by castor farming, pests are one of the frequent and important global

issues that directly affect agricultural ecosystems and overall crop

productivity (Rong et al., 2022). Therefore, to achieve effective and

steady plant production, it is necessary to control insect pests and

related diseases during the early infestation of the plant. It helps in

mitigating the impact of insect pest risks on overall plant production.

Many resistance bioagents and new genetically modified (GM)

plants have been developed using recombinant DNA (rDNA)

technology to control the effects of insect pests and diseases in

castor (Kumar et al., 2013; Kammili et al., 2014; Parthasarathy

et al., 2020). However, to reduce the resistance power provided by

these advancements, insect pests present mutations in target proteins

conferring resistance to common insecticides. Hence, some specific

chemicals, such as insecticides and pesticides, are used by

agronomists in farming. It helps in the control of insect pest

populations, but it also imposes harmful effects if the pesticides

used are incorrect or exceed the requirements. Therefore, it is the

need of the hour to develop an integrated management technique that

combines insect pest detection and a pesticide recommendation

system (Karimi and Kamali, 2021). Unfortunately, some farmers

used this method for pesticide selection based on their knowledge

gained through onsite inspection. It is very time-consuming, and

hectic, and requires mastery in the related field. Additionally, due to

the expansion and intensification of agriculture as well as the

inappropriate knowledge of farmers, it is not possible to conduct

farm inspections manually (Yao et al., 2020).

Continuously, advancements in smart devices and image

processing techniques help in increasing the interest to adopt

modern technologies in agriculture to transform into precision

agriculture, which further enables farmers to monitor plant health

and potential infestation status. Machine vision technology is novel

and successfully applicable in precision agriculture for the automatic

pest management system (Dhingra et al., 2022). In this regard,

Deguine et al. (2021) developed an integrated pest management

(IPM) system to control pests in agricultural farms that took into

account multiple considerations related to human health and

economic and ecological impacts. These systems require sensors to

collect data and send them to processing units for analysis. Moreover,

the data collection phase took a long time to complete in order to

meet the actual demands, and the shortage of data may be plentiful.

Furthermore, a diverse variety of datasets is required to develop an

accurate and adaptable strategy for reliable predictions. Usually, to

address the issue related to data shortage in machine vision, data

augmentation methods are used by researchers to make a classifier

more generalized and robust. Thus, Kang (2020) demonstrated a
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technique using rotation-based data augmentation to train a neural

network for wafer map classification. The suggested method provides

more consistent results and achieves a higher recognition ratio. In

another study, Han et al. (2019) presented image-to-image and

image-to-noise data augmentation techniques. The proposed

techniques used Generative Adversarial Network (GAN)-based two-

step data augmentation process with noise injection in magnetic

resonance images and contribute to an overall 3% improvement

in performance.

The timely collection of a sufficient quantity of datasets is essential

for the proper implementation of the machine vision model (Rosa

et al., 2022). In contrast, Dieleman et al. (2015) measured the

morphological parameters using deep learning and reflected the

limitations of the data augmentation technique. The study showed

that as the degree of rotation is increased, label-related data are no

longer preserved. To overcome the limitation, Summers and Dinneen

(2019) used a noise-based data augmentation technique. However,

the proposed technique performed poorly in the case of noiseless data.

All of the methods discussed above demonstrate their importance as

well as the related limitations of data augmentation. As a result, it still

has some room for improvement and requires further research in the

agricultural domain for model generalization.

In order to consider these issues, the present study aims to fill a

research gap related to previous data augmentation techniques. The

authors proposed a castor insect pest classification model based on

manipulation-based data augmentation (MBDA) to expand the

existing insect pest dataset. This paper mainly contributes:
To recreate an insect pest image dataset for castor crop.

To design a framework for the data augmentation process based

on different manipulation-based transformation techniques.

To design a deep learning model using VGG16, VGG19, and

ResNet50 for image classification with updated fully

connected layers.

To check the impact of data augmentation for evaluation.
Thus, this study aimed to analyze the importance of data

augmentation methods in a machine vision system for castor insect

pest detection. The proposed system can help related farmers

effectively categorize insect pests in real-time and control yield

losses. This paper is divided into several sections: the Related works

refers to the literature survey, the Proposed data augmentation

framework proposes a machine vision-based framework followed by

a data augmentation process, and the Materials and method presents

the results and discussion. Finally, the Experimental setup and results

provides a conclusion to this analysis as well as a future direction.
Related works

The data augmentation methods are classified into two categories:

(1) augmentation of original data (2) and generation of synthetic/

artificial data (Mumuni and Mumuni, 2022). The augmentation of

original data generally includes pixel transformation, affine

transformation, and elastic transformation. While the generation of

synthetic/artificial data generally includes principle component
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augmentation (PCA)-based data generation, GAN-based data

generation, and image registration techniques (Nalepa et al., 2019a;

Raj et al., 2022). The purpose of this section is to highlight the

previous study related to data augmentation and classification

techniques. Therefore, this section of the literature is divided into

two parts. The first part reported on the literature related to data

augmentation, which is widely used for data enrichment, and some of

them were compared with the proposed technique, while the second

category is related to the machine vision algorithms used

for classification.
Data augmentation

When a dataset is insufficient or unbalanced to train a model, the

data augmentation approach is the most appropriate to obtain good

prediction results (Xu et al., 2022). The data augmentation method is

used in the training process to increase the diversity of data for the

machine vision algorithm. It helps to enhance the model’s overall

performance and prevent model overfitting. For data augmentation,

various types of techniques have been followed by the researcher over

the last few decades. It is generally classified as an operation-based

manipulation approach, a synthetic data generator approach, and

some hybrid techniques are also proposed by different researchers for

data augmentation (Raj et al., 2022; Rosa et al., 2022).

Operation-based manipulation
Operation-based manipulation is a less complex and important

data augmentation approach. It generates new images by performing

mathematical manipulation on real-input images. The generic

methods in this approach are rotation, flipping, cropping, edge

enhancement, noise, and jittering (Shorten and Khoshgoftaar,

2019). Operation-based data augmentation is a label-preserving

technique generally illustrated as follows:

xa=fm(x
i), 

ya=yi ,

n
(1)

In Eq. (1), transformation is illustrated by the function fm(x);

where xa and xi denote the augmented image and input source image,

respectively. Similarly, in the equation, ya and yi are the associated

labels for images. The equation illustrates that the associated label of

the source image is unchanged when the source image undergoes the

transformation. In the case of rotation, each pixel of an image is

rotated via its center. It applies the translation of the object between 0°

and 360° angles, and the translation of the object changes the values of

coordinates (Kim et al., 2020). Flipping generally involves mirroring

pixels across the axis (horizontal or vertical). However, the studies

(Hussain et al., 2017; Zhang et al., 2017; Chunling et al., 2022) present

a vertical flip-based data augmentation process to capture the vertical

reflection for medical imaging. In a study, Kwasigroch et al. (2017)

popularized data augmentation strategies for dataset balancing, such

as flipping, zooming, translation, and rotation. These techniques are

effective and computationally easier to use. In another study, Paschali

et al. (2019) proposed affine transformation-based data augmentation

that improves the model misclassification problem. It helps to

maximize the robustness of the model during the training

procedure. This augmentation technique is applied for breast
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tumors and skin lesion classification problems. However, the use of

such techniques in agriculture has not been widely explored. Other

than these, kernel and color-space-based transformation are also parts

of image manipulation (Tian et al., 2019). The previously mentioned

affine transformation enhances the collection since the resulting

images are still recognizable and similar. However, the discussed

approaches generate irregular and unnatural images. Numerous

researchers have considered noise injection to be a useful method

that helps to make a model more robust (Zur et al., 2009; Joung et al.,

2019). Dong et al. (2022) proposed four annotation strategies aiming

to improve disease detection in plants and reduce labeling costs. They

include five different types of noise to highlight annotation

inconsistency and also explore the extent of the effect on the

model’s effectiveness. Krizhevsky et al. (2012) used data

augmentation to expand the size of the dataset with a magnitude of

2,048. It used 224 × 224 patches following flips and changes in

intensity values in RGB channels for new image creation. This

method enhances the size of the dataset and helps to reduce

network overfitting during the training. This step helps to improve

accuracy and reduces errors by over 1%. Photometric transformation

such as color jittering and edge enhancement is also used by the

authors for data augmentation (Luke and Geof, 2017).

Synthetic data generator approach
New images can be engendered by using conventional image

augmentation approaches. However, the final images produced by

conventional methods have an equivalent distribution to the input

image. These approaches may not be effective whenever the synthetic

items lead to data distribution among various subjects. Synthetic data-

generating techniques such as GAN, image registration, and PCA

generate new synthetic images from the existing images. These

procedures may suitable when the synthetic samples have to

portray data distribution between many different subjects (Pandian

et al., 2019). GANs offer a way to add artificially created samples to

the training data. It demonstrated their effectiveness in many areas,

such as language and speech processing to image computing (Wang

et al., 2017). It has been used in the broad field of agriculture, where

artificially generated image samples help to improve the overall

accuracy of the D-convolutional neural network (CNN) models, in

which the collection of large datasets is not feasible (Tian et al., 2021;

Abbas et al., 2021). Image registration techniques have accomplished

a remarkable achievement and are also used by various fields for

model generalization. In this respect, the researchers (Nalepa et al.,

2019b; Abolvardi et al., 2019) proposed registration-based techniques

for augmenting multiple medical image datasets. In this technique,

two different images of patients are used to generate a new image

sample, which smoothly adds features of another image from the first

patient image.

Other hybrid image data generation approaches
An adequate dataset is required for deep learning-based

approaches during the training process to achieve consistent

performance. The collection of data is quite expensive and time-

consuming in most applications. However, many hybrid approaches

have been presented and verified by researchers to tackle this

challenge. Meng et al. (2022) proposed a time series data generation

method that utilized good quality of plant leaf images. It recognizes
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three viewpoints for the growth prediction of plants and proposes two

new time series data generation algorithms (T-copy-paste and T-

mixup). The experiment is performed on KOMATSUNA datasets

and achieved effective results. Raj et al. (2022) popularized a new

hybrid data augmentation technique based on genetic algorithms. The

techniques used crossover between the two images to produce a new

image without label preservation. Ozdemir and Sönmez, (2022)

proposed a D-CNN for the classification of CT scan images of

coronavirus disease 2019 (COVID-19) patients. The model used a

mixup data augmentation strategy that helps to exploit the additional

features and applied them to the publicly available COVID-CT

dataset. The strategy achieved significant results and helped in

model training as compared to baseline CNN models.

In contrast, the goal of the data augmentation method is to carry

out data modifications that will help enhance the model’s

generalization. This section of the literature provides a brief

overview of the different transformation techniques that are usually

adopted by researchers for data augmentation. Despite this, data

augmentation in agriculture for insect pest recognition has not been

thoroughly investigated and remains a research challenge.
Machine vision-based approaches for
pest detection

This section reports on recent advances in the field of machine

vision for detecting insect pests and diseases in agriculture. The

related study performed an extensive search on different databases

such as Frontiers, Web of Science (WoS), SpringerLink, IEEEXplore,

and ScienceDirect with the keywords “pests,” “insects,” “data

augmentation,” “deep learning,” and “machine learning.” After

initially checking, it is found that a very limited number of

publications are related to insect pest detection and classification.

However, Liu et al. (2016) proposed a visual localization pipeline

for insect pest classification in paddy field crops. The pipeline first

follows a contrast region-based method for pest localization and

constructs a database called PestID. This database is used for model

training. After training, the outcomes demonstrate that the proposed

architecture achieved 95% precision accuracy. Nanni et al. (2020)

used two pest dataset collections. One of the used datasets was IP102,

which contains 75,000 pest images belonging to 102 different pest

classes. The insect pest classification model was tested on five different

deep neural network models: GoogleNet, MobileNetV2, AlexNet,

ShuffleNet, and DenseNet. Pattnaik et al. (2020) also studied smart

agriculture related to pest detection in tomato plants. In this study,

the authors collected a tomato insect pest dataset of 859 images from

different online sources and classified them into 10 different classes.

For testing purposes, 15 different pretrained CNN models were used

by the authors. Turkoglu et al. (2022) proposed two models that used

deep features of pre-trained CNN to detect diseases in plants. The

model used a dataset of 4,447 images with 15 different classes that are

collected from different regions of Turkey. The authors used six

neural networks for pretraining: AlexNet, ResNet18, GoogleNet,

ResNet50, DenseNet201, and ResNet10. The proposed model,

PlantDiseaseNet-SEA, based on the idea of sample ensemble

averaging with late fusion, achieves an accuracy of 93.6%.

PlantDiseaseNet-EF used late fusion to achieve an accuracy of
Frontiers in Plant Science 04
96.83%. PlantDiseaseNet-MV used the idea of majority voting to

select the nearest class and achieve an accuracy of 97.56%. In another

study, Cheng et al. (2017b) popularized VGG16 architecture to

classify the 10 classes of pests related to different crops. It used

Xie’s research pest dataset to train the VGG16 deep neural network

and achieved a 95.33% accuracy rate. Furthermore, the model is

capable of recognizing the pests in a complex farm background.

Huang et al. (2022) established a model based on deep transfer

learning to detect eight categories of insect pests. The experiment

used a mixed dataset collected from different sources and data

augmentation methods (rotation, flipping, and scaling) to enhance

the data variability of deep neural networks. Through transfer

learning, four deep neural networks—InceptionV3, ResNet, VGG16,

and AlexNet—were trained. After the performance analysis, the study

found VGG16 achieved the highest accuracy of 94.95% with a

standard deviation of 0.44.

A more appropriate model may then be developed that easily

differentiates insects that have more analogous traits (Kasinathan and

Uyyala, 2021). Different image feature extraction techniques are

applied by the authors to evaluate the accuracy. In this study, eight

textures, ten shapes, three colors, GIST PCA, and HOG PCA features

were used for model training. For pest identification, these feature

vector sets are applied to four bases (Naïve Bayes, support vector

machine, and K-nearest neighbor) and an ensemble (Bagging,

Random Forest, and XGBoost) classifier. In the ensemble classifier,

the RF classifier gives a better performance than others with an

accuracy of 89.57%, 95.89%, and 91.96%. This research showed that

feature vectors have a very great impact on classifier performance.

The machine vision model is still becoming powerful and is

successfully used for real-time image recognition. Therefore, the

authors discussed various machine vision models that aid in real-

time insect detection for castor cultivation.
Proposed data
augmentation framework

After addressing the issue related to the lack of data available for

an automated castor insect pest recognition system, the authors then

proposed a manipulation-based data augmentation framework. The

objective of this research is to increase the variability in imagery data

to enhance the learning mechanism in machine vision architecture.

Manipulation-based data transformation techniques are far less

complex compared to advanced deep learning methods. It uses

various mathematical operations to create new output images

without losing the useful features. These methods help in

generating different variations of imagery data to improve the

randomness in datasets. It is generally classified into five categories

(Rosa et al., 2022). In all cases, some of the methods are discussed by

the authors due to their consideration of the proposed framework.
Geometric-based transformation

It is one of the easiest methods that, when used correctly,

produces excellent results. It only transforms the coordinates of the
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input images without affecting their originality. It is the main reason

behind the adoption of these techniques with other manipulation-

based techniques for data augmentation. In this approach, scaling,

rotation, translation, and flipping are the most common geometric

transformation techniques that are generally used by many

researchers for data augmentation.
Kernel filter

Kernel filters are n x n matrices that mapped images to produce

different effects such as blur, sharpening, and image contrast

enhancement. Blurring and sharpening of images with help of

filters are the most common techniques used for the data

augmentation process. Kang et al. (2017) proposed a patch shuffle

regularization data augmentation technique. In this work, the authors

used a filter that randomly swaps the adjacent pixels to produce a

sharper image. The proposed technique gives a better error ratio than

the traditional filter on the CIFAR dataset. The kernel-based

techniques are easy to implement and not fully explored by the

researchers. Its similarity related to the convolutional neural network

(CNN) internal mechanism such as dependencies on multiple

different parameters produces some limitations in these techniques

for data augmentation (Shorten and Khoshgoftaar, 2019).
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Despite the utility of the available image dataset, the moderate

amount of dataset is an important concern when developing a

machine vision model for pest classification. Moreover, the very

small differences between the two pest categories—the image

mixing, color conversion, and random erasing in pixels—are not

suitable for model training. A suitable combination of data

augmentation techniques for high-level image transformation is

shown in Figure 1. Each sample of insect pest images is subjected

to multiple operations related to the filter and geometric-based

transformation, such as rotation, noise, image enhancement, and

scaling. The novelty of the proposed method is to follow a sequential

pipeline in which each sample performs multiple operations to

increase the randomness in the training dataset.

The proposed framework carefully selected the data augmentation

flow. In this case, the first step followed three random rotations for data

transformation. In the next step, one set of these rotated images is

stored in augmented data, while the other two sets have been subjected

to the two distinct transformations. In this procedure, the first

transformation in this procedure is image enhancement, and the

second is noise addition. After that, the transformed image is also

stored in augmented images and moves further for scaling to increase

the randomness in the image dataset.

The motivation behind the selection of these manipulation

techniques is based on the farmer’s perspective, in which the
FIGURE 1

Proposed manipulation-based data augmentation framework.
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farmers faced the different forms of images followed by rotation,

blurring, and illumination changes.
Materials and methods

The methodology of the present research is described in this

section. At the initial stage, insect pests related to the castor were

confirmed, and a dataset of related insect pests was collected from

field observation and the Internet.
Dataset collection and preprocessing

In the present study, original images and some open-source

Internet images were used for the experiment. The original images

were collected from the fieldwork in a real-time situation. The

majority of images were captured using handheld devices such as

cell phones (Realme 7, Redmi Note 7 Pro, and others) or cameras

(Canon EOS 3000 D). In the collected dataset from the Internet, some

images were very similar, even though they were collected from

different Internet sources. The visual features contained in these

images are almost identical but have some minor differences, such

as image brightness or sizes. In these types of situations, only one

image of each type was selected for the datasets. Before checking with

agricultural experts, we collected a total of 713 images. Thereafter, all

collected images were inspected by the agricultural experts who are

currently working at the College of Agriculture, Bawal, Haryana,

India, and the National Institute of Engineering and Technology,

Greater Noida, India. As per the suggestion of related field experts

among all images, 341 images from the dataset were eliminated.

Finally, the collected dataset contains 372 images and is organized

into six different insect pest classes by the experts. In a real-life

scenario, the insect pests are different from each other in terms of

growth, local names, and species. Two similar insect pests have

different local names. Moreover, two similar insect pests have quite

similar appearances but seem to be different due to the pest’s life cycle.

Therefore, during the process of image acquisition, we depicted the

original scientific names to categorize the insect pest classes. The

formed dataset was named castor insect pests (CASTIPest), in which

each class contained a similar type of image cluster.

It is very difficult for the neural network to train a model

accurately in cases of data shortage or imbalance in image classes.

It is the main reason behind this study to apply a data augmentation

technique for dataset recreation. The number of images produced by
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the data generation step is given in Table 1. Moreover, Figures 2, 3

present the image cluster of insect pests that follows the sequence of

the augmentation process.
Implementation of machine vision model

Machine vision-based CNN models are the most common

supervised learning models used for classification tasks. Hubel and

Wiesel (1959) proposed the first neural network that initially

contained one single hidden layer. Due to its limited performance

and resources, the CNN model’s training was very difficult during the

past decades. Recent advancements in GPU-based processing, high

computing speed, and algorithms related to deep learning help

efficiently train and established deep learning models. In this case,

many CNN models are recently developed by researchers to perform

different tasks in multiple fields.

As discussed in the previous section, CNNs give remarkable

performance when solving image classification tasks in agricultural

fields. A CNN architecture comprises an input layer for the fed input

vector, feature extraction layers, one or more fully connected layers,

and an output layer. The feature extraction layers generally include

convolutional and pooling layers. Convolutional layers are one of the

most important layers and serve as a filter to perform automatic

feature extraction on images. The pooling layers take the input as a

feature vector and help to reduce the sizes of the feature vector

without losing the crucial features or information. It also aids in

avoiding overfitting issues. The fully connected layers that are

responsible for classification are one of the most complex layered

structures in any neural network architecture. It frequently calculates

the loss with help of some loss function, which allows it to make an

exact prediction using an activation function.

In the present study, machine vision models such as VGG16

(Liang et al., 2022), VGG19 (Tetila et al., 2020), and ResNet50

(Malathi and Gopinath, 2021) have been applied to analyze the

impact of the data augmentation framework on the classification

process. The selected CNN architectures can be trained on augmented

and nonaugmented datasets. The motivation behind the selection and

architecture of the aforementioned models are discussed below.

VGGNet
The architecture of the VGG16 and VGG19 is introduced by

Simonyan and Zisserman (2015) to investigate the impact of network

deepness on prediction accuracy. Both suggested models showed the

best prediction performance on the 2014 ImageNet Challenge. The
TABLE 1 CASTIPest dataset.

S.N. Common name of insect pest Scientific name Count Augmented dataset Abbreviation

1 Castor semilooper Achoea janata L. 54 864 AJ

2 Bihar hairy caterpillar Spilosoma oblique Wlk. 84 1,332 SO

3 Leafhopper Empoasca flavescens (Fabr.) 49 780 EF

4 Thrips Retithrips syriacus (Mayet) 69 1,100 RS

5 Whitefly Trialeurodes ricini Misra 72 1,136 TR

6 Leaf miner Liriomyza trifolii Bergess 44 704 LR
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architecture used 3 × 3 small-sized convolutional filters that help to

achieve significant improvement when the depth of weight layers

increased from 16 to 19. In VGG16, 13 layers are associated with

convolutional, five with pooling, and three with fully connected layers.

On the other hand, VGG19 architecture has 16 convolutional, five with

pooling, and three with fully connected layers.

ResNet
ResNet is also a well-known deep residual network (He et al., 2016).

It follows complex network structure than other models that support

vanishing gradients and degradation problem solving, which plagued

other models. It has used a unique feature named shortcut connection.

The shortcut connection jumps from consecutive layers and adds the

global features to the output layer. It also reduces training time and

maintains degraded performance. In the 2015 ILSVRC competition, it

achieved the highest accuracy compared to other models. Another

study by Cheng et al. (2017a) demonstrates that the ResNet showed

better prediction accuracy than other models in pest classification.

Image resizing and preprocessing are two of the first steps in

preparing images suitable for the model (Liu and Wang, 2021). For

VGG16 and VGG19, the authors have chosen to resize the images to

224 × 224 pixels, and ResNet50 to 124 × 124 pixels size. The weights

of selected networks have been preserved with fresh training and the
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help of several hyperparameters. The hyperparameter setting to test

the proposed method is shown in Table 2. The selected models used

batch normalization with a dropout ratio of 0.3 to 0.5, cross-entropy

loss, and Adam as an optimizer for the training. The Adam optimizer

is used to update the learning parameters and reduce category cross-

entropy loss (Kingma and Ba, 2014; Yadav et al., 2021). The selection

of the best-suited optimizer to produce optimized results is still an

open research issue for researchers. In this regard, Alzahab et al.

(2021) published a literature review that reported multiple studies and

showed that Adam is an effective optimizer for model optimization.

The whole architecture of the machine vision models is divided into

two blocks. The first block deals with the feature extraction process

and the second block used fully connected layers (dense) for correct

prediction. After the feature extraction with help of convolution

layers, the flattening of features is carried out by the dense network.

The dense head is updated by the authors and consists of two layers.

The first layer of the dense network used rectified linear unit (ReLU)

as an activation function with a dropout ratio of 0.5 and comprised

512 total nodes. The second layer of the dense network consists of six

nodes and softmax as an activation function. The modified head of

the machine vision architectures is shown in Figure 4.

The performance of each model on the target dataset is evaluated

in terms of accuracy, which is described below:
FIGURE 2

Augmented data of leafhopper image.
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Accuracy =
Total number of correct predictions

Total number of Predictions
(2)
Experimental setup and results

This section of the study is related to the experimental

investigation of the proposed methodology. The entire experiments

carried out in this research were done on the Google Colab platform

with a Tesla T4 GPU. For the implementation, Python was chosen as

a programming language, and different libraries, such as TensorFlow,

Keras, OpenCV, etc., were used by the authors for the

implementation. In order to analyze the effectiveness of the data

augmentation process, two experimental strategies were adopted by
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the authors. (i) The original image dataset, without any overlapping of

samples, is split into train and validation datasets with a ratio of 7:3, to

evaluate model baseline performance. (ii) The augmented dataset

produced by the benchmarked and proposed approach consists of

training. The original image dataset, without any modification, is

considered for validation. The dataset distribution of the original

dataset and proposed augmented dataset is shown in Table 1.

To evaluate the performance of the proposed techniques, some

benchmarking methods were selected by the authors as they are

widely used in agricultural image augmentation (Pandian et al., 2019).

The selection of benchmarking models follows some advanced

synthetic data augmentation methods as well as the traditional data

augmentation techniques used for the proposed method. The selected

state-of-art methods had already been used by the researchers for
TABLE 2 Model setup and list of hyperparameters used for training.

Model Epochs Optimizer Dropout
range

Batch
size

Nontrainable
parameters

Trainable
parameters

Learning
rate

Validation
frequency

VGG16 100 Adam 0.3–0.5 32 11,520 19,973,702 0.001 1

VGG19 100 Adam 0.3–0.5 32 12,032 22,399,302 0.001 1

ResNet50 100 Adam – 32 53,120 27,732,486 0.001 1
FIGURE 3

Augmented data of bihar hairy caterpillar image.
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agricultural image data augmentation. Here, we elaborate on some of

the benchmarking methods and compared them with the

proposed technique.
Rotations

It is the most common geometric transformation-based method

used for rotate an image on a certain angle value ɵ with the help of the
rotation matrix Rt.

Rt  =  (  
cos ɵ −sinɵ

sinɵ cosɵ
  ) :(3)

The value of ɵ helps to rotate the image around the center pixel. In

this experimental scenario, a range of 0 to 150 was used as a value of

angle ɵ.
Flips

As the name suggests, it includes both vertical and horizontal

reflections of pixels. It is a well-known technique applied in the

agricultural field for data augmentation (Pandian et al., 2019). It

captured the unique properties of agricultural images. In the present
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study, we successfully implemented both vertical and horizontal flips

for augmentation.
Noise injection

It is the unwanted information embedded with the original signal

that has produced a new image. In this scenario, Gaussian noise,

spackle noise, random noise, and salt and pepper noise are the most

common variants of noise. We used Gaussian noise for augmentation

to produce a new training dataset for our experiment.
Mixup

This technique consists of taking two images as input, merging

them at a certain weight (l), and generating a new image X’. Although

this technique seems unusual, it demonstrates superior results with

well-known datasets (Harris et al., 2020; Li et al., 2023).

X 0 = lXi + (1 − l)  Xj,     l ϵ range(0, 1) :(4)

X’ is the newly generated image, l is the weight factor, Xi is the

first image, and Xj is the second image.
FIGURE 4

Modified FCL head of the machine vision model.
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Data augmentation with image mixing is useful in different

application areas. For this reason, we used mixing for data

augmentation. In the present study, we used two different images of

the same pet class with l = 0.2 to generate a new image.
Scaling

It introduced zoom-in/out transformation with shape variations

depending on value magnitude. Here, we used scale in the

transformation and cropped a specific portion of the images to the

new augmented dataset for comparison.
Principal component analysis

For the comparative analysis, we used principal component

analysis for dimensionality reduction. It is a well-known synthetic

data augmentation technique first used in AlexNet (Krizhevsky et al.,

2012) and later (Geetharmani and Pandian, 2019; Tongcham et al.,

2020) considered for plant leaf disease detection. In this experimental

setup, we used a different number of components for dimensionality

reduction. The value of component k is dependent on the variance.

We used a level of 95% variance value for synthetic data generation.
Enhancement

As per the name, the method is used for image enhancement. We

used a histogram equalizer to make a new augmented dataset. In this

experiment, we split the RGB image into different channels and

perform histogram equalization to stretch out the intensity value of

the image.

The authors perform different experimental scenarios to measure

the efficiency of the proposed technique. In the baseline scenario, the

original dataset was taken and evaluated with all three models. The
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experiment’s objective is to assess the system’s baseline performance.

Table 3 shows the impact of different augmentation methods and

gives an idea to the readers of their relevance. This table shows the

performance of different data augmentation methods described in

terms of validation accuracy achieved by the machine vision model

during the training period. The results achieved by the different

updated models with the proposed augmentation pipeline

significantly improve the validation accuracy.

As previously stated in the last section, the experiment in this

paper involves VGG16, VGG19, and ResNet50 with an updated fully

connected head. The training of the model is performed over 100

epochs. Table 3 represents the validation accuracy achieved by each

experimental set. The validation accuracy represents the

generalization capability of models on unseen data. During the

training process of machine vision models, the validation accuracy

is measured to test the model’s real-time problem-solving capabilities.

In the baseline scenario (baseline dataset 0), models achieved 71.23%,

72.55%, and 74.85% validation accuracy, respectively. The validation

accuracy on each experimental scenario using different augmentation

datasets improves the model’s capabilities and helps in the

maintenance of the overfitting problem. In the case of the proposed

approach, the VGG16 and VGG19 models surpassed the other state-

of-the-art validation accuracy and achieved 82.18% and 76.71%

validation accuracy, respectively. In the present study, we also

traversed different domains of data augmentation for agricultural

images. Surprisingly, the synthetic data augmentation method such as

mixing and PCA augmentation also help boost models’ performance

over the traditional augmentation methods. The results showed that

the validation accuracy achieved by the methods helped improve the

performance of the VGG16 model. In addition, Figures 5–7 represent

a performance comparison of selected machine vision models on the

baseline with the proposed experimental run.

Furthermore, following the evaluation of different machine vision

models on the proposed data generation pipeline and different

cumulative results, the authors provide a detailed assessment of

various state-of-the-art models. The purpose of this assessment is to
TABLE 3 Comparative analysis of different benchmarking models through validation accuracy of different machine vision models.

Data augmentation sets Augmentation approach Model

VGG16 VGG19 ResNet50

Baseline set 0 No augmentation 71.123% 72.552% 74.852%

Data augmentation 1 Rotation 73.825% 74.026% 76.295%

Data augmentation 2 Vertical + horizontal flips 62.895% 75.501% 78.296%

Data augmentation 3 Contrast enhancement 71.742% 76.426% 71.973%

Data augmentation 4 Noise 75.051% 74.039% 69.126%

Data augmentation 5 (Tongcham et al., 2020) PCA 74.042% 72.693% 69.135%

Data augmentation 6 (Li et al., 2023) Mixup 76.124% 69.516% 66.761%

Data augmentation 7 Scale in/out 74.412% 65.512% 68.915%

Data augmentation 8 (Li et al., 2019) Rotation + scaling 74.035% 75.247% 75.508%

Data augmentation 9 (Huang et al., 2022) Rotation + flip + scaling 78.897% 74.717% 69.433%

Data augmentation 10 Proposed approach 82.182% 76.713% 74.122%
f

Bold values shows highest achieved results.
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analyze the contribution made by selected state-of-the-art techniques

in data generation. To make this objective clear, nine different

datasets with help of selected state-of-the-art techniques were

generated and have been processed as training datasets. The

original image dataset was used as a validation dataset. The purpose

of the selected scenario is to measure the contribution of each state-

of-the-art’s contribution to the model’s baseline performance. In this

regard, Figure 8 demonstrates the percentage of contribution

produced by the selected augmentation strategies in comparison to

the validation accuracy. The resulting accuracy of the VGG16 and

VGG19 models was almost 82.182% and 76.713%, respectively, with

the data augmentation method. The performance analysis highlights

that the application of the proposed data augmentation method

contributes to an overall 15.54% improvement in VGG16 and

5.73% in VGG19. In addition, the negative responses are produced

by VGG16 and VGG19. Overall, the assessments of possible

outcomes indicate that the data augmentation strategies resulted in

improvements in machine vision models. Furthermore, we traversed
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different domains of synthetic data augmentation methods for

agricultural imaging, such as PCA and image mixing. Surprisingly,

these methods also generated positive contributions over the machine

vision models trained on different traditional data augmentation

methods. The detailed analysis of the results reveals that the

proposed data augmentation technique improved classification

performance with a disproportional impact.
Discussion

The authors explored a novel manipulation-based data

augmentation technique. The proposed strategy yields positive

results and strengthens the machine vision model for accurate

insect prediction. Furthermore, the suggested strategy does not

necessitate any specific hyperparameter and ensures a high degree

of variation in the targeted dataset. Following the analysis, the results

given in the preceding section reveal that the original dataset showed
A B

FIGURE 5

VGG16 accuracy comparison. (A, B) The graphical representation of validation and training accuracy results of the VGG16 architecture on augmentation
and nonaugmentation datasets for comparison. During the training process with the baseline dataset, the training curve reaches a saturation point after
approximately 40 epochs, while the validation curve shows oscillation in the overall training process. In (B), on the other hand, the training curve reaches
a saturation point after approximately 30 epochs, while the validation curve shows better results and less oscillation.
A B

FIGURE 6

VGG19 accuracy comparisons. (A, B) The graphical representation of validation and training accuracy results of the VGG19 architecture on augmentation
and nonaugmentation datasets for comparison. During the training process with the baseline dataset, the training curve reaches a saturation point after
approximately 85 epochs, while the validation curve shows oscillation in the overall training process. In (B), on the other hand, the training curve reaches
a saturation point after approximately 80 epochs, while the validation curve regularly shows oscillation.
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excessive fluctuations and poor performance. However, when the

augmentation procedure is used, the prediction performance of the

aforementioned class improves, as demonstrated by the augmented

dataset. Similarly, the insect pest classification results reveal that the

proposed fully connected head for ResNet50, VGG16, and VGG19

improved the results under the proposed data-augmented process.

Although there are various studies included in this literature,

employing data augmentation processes improved classification

performance from 0.19% to 9.7%. To the best of our knowledge,

similar strategies have not been published for insect pest classification.

The suggested data augmentation procedure increased the robustness
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of the training model by using a cascaded strategy of multiple

manipulation-based transformations of insect pest images.

The authors explored the domain of manipulation-based data

augmentation for insect pest images. This technique may be viewed as

a form of elastic transformation, which also brings to the discussion

why the technique yields superior results. One probable explanation is

that manipulation-based approaches preserve the actual feature

information of images during the transformation. It can help

increase the randomness in the image dataset and increase the

model’s robustness. Rosa et al. (2022) ran an experiment on

different geometric-based transformations on different datasets.
A B

FIGURE 7

ResNet50 accuracy comparisons. (A, B) The graphical representation of validation and training accuracy results of the ResNet50 architecture on
augmentation and nonaugmentation datasets for comparison. During the training process with the baseline dataset, the training curve reaches a
saturation point after approximately 33 epochs, while the validation curve shows oscillation in the overall training process. In (B), on the other hand, the
training curve reaches a saturation point after approximately 30 epochs, while the validation curve regularly shows oscillation.
FIGURE 8

Average classification accuracy obtained by models.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1101943
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nitin et al. 10.3389/fpls.2023.1101943
This technique is a subpart of a manipulation-based technique and

encourages robustness. However, after training the model with the

augmented dataset, a tipping point occurs where the accuracy level

shoots up. The asymptotic behavior of the accuracy along with each

incremental step is also clearly noticeable. After a specific point, a

computer’s effort to generate increasingly more synthetic data may

not be worthwhile.
Conclusion

The authors have studied the influence of the manipulation-based

data augmentation technique for precision agriculture. The suggested

technique expands the availability of the insect pest dataset of castor

crops for classification. The proposed model enhances the VGG16

and VGG19 frameworks by extracting features from the traditional

network and classifying features with the help of an updated, fully

connected head. The evaluation of the proposed technique was

achieved with help of 10 datasets and three deep learning

frameworks. The results of different architectures reveal that the

proposed manipulation-based data augmentation process improves

accuracy by 15.54% and 5.73% for VGG16 and VGG19, respectively.

After the investigation, it has been concluded that the data generation

procedure of the proposed technique would inevitably improve model

performance for castor insect pest prediction. The authors also noted

that tasks related to deep learning face multiple challenges, and data

unbalancing is one of them. The future study will involve a detailed

investigation of several data augmentation subfields and an attempt to

optimize these techniques using genetic algorithms.
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