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Studying population genetic structure and diversity is crucial for the marker-

assisted selection and breeding of coniferous tree species. In this study, using

RAD-seq technology, we developed 343,644 high-quality single nucleotide

polymorphism (SNP) markers to resolve the genetic diversity and population

genetic structure of 233 Chinese fir selected individuals from the 4th cycle

breeding program, representing different breeding generations and provenances.

The genetic diversity of the 4th cycle breeding population was high with nucleotide

diversity (Pi) of 0.003, and Ho and He of 0.215 and 0.233, respectively, indicating

that the breeding population has a broad genetic base. The genetic differentiation

level between the different breeding generations and different provenances was

low (Fst < 0.05), with population structure analysis results dividing the 233

individuals into four subgroups. Each subgroup has a mixed branch with

interpenetration and weak population structure, which might be related to

breeding rather than provenance, with aggregation from the same source only

being in the local branches. Our results provide a reference for further research on

the marker-assisted selective breeding of Chinese fir and other coniferous trees.
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1 Introduction

Cunninghamia lanceolata (Lamb.) Hook of the genus Cunninghamia in the Cupressacaes

family (2n = 22) is a Quaternary ice age relict species and is considered one of the most

economically important timber species in southern China. The species is widely distributed

in 17 provinces and autonomous regions of China and has rich genetic diversity (Bian et al.,

2014). The species has been under cultivation for over 3,000 years and currently covers ~10
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million hectares, accounting for 17.3% of the dominant tree species in

China’s plantation forests. Genetic improvement activities of Chinese

fir started in 1950s, mostly through conventional breeding. At

present, the Chinese fir breeding program is in its 4th breeding

cycle, which is characterized by the selection and establishment of

the 4th cycle breeding population. Phenotypic variation of a multitude

of biological traits of Chinese fir is known to be affected by both

climate and geography. However, information regarding the neutral

variation of molecular markers remains scant (Bian et al., 2014). It is

anticipated that the use of molecular markers in the Chinese fir

breeding program will help resolve the species genetic structure and

diversity across populations and ultimately help in the

implementation of marker-assisted selective breeding (Zheng et al.,

2015; He et al., 2021).

A species breeding population represents the core material for

genetic improvement. It is often used to generate a structured pedigree

for genetic evaluation, mainly by implementing a specific mating design

among the populations’ members. To prevent genetic variability

erosion in the Chinese pine 4th cycle breeding population, rigorous

genetic diversity assessment is required. The extent of genetic diversity

within a population determines its resilience to unexpected

environmental contingencies and successful reproduction and

recruitment. Thus, the assessment of genetic diversity and population

genetic structure is important for the effective conservation and

utilization of coniferous tree populations as well as for the thorough

development of their breeding programs (Cai et al., 2020).

Analysis of genetic diversity and population structure of forest

tree populations has been mostly based on molecular genetic markers,

such as random amplified fragment length polymorphism (RAPD),

amplified fragment length polymorphism (AFLP), and simple

sequence repeat (SSR) (Chung et al., 2004; Cao et al., 2012; Duan,

2014; Yang et al., 2018). SSR and RAPD markers were used to analyze

the genetic diversity of the first three Chinese fir breeding populations

(1st, 2nd, and 3rd cycles) (Li, 2001; Li et al., 2007; Ouyang et al., 2014; Li

et al., 2017), and high levels of population genetic diversity were

reported. Recently, the use of SNP markers has become common due

to their stability, high resolution, wide distribution, and strong

differentiation between germplasms (Xia et al., 2019; Zheng et al.,

2019). Using specific-locus amplified fragment sequencing (SLAF-

seq) technique, Zheng et al. (2019) developed a genome-wide SNP

panel for 221 Chinese fir clones. However, Picea abies was used as the

reference genome for the SNP selection.

High-throughput sequencing technologies generate substantial

high-density SNP information, thereby offering opportunities for

the development of new strategies for population genetics research.

Among them, simplified genome sequencing technologies are widely

used as they are free from the “reference genome” constraints. These

include restriction-site related DNA sequencing (RAD-seq) (Bus

et al., 2012), 2b-RAD sequencing based on RAD-seq (Wang et al.,

2012), polymorphic sequence sequencing with reduced complexity

(CRoPS) (Altshuler et al., 2000), specific-locus amplified fragment

sequencing (SLAF-seq) (Sun et al., 2013), genotyping-by-sequencing

(GBS) (Elshire et al., 2011), and reduced representation libraries

sequencing (RRLS) (Van Tassell et al., 2008). RAD-seq technology

has proven to be an effective sequencing technology for obtaining

genome-wide genomic information at low costs and has been

extensively used without dependance on “reference genome” (Miller
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et al., 2007; Zhou et al., 2018; Brandrud et al., 2019). RAD-seq

simplified sequencing technology is widely used for plant and

animal marker development, population structure analysis, and

high-density genetic mapping (Emerson et al., 2010; Catchen et al.,

2011; Lexer et al., 2014; Lozier, 2014; Zhou et al., 2016). Although

RAD-seq technology is promising, it has not been widely used yet in

the population genetic diversity and genetic structure analyses of

Chinese fir.

Here, we used the Chinese fir 4th cycle breeding population as the

study material to develop high-quality SNPs markers based on RAD-

seq simplified genome technology. We expect that this development

will not only help elucidating the genetic structure and diversity of the

Chinese fir advanced generation breeding population, but also

provide theoretical basis and reference for the development and

establishment of breeding population and parental selection of

seed orchards.
2 Materials and methods

2.1 Plant material

The Chinese fir 4th cycle genetic improvement population initially

was selected for fast growth, high wood quality, and disease resistance.

Individuals in this population were selected over three cycles of

intensive genetic evaluation and were benchmarked against natural

stands’ seedstock. The population is comprised of 233 individuals

selected for the above-mentioned attributes along with the added

knowledge of their flowering propensity (data generated from three

years observations post grafting), which according to the genealogical

records could be divided into four generations: 1st (n=43), 2nd

(n=141), 3rd (n=38), and 4th (n=11) (Supplementary Table 1), thus

covering eight geographical Chinese fir origins (Figure 1).
2.2 DNA extraction and sequencing

Current year fresh needles were collected from 233 Chinese fir

trees of the 4th cycle selection population growing in the Yangkou

State-owned Forest Farm (Fujian Province) and then preserved on

dry ice. DNA was extracted using the Tiangen Biotech kit (DP-320-

02), and its quality was checked using Qubit (Thermo Fisher

Scientific, Waltham, MA) and Nanodrop (Thermo Fisher Scientific,

Waltham, MA) with TE buffer as the blank. DNA purity and integrity

were checked using 1% polyacrylamide gel electrophoresis.

Sequencing libraries of the 233 Chinese fir germplasm were

constructed using the RAD-seq simplified gene sequencing

technology. The quality-checked genomic DNA was enzymatically

digested with EcoRI, and samples were double-end sequenced on the

Illumina HiSeq 2500 platform to an average depth of 10×. The

reference genome was assembled and spliced from the 233

genotypes using the simplified genome sequencing data assembled

using the Stacks (Version 1.46) software (Catchen et al., 2011) and its

sequencing was also completed by the Stacks (Version 1.46) software.

Raw sequencing data containing splice information, low-quality

bases, and other information that interferes with downstream

analysis were removed to ensure proper data analysis. The FASTP
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(Version 0.18.0) software (Chen et al., 2018) was used for filtering

with the following criteria: 1) removal of sequences lacking the EcoRI

restriction sites; 2) removal of low-quality reads (the number of bases

with quality Q ≤ 20, which accounted for over 50% of the entire read);

3) elimination of reads containing adapter information; and 4)

exclusion of reads with N ratio > 10%.
2.3 High-quality SNP marker development

The BWA-MEM method of the Burrows-Wheeler-Aligner

(v0.7.16a-r1181) software (Li and Durbin, 2009) was used to

compare the high-quality reads of each sample with the assembled

population tags, with the variant detection software GATK (McKenna

et al., 2010) being used for population SNP detection. Using the Plink

software (Purcell et al., 2007), the initial SNPs were screened based on

the following criteria: 1) indels were removed; 2) only double alleles

were retained; 3) Hardy-Weinberg equilibrium (HWE) was met; 4)

linkage disequilibrium (LD) between loci was < 0.2; 5) to compare the

differences in genetic diversity parameters under different filtering

criteria, three sets of criteria were set: ①MAF>0.01, Call rate>0.9,

②MAF>0.05, Call rate>0.8 and ③MAF>0.05, Call rate>0.9. Finally,

high-quality SNPs were obtained for genetic diversity analysis.
2.4 Data analysis

UsingPlinksoftware (Purcell et al., 2007), geneticdiversityparameters,

including observed (Ho) and expected heterozygosity (He), and inbreeding

coefficient (F) were measured. To equalize the sample size of each

population, clusters with larger sample sizes (e.g., G2, FJ) were randomly

sampledeach timewith repeated sampling to calculate thegeneticdiversity

parameters, and finally the mean was estimated. Using the Vcftools
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software (https://vcftools.github.io/man_latest.html) to 1) calculate

nucleotide diversity parameters (Pi); 2) number of conversions and

reversals (i.e., structural variation); and 3) calculate Ts/Tv values. The R

package StAMPP’s stamppAmova (https://rdrr.io/cran/StAMPP/man/

stamppAmova.html) and PopGenome (https://cran.r-project.org/web/

packages/PopGenome/index.html) were used for the analysis of

molecular variance (AMOVA) and also for estimating the genetic

differentiation indices both between the four generations and between

the different geographical origins. The SNP data were used to construct a

phylogenetic tree for the 4th cycle breeding population using theMEGA 6

software (Tamura et al., 2013). Using the neighbor-joining method with

bootstrap values set to 1,000, the phylogenetic tree was constructed using

the Kimura 2-parameter model. The ped format file was first exported by

Plink software, and then the Admixture (Version 1.3.0) software

(Alexander et al., 2009) was used to calculate the Q values and the final

population structure was determined. This assumed that the number of

sampledsub-groups (K) rangedbetween1and9, and thevalleyvalueof the

cross-validation error rate was used as the optimal number of bins. A Q

value > 0.6 indicated a single source and pure genetic background, while a

Q value < 0.6 indicated a mixed source and complex genetic background.

The software EIGENSOFT’s smartpca (https://www.hsph.harvard.edu/

alkes-price/software/) module was used for principal component analysis

(PCA). The above graphs were visualized using the R software.
3 Results

3.1 High quality SNP marker development

After RAD-seq sequencing, as shown in Supplementary Tables 2

and 3, we obtained 3,145.8 Gb data from the 233 individuals, with

data volumes of 9.9–19.6 Gb for each sample, an average of 13.5 Gb

per sample, and the average depth of high quality SNP marker
FIGURE 1

Origin of the 233 Chinese fir germplasm. ①~⑦ represent the seven Chinese fir provenances (Fujian, Hunan, Sichuan, Jiangxi, Guangdong, the boundary of
Hunan, Guizhou and Guangxi, and the boundary of Shaanxi, Henan and Hubei). The mixed sources are not shown in the figure.
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sequencing in each sample was 5.5× (Supplementary Table 4), and

average read length of 146 bp. After quality control, we retained a

total of 3,075.3 Gb, with a 97.8% efficiency rate, with data volumes of

9.4–19.4 Gb per sample, and average of 13.2 Gb per sample. The

overall sequencing quality was high (Q20 ≥ 97.27%, Q30 ≥ 92.15%),

and the GC content was stable (36.61–37.71%, with average of

37.10%), which met the requirements of subsequent analyses. After

removing the overlap, there were 2,188,278 contigs. The total length

of the assembled reference genome sequence was 1.11 Gb, with

average length of 509 bp and a maximum length of 2,211 bp; N50

length of 539 bp and N90 of 406 bp; and 37.01% GC content. The

reference genome was compared with the Picea abies genome (http://

congenie.org/), and it showed 80.48% match, with the RAD-seq

sequencing accuracy being reliable for downstream analysis.

After quality control of the raw data, we detected a total of

27,283,139 SNP markers in the whole population as compared to the

reference genome, with an average of one SNP locus per 46 bp. The

content and distribution density of different types of SNP variants

varied across the genome. Among them, conversion accounted for

60.41%, A/G and C/T accounted for 30.41 and 30% respectively;

reversal accounted for 39.59% (A/C, C/G, A/T, and G/T), with C/G

accounting for 5.51%. After further filtering, we retained a total of

343,644 (1.26%) high quality SNP markers for subsequent analyses.

By comparing the genetic diversity parameters of Chinese fir under

the three sets of criteria, the results showed that the parameter values

under the first set of criteria were significantly smaller than the other

two groups, while the values of various genetic parameters calculated

under the third set of criteria were higher than the other two groups.

Therefore, the SNP markers filtered by the third set of criteria (i.e.,

MAF > 0.05, Call rate > 0.9) were used as high-quality SNP markers,

and 343,644 SNP (1.26%) markers were finally retained for

subsequent analyses.
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3.2 Population genetic diversity

We used the 343,644 high-quality SNP markers to calculate the

genetic diversity parameters of the breeding parents of different

generations and their origins in the 4th Chinese fir cycle breeding

population (Table 1). Ho varied between 0.203 and 0.218 (mean of

0.211), while He varied from 0.214 to 0.231 (mean of 0.225). Both Ho

and He were the highest in G2, with Ho at all SNP loci being smaller

than He, thereby indicating that heterozygous deletions may exist in

this Chinese fir germplasm population. G4 had the highest Pi (0.003),

which may be related to its inclusion of more provenances, followed

by G2, which was similar to G3 and G1. Among the origins, Ho was

smaller than He in FJ and HN, while He was larger than Ho in the

remaining provenances, and Pi values are also higher in the other

provenances compared to the HN and FJ, probably due to the

small sample size (only 3 to 5) in the other provenances, thus

suggesting that genetic diversity in each provenance is somewhat

related to the population size. This shows that the genetic diversity

level of the 4th cycle breeding population was high and had abundant

genetic variation.
3.3 Populations genetic differentiation

We assessed the genetic differentiation for different breeding

generations and different germplasm sources (Tables 2, 3).

Generally, the genetic differentiation level is low (Fst < 0.05),

indicating that there was no significant genetic differentiation in

Chinese fir between the different provinces and between the

breeding populations of the four generations. In contrast, the

degree of differentiation between SC, JX and GD was higher. The
TABLE 1 Genetic diversity parameters of the Chinese fir 4th cycle breeding population.

Groups Number Ho He Pi F

G1 43 0.211 0.228 0.003 0.067

G2 141 0.217 0.231 0.003 0.055

G3 38 0.213 0.229 0.003 0.0665

G4 11 0.203 0.214 0.003 0.047

mean 58.25 0.211 0.225 0.003 0.058

FJ 182 0.216 0.225 0.003 0.038

HN 18 0.208 0.224 0.003 0.064

SC 3 0.211 0.187 0.005 -0.091

JX 3 0.202 0.184 0.005 -0.07

GD 1 – – – –

XQG 5 0.210 0.205 0.004 -0.021

SYE 1 – – – –

MO 20 0.216 0.226 0.003 0.042

All 233 0.214 0.233 0.003 0.075
G1~G4 denote the 1st, 2nd, 3rd, 4th generation breeding parents, respectively, hereinafter, FJ, HN, SC, JX, GD, XQG, SYE, and MO denote Fujian, Hunan, Sichuan, Jiangxi, Guangdong, Hunan-
Guizhou-Guangxi border, Shaanxi-Henan-Hubei border, and mixed provenance, respectively. GD and SYE were not calculated due to small sample size. Ho and He denote observed and expected
heterozygosity, respectively, Pi denotes nucleotide diversity, and F denotes inbreeding coefficient.
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genetic differentiation among the different breeding generations

showed the highest differentiation between G4 and G1, which

shared similarity with the nucleotide diversity results, whereas the

lowest genetic differentiation was between G2 and G3.

The AMOVA results showed that only 1.29% and 3.02% of the

variation originated between breeding population generations and

between the different germplasm origins, respectively, and over 96%

of the variation was due to among different genotypes (Table 4).
3.4 Population genetic structure

The 233 Chinese fir individuals of the 4th cycle breeding

population can be divided into four differential classes (I-IV)

(Figure 2). There is large genetic variation among the four classes

indicating mixed groups containing individual parents from 3 to 4

generations. Class I contained a minimum of 26 individuals

[representing G3 (n=12); G2 (n=12), and G1 (n=2)]; Class II

harboured a total of 41 individuals [representing G3 (n=2); G2

(n=12), and G1 (n=27)]; Class III contained 37 individuals

[representing G3 (n=10), G2 (n=14), G1 (n=2), and all of G4];

while Class IV contained a maximum of 129 individuals accounting

for 55.37% of the tested material [which is dominated by G2 (n=103)

and a few G3 (n=14) and G1 (n=12)]. Fifteen individuals of G1

(including F5, E12, and K6) are located in the Class II subclade,

confirming the close kinship of these 15 individuals at the molecular

level. The evolutionary tree clustered according to provenance

(Supplementary Figure 1), we found that most provenances were

clustered into one group only in the local branches, e.g., most FJ

provenances were clustered together, probably due to the larger

sample size of the FJ provenance. Therefore, the phylogenetic tree

showed that most 4th cycle breeding population clones were mixed to

varying degrees, with few outlier samples and no obvious relationship

between the division and provenances of the populations, which was

probably related to the breeding generations, such that Class IV

contained 73.05% of G2 and 36.84% of G3; Class II contained 62.79%

of G1; while all of G4 was distributed in Class III.

We used the admixture software to calculate the Q values of each

sample (Supplementary Table 5) and then we grouped the 233

Chinese fir individuals (Figure 3, Supplementary Figures 2-4).

Based on the valley of the cross-validation error rate, we

determined that the optimum number of subgroups to be four,

thereby indicating that these Chinese fir trees may have come from
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four original ancestral sources, with the four subgroups (I-IV)

containing 160, 23, 23, and 27 individuals, respectively.

Subpopulation I had the most complex genetic background, with 40

individuals with Q > 0.6 and 75% of the material having a poorly

defined genetic composition. This suggested that there may have been

a genetic exchange between these individuals, indicating that the

parents may have been used multiple times for crossing in the

ongoing breeding process. All of G4 and 75% of G2 comprised

subpopulation I. Subpopulation III had greater genetic background

purity, which was dominated by G2, where 21 individuals have a Q

value > 0.6, probably associated with most samples from G2.

Subpopulation II contained G3 (n=8), G2 (n=11), and G1 (n=4), of

which 15 individuals have Q values > 0.6. Additionally, 74% of the

material in subpopulation IV was from G1, with the remainder from

G2, and 14 individuals having Q values > 0.6. All four subgroups

retained a proportion of the same genetic material, thus facilitating

gene exchange, resulting in a similar genetic background of the

breeding parents from different origins. However, the genetic

background of the breeding parents from different germplasm

sources was similar. Although the subpopulation divisions do not

match the provenance of the test material, it only showed some local

correlation, thus suggesting that the Chinese fir germplasms may have

mixed ancestry or gene flow, which matches the phylogenetic

tree results.

PCA showed that the first 10 principal components explained

only 11.29% of the variance, with each principal component

explaining < 2%, thus indicating that only few SNPs could delineate

the subgroups and discriminate between individuals. We selected the

first three principal components (PC1 = 1.82%, PC2 = 1.48%, and

PC3 = 1.45%) and plotted them in pairs (Figure 4, Supplementary

Figure 5), which divided the 233 individuals into four groups. These

results showed that G4 is relatively concentrated in the middle cluster,

thus reflecting the close genetic distance between samples within G4.

Most G2 and G3 were clustered together, while G1 was more

dispersed. Furthermore, elucidating the Chinese fir population

genetic structure (maybe related to the breeding generations which

unintentionally mixed their genetic background) showed that it does

not correspond to the provenance. The studied germplasm indicated

that parents from different origins (provenances) were more

dispersed, while those from the same provenance were clustered

together. In summary, there was overlap and crossover between the

four groups and a high degree of admixture between groups, thereby

indicating different degrees of interpenetration between groups,
TABLE 2 Genetic differentiation among the different provenances of Chinese fir.

Groups FJ HN SC JX GD XQG

FJ –

HN 0.0038 –

SC 0.0117 0.0136 –

JX 0.0148 0.0178 0.0221 –

GD 0.0132 0.0113 0.0211 0.0275 –

XQG 0.0062 0.0086 0.0135 0.0222 0.0130 –

SYE -0.0176 -0.0189 -0.0124 -0.0007 -0.0070 -0.0201
FJ, HN, SC, JX, GD, XQG, SYE denote Fujian, Hunan, Sichuan, Jiangxi, Guangdong, Hunan-Guizhou-Guangxi boundary, and Shaanxi-Henan-Hubei boundary provenance, respectively.
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TABLE 4 Molecular analysis of variance for the Chinese fir different breeding population generations and different germplasm source locations.

Source of variation SSD MSD df Variance

components

% Variance

Among populations 0.5057 0.1686 3.0000 0.0021 1.29%

Within individuals 17.0844 0.0746 229.0000 0.0746 98.70%

Totals 17.5901 0.0758 232.0000 100%

Among populations 0.6100 0.0871 7.0000 0.0009 3.02%

Within individuals 16.9801 0.0755 225.0000 0.0755 96.98%

Totals 17.5901 0.0758 232.0000 100%
F
rontiers in Plant Science
 06
AMOVA analysis among different generations of breeding parents (upper)and AMOVA analysis among different provenances (lower).
FIGURE 2

The Chinese fir germplasm phylogenetic tree. The outermost circle in yellow indicates Class I, purple indicates Class II, red indicates Class III, and green
indicates Class IV; the inner circle in red indicates G4, yellow indicates G3, green indicates G2 and purple indicates G1.
TABLE 3 Genetic differentiation among the Chinese fir different breeding population generations.

Generation G4 G3 G2 G1

4th generation (G4) –

3rd generation(G3) 0.0094 –

2nd generation (G2) 0.0102 0.0032 –

1st generation (G1) 0.0130 0.0090 0.0091 –
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which was consistent with both the phylogenetic tree and population

genetic structure analysis results.
4 Discussion

4.1 Reliability of RAD-seq for
simplified sequencing

With the release of the first version of the Populus trichocarpa

genome (Tuskan et al., 2006), the era of forest tree genomes had

officially started, with the genome-wide information of several tree

species being published. However, genomic research progress in

coniferous trees is still slow as compared to other plants due to the

technical difficulties caused by their very large genomes, high sequencing

costs, and gene structure annotation. To date, only a few coniferous tree

species genomes have been released (e.g., Picea abies (Nystedt et al.,

2013), Pinus taeda (Zimin et al., 2017), Pinus lambertiana (Stevens et al.,

2016), Pseudotsuga menziesii (Neale et al., 2017), Pinus tabuliformis (Niu

et al., 2022)). This undoubtedly led to the rapid development of genomic

information of these species at the molecular level. Although whole

genome of the Chinese fir has not yet been published, very limited

genome-level studies are available. In this study, we attempted to

construct a reference genome of Chinese fir using RAD-seq simplified

sequencing technology for the species 4th cycle breeding population, and

obtained a 1.11 Gb-sized genome with a 37.01% GC content, higher than
Frontiers in Plant Science 07
the 36.04% estimated by K-mer analysis (Lin et al., 2020). This estimate is

similar to that of Picea abies (37.90%) (Nystedt et al., 2013) and Pinus

massoniana (37.95%) (Bai et al., 2019), and was lower than that of

Cryptomeria japonica (48.00%) (Nagano et al., 2020), probably due to the

lower sequencing depth and lower coverage of the simplified genome

sequencing in this study.

The RAD-seq simplified sequencing technique is developed to

generate a wider range of SNP markers. It is a cost-effective

genotyping technique that detects variant information on a

genome-wide scale, but the quality of the obtained SNPs is usually

variable and the lack of stringent filtering can seriously affect

subsequent analyses (Korecký et al., 2021). The initial 27,283,139

SNP markers obtained after the reference genome alignment, and

implementation of strict filtering criteria helped obtaining high-

quality SNP markers and finally only 1.26% of SNPs were retained

as high-quality SNP markers. The proportion of retained high-quality

SNP markers was much lower than that of other tree species

(Mandrou et al., 2014; Tsumura et al., 2020; Yang et al., 2020). And

it was found that the highest number of SNP markers but the lowest

genetic diversity value was obtained under the first set of criteria (i.e.,

MAF > 0.01, Call rate > 0.9), thus indicating that setting of MAF

filtering criteria had a greater effect on the number of SNP markers

obtained. The filtering criteria for Chinese fir SNP selection in this

study were more stringent than those implemented for Picea abies

(Korecký et al., 2021), Ulmus pumila (Lyu et al., 2020), and other

Chinese firs (Zheng et al., 2019).
FIGURE 3

Population structure of 233 Chinese fir germplasm k = 4.
FIGURE 4

Principal component analysis where PC1 and PC2 represent the first and second principal components, respectively. G1~G4 represent the 1st, 2nd, 3rd

and 4th generation breeding parents, respectively.
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The number of high-quality SNP markers obtained using RAD-

seq technology (343,644) was much higher than the number of SNP

markers detected by SLAF-seq simplified sequencing technology

(108,753/143,871). This may be due to either an increase in sample

size (233:221/110) or differences in sequencing technology (Zheng

et al., 2019; Huang et al., 2021). RAD-seq sequencing technology not

only show high number of markers but also high density (Zhang et al.,

2018). This was also observed in some flowers or crops (Jia et al., 2016;

Peng et al., 2016; Chankaew et al., 2022; Jiang et al., 2022). The RAD-

seq technology often detects more SNPs as compared to SLAF-seq

technology (Cai et al., 2015; Su et al., 2017). SNP variant types can be

classified into two categories: conversion (Ts) and reversal (Tv), with

a theoretical ratio of 0.5. However, a “conversion bias” (Collins and

Jukes, 1994) (i.e., conversion/turnover (Ts/Tv) ratio) generally occurs.

In this study, before SNP marker screening, the ratio of Ts/Tv was 1.5,

whereas it was > 1.5 post screening, with results similar to other

findings (Su et al., 2016; Zheng et al., 2019).
4.2 The richness of breeding population
genetic base

Most coniferous trees have a long growth period, high rate of

heterosis, and extensive gene flow, resulting in high level of genetic

diversity (Bergmann and Mejnartowicz, 2000). The rich genetic

variation within the breeding population forms the basis for genetic

improvement (Chaisurisri and El-Kassaby, 1994; El-Kassaby and

Ritland, 1996a; El-Kassaby and Ritland, 1996b; Stoehr and El-

Kassaby, 1997). The level of population genetic diversity decreases

with advanced-generation breeding, as the high intensity of artificial

selection generally results in significant short-term genetic gains,

while possibly also reducing the genetic variation base and genetic

diversity of the breeding population. However, our analysis revealed

that the Chinese fir 4th cycle breeding population still harbours high

genetic diversity (Pi = 0.003) and high within-population genetic

variation, similar to that reported for Pinus taeda (Chhatre et al.,

2013), Eucalyptus urophylla (Yang et al., 2020), Cryptomeria japonica

(Tsumura et al., 2014), and Larix kaempferi (Liu et al., 2017). The

introduction of external superior trees (i.e., genetic infusion) leads to

increased genetic diversity. Moreover, mating combinations among

superior individuals also generate new recombinations, which also

results in increased genetic diversity. Additionally, changes in

breeding objectives also can increase the genetic variation among

populations. The Chinese fir 4th cycle breeding population included

not only hybrid offspring between superior trees, but also included

external superior trees through genetic infusion. Additionally, the 4th

cycle breeding objective added pest resistance attributes to the

commonly selected fast-growing, high-quality trees, which may

have contributed to the observed high genetic diversity. In addition,

some researchers have argued that the Chinese fir germplasm growing

in central production areas in suitable environments (e.g., superior

seed sources) for long periods is subjected to natural selection,

artificial selection, and some anthropogenic activities, leading to the

occurrence of pollen and seed exchange and thus gene flow, making it

possible for diversity to decrease and the genetic base to narrow (Chen

et al., 1980; Li, 2015). The northern Fujian region was considered as

one of the central production areas for Chinese fir as early as 20 years
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ago (Chen et al., 1980; Huang et al., 1986; You and Hong, 1998), and

after many years of artificial selection, lower genetic diversity may

have occurred, yet high genetic diversity was still detected in seed

sources from this region. This may be due to the timely introduction

of good external populations to expand the genetic base, and it should

also be noted that the northern Fujian seed source also contributed a

large number of parents to the Chinese fir breeding population, an

observation that supports a previous observation (He, 2019).

The issue of correspondence between the number of parents

selected from a particular provenance and genetic diversity (Duan

et al., 2017), may suggest that those provenances with a lower number

of parents in the breeding population could affect the extent of genetic

diversity. Similarly, the AMOVA results showed that over 96% of the

genetic variation was present between genotypes, with only very small

amount of variation occurring among populations. This was

confirmed by the very low Fst values (< 0.05) between subgroups,

which may either be related to the unbalanced sample size

representation across germplasm origins, or that the parental

population was widely used due to its excellent phenotype, and the

higher level of human activity may have led to enhancing gene flow,

thus reducing genetic differentiation among populations (Fang et al.,

2022). This result, which is also consistent with the findings of

previous studies, shows that forest trees are predominantly

heterozygous and have low genetic differentiation among

populations and high levels of overall genetic diversity (Tsumura

et al., 2014; Wang et al., 2014; Bıńová et al., 2020).

Heterozygosity is an important indicator of the genetic diversity

of a population, and the average heterozygosity of the 4th Chinese fir

cycle breeding population was high (Ho = 0.215, He = 0.233),

estimates similar to that reported for the same species (0.163/0.250)

(Zheng et al., 2019) and (0.210/0.273) (Huang et al., 2021),

Cryptomeria japonica (0.269/0.253) (Cai et al., 2020), and also

higher than that reported for Keteleeria davidiana var. formosana

(0.128/0.096) (Shih et al., 2018), Pinus pungens (0.113/0.114) and

Pinus rigida (0.098/0.104) (Bolte et al., 2022), but lower than

Eucalyptus globulus (0.511/0.423) (Butler et al., 2022), Pinus strobus

(0.477/0.590) (Whitney et al., 2019), Cedrus (0.460/0.530) (Karam

et al., 2019). The reasons for the higher heterozygosity estimates in

Chinese fir are: 1) highly heterozygous genetic background and broad

genetic base, probably due to a long growth cycle, and wind

pollination, and 2) the bottleneck effect that may have contributed

to high heterozygosity during the Cretaceous to Tertiary Eocene,

when the global climate favored the widespread migration of Chinese

fir trees between North America and Eurasian continents. During the

late Eocene to Oligocene; however, abrupt global climatic changes

caused the Chinese fir to disappear from the northern hemisphere at

high latitudes. Furthermore, during the Quaternary ice age, the

number of Chinese fir trees decreased dramatically, with their

distribution becoming smaller and their gradual movement

southwards, such that Chinese fir trees were no longer found north

of the Qinling and Huai rivers after the Ice Age. Therefore, the

Chinese fir may have been affected by the bottleneck effect after the

Quaternary ice age, thereby resulting in a sudden increase in

heterozygosity followed by a gradual stabilization, with the last ice

age also affecting the genetic diversity of species like Pinus strobus

(Whitney et al., 2019) and Cryptomeria japonica (Tsumura et al.,

2020) and other tree species. It is also possible that individuals with
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higher heterozygosity are better suited to survive during evolution,

and that the recent selective breeding may also have an effect.

SNP markers detect significantly more genetic variation than

SSRs, probably because SNP markers are obtained from the whole

genome, have a low genotyping error rate, and have a high density in

genomes (Lu et al., 2009)) (e.g., one SNP marker was detected per 46

bp on an average in this study). SNP markers are usually bi-allelic

(Vignal et al., 2002), whereas SSR markers are multi-allelic and have a

significantly higher number of alleles than SNP markers (Van

Inghelandt et al., 2010; Zurn et al., 2020). Studies have shown that

double-allelic markers like SNPs can be counted with a maximum

genetic diversity of 0.5, whereas multi-allelic markers like SSRs can be

observed with genetic diversity values close to 1 (Van Inghelandt

et al., 2010). However, some researchers have pointed out that the

comparison should not be based only on the number of alleles, but

more emphasis must be placed on the number of loci, and that few

alleles (but high number of loci with a high gene coverage density)

make the estimation of population structure more reliable (Zurn et al.,

2020). Genetic diversity parameters obtained from analysis using SNP

markers are generally lower than those calculated using traditional

molecular markers, like SSR, ISSR, and SRAP (Chen et al., 2017; Duan

et al., 2017; Li et al., 2017; Garcıá et al., 2018; Lin et al., 2020), which

are also similar in other plants (Van Inghelandt et al., 2010; Avican

and Bilgen, 2022). Molecular markers can also impact the results of

the experiment, as different molecular markers introduce bias in the

genetic diversity analysis results for the same or different populations

(Bıńová et al., 2020; Korecký et al., 2021).
4.3 Genetic structure rationalization

The population genetic structure in this study is relatively weak,

and aggregation of the same provenances occurs only in some or local

branches, which is similar to the findings of Huang et al. (2021) and

Xia et al. (2019). The genetic structure of populations is related to a

variety of factors, and when the materials are mostly generated from

different origins or different geographical sources, the species’ wide

range, climate, and complex geography allow for geographical genetic

differentiation among the different origins, species sources, or

populations, resulting in populations that often have an extremely

strong genetic structure fit with geographic sources, like the king of

Chinese fir (Li et al., 2016), Pinus monticola (Kim et al., 2011), and

Eucalyptus cladocalyx (Bush and Thumma, 2013; Butler et al., 2022).

Chinese fir mainly exists in the southern provinces and regions like

Fujian and Guangdong, and the climatic similarity may be the reason

for the observed subgrouping. In addition, the large scale long-

distance cultivation has increased the genetic exchange among

populations, which has gradually increased the complexity of

Chinese fir germplasm kinship between different origins, thereby

reinforcing the need for molecular techniques for resolving the

genetic diversity and population structure (Fang et al., 2022).

Despite the low level of genetic differentiation between breeding

generations in Chinese fir, the clustering results for genetic structure

suggest it may be related to the genealogical classification and the

development of breeding generations, which was similar to the results

for significant genetic structure between the 1st and 2nd generation

breeding populations of Pinus taeda (Chhatre et al., 2013). When the
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breeding population shows a complex genetic background and is

originated from a wide range of sources, its genetic structure will

correspond to the kinship between breeding parental sources, as

observed in Eucalyptus urophylla (Lu et al., 2018). In addition,

coniferous trees usually have low levels of genetic differentiation

due to heterosis and gradual gene penetration (Petit and Hampe,

2006), e.g. no significant population structure was detected within

Pinus pungens and P. rigida based on the whole genome-wide data

(Bolte et al., 2022).

The observed clustering results of the Chinese fir 4th cycle

breeding population may also be related to the three previous

recurrent selection cycles. The 1st cycle breeding population dates

back to the 1860s. However, over the years, the breeding objectives

have mainly targeted fast growth and productivity, with the 4th cycle

breeding population being selected for fast-growing, high quality, and

stress resistance. This may result in some of the Chinese fir

germplasm parental trees being repeatedly selected as mating

parents due to their excellent performance. Repeated artificial

selection may gradually intensify the performance of the target

traits, thereby increasing the frequency of related advantageous loci,

which may further produce a linkage disequilibrium effect and make

the genetic structure of the artificially improved breeding populations

likewise differ significantly (Du et al., 2021), so exploring population

genetic structure should be considered from multiple aspects and

dimensions, not just individual condition such as geographical factors

or genealogical structure.
5 Conclusion

In this paper, we made a preliminary attempt to construct a

reference genome for Chinese fir using RAD-seq. We genotyped

233 parents and the development of a large number of (343,644)

high-quality SNP markers. Furthermore, we detected that the

genetic diversity of the 4th cycle breeding population was

abundant. The genetic differentiation among populations was

not obvious, leading to no apparent population structure. Most

of the observed variation mainly originated among individuals,

which may be related to the frequent exchange between Chinese fir

origins and its long history of cultivation and domestication.

Therefore, population structure is not significantly correlated

with germplasm origin, but may be related to the genealogy and

breeding generation.
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