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in Botrytis cinerea by tomato
small RNAs
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1Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands, 2Departamento de
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Previous studies have suggested that plants can modulate gene expression in

pathogenic fungi by producing small RNAs (sRNAs) that can be translocated into

the fungus and mediate gene silencing, which may interfere with the infection

mechanism of the intruder. We sequenced sRNAs and mRNAs in early phases of

the Solanum lycopersicum (tomato)-Botrytis cinerea interaction and examined the

potential of plant sRNAs to silence their predicted mRNA targets in the fungus.

Almost a million unique plant sRNAs were identified that could potentially target

97% of all fungal genes. We selected three fungal genes for detailed RT-qPCR

analysis of the correlation between the abundance of specific plant sRNAs and

their target mRNAs in the fungus. The fungal Bcspl1 gene, which had been

reported to be important for the fungal virulence, showed transient down-

regulation around 20 hours post inoculation and contained a unique target site

for a single plant sRNA that was present at high levels. In order to study the

functionality of this plant sRNA in reducing the Bcspl1 transcript level, we

generated a fungal mutant that contained a 5-nucleotide substitution that would

abolish the interaction between the transcript and the sRNA without changing the

encoded protein sequence. The level of the mutant Bcspl1 transcript showed a

transient decrease similar to wild type transcript, indicating that the tomato sRNA

was not responsible for the downregulation of the Bcspl1 transcript. The virulence

of the Bcspl1 target site mutant was identical to the wild type fungus.

KEYWORDS

Botrytis cinerea, high-throughput sequencing, host immunity, small RNA, tomato
Introduction

Plants are continuously exposed to fungal pathogens but they are usually able to

combat these pathogens and remain healthy. To achieve this, plants have evolved an array

of defense mechanisms. One of the most extensively studied defense mechanisms is

conferred by host programmed cell death (PCD) at the host-pathogen interaction site,
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which can subsequently restrict the invasion by biotrophic and

necrotrophic pathogens. However, PCD does not necessarily stop

the invasion of necrotrophic pathogens effectively. By contrast,

necrotrophic fungal pathogens take advantage of the induction of

host cell death for their infection as they feed on dead tissue. Plant

PCD triggers a series of reactions in the host, such as fortification of

the plant cell wall (by callose and lignin), local production of

pathogenesis-related (PR) proteins, phytoalexins and production

of reactive oxygen species (ROS) (Veloso and van Kan, 2018).

Despite the induction of all these defense responses in the host

plant, it cannot successfully halt the colonization by necrotrophs. It

is thus relevant to study plant defense mechanism(s) which can

successfully control plant diseases caused by necrotrophic fungi.

A novel insight in plant defense mechanisms has emerged in the

past 15 years, demonstrating that plant transgene-derived double-

stranded RNAs (dsRNAs) could induce gene silencing by RNA

interference (RNAi) in invading pathogens and pests (Baum et al.,

2007; Nowara et al., 2010; Iqbal et al., 2020), in a process referred to

as host-induced gene silencing (HIGS). The proof of concept for

exploiting HIGS to control a fungal pathogen was demonstrated by

Nowara et al. (2010), who expressed a set of double-stranded RNAs

in (stably or transiently) transformed plants that would target

Blumeria graminis genes that encode either effector Avra10 or

1,3-b-glucanosyltransferases involved in haustoria formation. The

successful deployment of HIGS suggested the occurrence of

trafficking of RNA molecules from a plant into a fungus that

could induce RNAi in the fungus, and thus HIGS can be

considered as an example of cross-kingdom RNAi (ckRNAi).

In later studies, it was reported that plant endogenous small

RNAs (sRNAs) can be naturally translocated to parasitic organisms

and trigger silencing of genes in the invaders through RNAi. This

phenomenon provided an example of the natural occurrence of

ckRNAi, and it was proposed to be an effective host defense strategy

by several studies. The first case was in the cotton-Verticillium

dahliae interaction, in which the production of two cotton

microRNAs (miRNAs) increased upon infection by V. dahliae

and the miRNAs were translocated to the fungal hyphae where

they silenced specific V. dahliae genes (Zhang et al., 2016). Cai et al.

(2018) demonstrated that Arabidopsis can secrete exosome-like

vesicles containing sRNAs which can be taken up by Botrytis cinerea

hyphae at the infection site. This study described two small

interfering RNAs (siRNAs) that selectively accumulate in fungal

cells and are predicted to target B. cinerea genes that are involved in

vesicle-trafficking pathways. A study by Hou et al. (2019) described

that Arabidopsis produces increased amounts of secondary siRNAs

upon infection by Phytophthora capsici. They observed that

Arabidopsis mutants that are impaired in secondary siRNA

biogenesis exhibited hyper-susceptibility to P. capsici. In several

pathosystems, the naturally delivered host sRNAs have been

proposed to contribute to plant immunity (likely) via silencing

genes in the invading pathogens (Cai et al., 2018; Hou et al., 2019;

Zhang et al., 2016). This process could contribute to plant defense

against pathogens when the target genes that are silenced indeed

have an important role in virulence or development of

the pathogens.
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We aimed to further explore the role of natural ckRNAi in

defense of a model crop against a fungal pathogen. Solanum

lycopersicum (tomato) is an important crop species that can be

parasitized by many pathogenic microbes, resulting in considerable

economic losses. The necrotrophic pathogen B. cinerea can infect

different organs of the above-ground part of tomato plants, causing

devastating damage for the crop during both pre- and post-harvest

stages. B. cinerea was shown to be able to take up both sRNA and

dsRNA molecules from the environment (Wang et al., 2016). The

ability to take up exogenous sRNAs is one of the preconditions for

the full function of RNAi triggered by sRNAs or dsRNAs present in

the fungal environment. This feature of B. cinerea has been

exploited in plant protection with spray-induced gene silencing

(SIGS) by the application on plant surfaces of synthetic RNA

molecules targeting genes involved in growth or in signaling

required for virulence (McLoughlin et al., 2018; Nerva et al.,

2020; Spada et al., 2021). Furthermore, a classical HIGS approach

was also shown to enhance crop resistance against B. cinerea using

transgenic potato lines expressing dsRNA that can target a B.

cinerea gene which regulates cell growth and proliferation (Xiong

et al., 2019). However, the efficacy of naturally occurring ckRNAi in

the B. cinerea-crop interaction mediated by host-derived sRNAs is

not fully conclusive.

In this study, we aimed to evaluate the role of endogenous

sRNAs of the host plant in the early phases of the tomato - B.

cinerea interaction. A sRNA and messenger RNA (mRNA) -

sequence dataset were generated within the first 24 hours post

inoculation (hpi). This dataset was described in a previous study

(Qin et al., 2022), in which we could not validate the contribution

of B. cinerea sRNAs to fungal virulence. We turned our focus to

the inverse side of the tomato – B. cinerea interaction, namely

tomato sRNAs and their function in plant defense against B.

cinerea via ckRNAi during a natural infection. Correlations were

studied between the abundance of three selected tomato sRNAs

and the transcript levels of their matching fungal genes. In an

attempt to experimentally validate the causal relation between the

level of one tomato sRNA and its predicted single target mRNA in

B. cinerea, we mutated a B. cinerea gene that was reported to

contribute to fungal virulence and was predicted to be silenced by

a single tomato sRNA. Substitutions in the target site neither

altered the expression profile of the mutant transcript nor

enhanced the fungal virulence by escaping the silencing effect by

the tomato sRNA.
Materials and methods

Fungal strains, plant material
and growth conditions

B. cinerea strains used in this study (Table 1) were grown and

spores were collected as described in Zhang and van Kan (2013).

Tomato (S. lycopersicum cv. Moneymaker) were grown in a

greenhouse at 20°C for five to six weeks, and detached compound

leaves were used for inoculation assays.
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Tomato inoculations with B. cinerea

B. cinerea conidia were diluted in Potato Dextrose Broth (PDB,

12 g/l) medium to 1000 conidia/ml and 2 ml droplets containing the
conidia suspension were inoculated on detached tomato leaves

essentially as described by Zhang and van Kan (2013). The

inoculated compound leaves were inserted in wet floral foam and

incubated in closed containers at 20°C with relative humidity of

~100% under natural light, before being examined for the virulence

assay or sampled for further purposes. For the virulence assay, each

tomato leaflet was inoculated with three droplets on every leaf half

for one B. cinerea strain. For the sampling of B. cinerea (or mock) -

infected tomato leaves that was used for mRNA and sRNA

sequencing, 10 droplets of 2 ml conidia suspension (or only PDB)

were inoculated on both leaf halves at ~1 cm from the central vein.

Four leaflets of one compound leaf were inoculated at the same

time, and one leaflet was sampled by excising the central vein and

collecting the remaining leaf tissue at each defined time point (t=0;

12; 16 and 24 hpi). For the sampling B. cinerea (or mock) - infected

tomato leaves that was used for the quantitative reverse

transcription PCR (RT-qPCR), the leaflets were inoculated in six

to eight circular areas and area included five 2 ml droplets of conidia
suspension (or only PDB). The inoculated areas were excised by a

cork borer with a diameter of 15.6 mm at each time point (t=0; 12;

16, 24 and 36 hpi). More details on the inoculation and sampling

design were described in Qin et al. (2022).
RNA extraction

Fungal mycelium or tomato leaf samples were frozen in liquid

nitrogen and used for extraction of small RNA using the

mirPremier® microRNA Isolation Kit (Sigma-Aldrich) while

mRNA was isolated using the Maxwell® 16 LEV Plant RNA

Kit (Promega).
Generation and bioinformatic analyses of
the RNAseq dataset

Single-end Illumina sequencing was applied to all sRNA and

mRNA samples by Vertis Biotechnologie AG (Martinsried,

Germany) on a strand-specific library with read length of 75 nt.

Sequence processing and bioinformatic analyses of data are

described in Qin et al. (2022).
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Differentially expressed genes (DEGs) in the fungus were

identified by comparing fungal mRNA levels in the infected

tomato leaf tissues with a B. cinerea liquid culture, as described in

our recent study (Qin et al., 2022). Differentially produced sRNAs in

tomato were analyzed by comparing tomato sRNA levels in the B.

cinerea-infected tomato leaf tissues with the mock-inoculated leaf

tissues at the same time point, as described in Qin et al. (2022). The

thresholds for up- or down- regulation were calculated similarly for

both mRNA and sRNA, using the DEseq2 algorithm through a

negative binomial distribution to calculate the p-value. The

significance was defined by thresholds that consisted of a p-value

of lower than 0.05 and a log2 fold-change of higher than 1 or lower

than -1 for up- or down-regulation, respectively. To determine the

origin of the sRNA reads, the reads were mapped to both the B.

cinerea and S. lycopersicum genomes. Bowtie was used as mapping

tool with the constraint to only map reads without mismatches

(-v 0). Reads that had a perfect match to the B. cinerea genome were

also mapped to the S. lycopersicum genome and vice versa. Reads

mapping perfectly on both genomes were labelled as ‘shared reads’

and were discarded, while reads that mapped to only one genome

were labelled as ‘unique reads’. Target prediction of sRNAs was

performed using sRNAs extracted from the ‘unique reads’. The tool

psRNATarget was used to predict the plant sRNA targets on the

fungal mRNA population (Dai et al., 2018), with settings adjusted to

the default Schema V2 2017. The ‘expectation’ was set to match a

free energy threshold of -20 kCal/mol (expectation 3). Both UTRs

and CDS were tested for target sites. The sequences of the UTRs and

CDS were obtained using the coordinates of the ASM83294v1

release-51 B. cinerea annotation. Predicted sRNA-target pairs

were filtered by expression keeping only the sRNA-target pairs

that showed sRNA up-regulat ion and target mRNA

down-regulation.
RT-qPCR quantification of mRNA
and sRNA levels

Synthesis of cDNA from mRNA was performed using M-MLV

reverse transcriptase (Promega). For reverse transcription of sRNA,

the qScript microRNA cDNA Synthesis kit (Quanta Bioscience) was

used. RT-qPCR was performed using SensiMix SYBR Hi-ROX Kit

(Bioline). Primer combinations described in Supplementary Table 1

were used in RT-qPCR to quantify levels of mRNAs and sRNAs.

The transcript level of a ribosomal protein encoding gene Bcrpl5

from B. cinerea was used to normalize fungal mRNA levels. A sRNA
TABLE 1 B. cinerea strains used in this study.

B. cinerea
strain

Description Reference

B05.10 Wild type B. cinerea
van Kan et al.
(2017)

spl1-5mnt
Strain containing synonymous substitutions of 5 nt in tomato sRNA target site in the Bcspl1 coding sequence and a
hygromycin-resistance cassette.

This study

spl1-wt Strain containing wild type Bcspl1 and a hygromycin-resistance cassette. This study
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of the tomato U6 spliceosomal RNA component was used to

normalize plant sRNAs. The threshold cycle (CT) values were

determined by Bio-Rad CFX Manager 3.1 and fold-changes

calculated using the 2−DDCt method (Pfaffl, 2006).
B. cinerea transformation

B. cinerea mutant strains used in this study were generated by

PEG-mediated protoplast transformation as described by (Kars

et al., 2005) with minor modifications. The constructs of donor

templates were made by the yeast recombination method as

described by Schumacher (2012). For the construction of

plasmids as well as the amplification of donor templates, PCR

was performed with the primer sets shown in Supplementary

Table 1 using the Expand™ High Fidelity PCR System (Sigma).

After obtaining transformed colonies on hygromycin-selective

plates, the screening of transformants was performed by PCR

with primer sets indicated in Supplementary Table 1 using the

GoTaq® G2 DNA Polymerase (Promega). The coding region of the

Bcspl1 gene from the mutants used in this study was sequenced to

verify whether or not the sRNA target site contained the 5-

nucleotide substitution.
Results

B. cinerea genes down-regulated during
infection and potentially targeted by sRNAs
from tomato

Differential expression analyses of fungal genes were performed

by comparing gene expression during infection of tomato leaves

with a B. cinerea liquid culture, as described in Qin et al. (2022).

More than 3000 B. cinerea genes (one quarter of the annotated

genes) were differentially expressed at 24 hpi, as compared to

growth in liquid culture, of which 1724 were up-regulated and

1282 were down-regulated (Supplementary Data 1). Among the up-

regulated genes of B. cinerea at this time point of infection were

genes encoding five polygalacturonases and 103 other

Carbohydrate-Active enZYmes (CAZymes), 51 proteases, 63

membrane transporters, 5 proteins involved in signaling and 12

putative transcription factors. Moreover, the cluster of Bcboa genes

encoding biosynthetic enzymes for the production of the polyketide

phytotoxin botcinic acid were upregulated at 24 hpi, as compared to

the in vitro liquid culture. Meanwhile, the in planta down-regulated

genes (at 24 hpi) included genes encoding 36 CAZymes, 27

proteases, 39 membrane transporters, 33 proteins involved in

signaling and 93 putative transcription factors. Moreover, there

was significant down-regulation in planta at 24 hpi of melanin

biosynthetic genes (Schumacher, 2016), of the gene cluster encoding

biosynthetic enzymes for production of the sesquiterpene

phytotoxin botrydial (Porquier et al., 2016), as well as the non-

ribosomal peptide synthase gene Bcnrps8 and six polyketide

synthase genes along with their flanking genes involved in
Frontiers in Plant Science 04
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(Supplementary Data 1).

Within the entire dataset, approx. 15% of the B. cinerea genes

(1713 genes) that were predicted targets of the tomato sRNAs

indeed displayed significant down-regulation in at least one of the

time points (12, 16 and 24 hpi) as compared to the liquid culture

(Qin et al., 2022). These fungal transcripts were, on average,

predicted to each be targeted by 19.3 unique tomato sRNAs

(Supplementary Data 2). The list of in planta downregulated

genes that are predicted to be silenced by tomato sRNAs includes

genes encoding 63 CAZymes, 43 proteases, 46 membrane

transporters, 46 proteins involved in signaling and 101 putative

transcription factors (Supplementary Data 2). Only 30 fungal genes

were predicted to be targeted by a single tomato sRNA, including

transcripts encoding fumarase BcFUM1, glutathione S-reductase

BcGST8, catalase BcCAT7, phosphatidylserine decarboxylase

BcPSD, melanin biosynthetic enzyme BcBRN2 and the cell death-

inducing effector BcSPL1.
Correlation between mRNA down-
regulation in B. cinerea and levels of
tomato sRNAs that are predicted
to target them

After examining the in silico prediction of B. cinerea genes

targeted by tomato sRNAs based on the sequencing dataset, we

aimed to validate and establish in more detail the host sRNA –

fungal mRNA profiles during the early infection. We performed

new experiments to inoculate tomato leaves with B. cinerea and

sampled at seven time points within the first 24 hpi. sRNA and

mRNA were extracted from these samples, followed by

quantification of the expression levels of selected tomato sRNAs

(Sl-sRNAs) and their matching target mRNAs in B. cinerea (Bc-

mRNAs) by reverse transcription-quantitative PCR (RT-qPCR).

We selected three Sl-sRNAs and their predicted target Bc-mRNAs

(Table 2) for molecular validation. The selection of sRNA-mRNA

pairs was based on the following criteria: i) the predicted target

mRNA showed sufficient reads in the sequencing dataset at all

infection time points; ii) the predicted target mRNA was

significantly down-regulated at one or more time point(s) as

compared to the liquid culture; iii) the target gene might

contribute to fungal infection; iv) the tomato sRNA was up-

regulated in the early stages of infection and should be derived

from a transposon locus. The following three B. cinerea genes were

chosen for further analysis: the 5-oxoprolinase gene Bcoxp1 is a

homolog of the Fusarium graminearum oxp1 gene which was

reported to be involved in development and virulence (Yang

et al., 2018); the gene Bccnd1, encoding a secreted effector protein

that is expressed in a calcineurin-dependent manner (Viaud et al.,

2003) and is homologous to GAS1 and GAS2 effectors of

Magnaporthe grisea, expressed in appressoria and required for full

virulence (Xue et al., 2002); and the cerato-platanin gene Bcspl1,

encoding an effector that induces plant cell death and is important

for virulence (Frıás et al., 2011).
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Molecular quantification results from RT-qPCR indicated

correlations between Sl-sRNAs and their matching Bc-mRNA

targets (Figure 1). Expression levels of the three tested B. cinerea

genes displayed upregulation at 12 hpi, and they reached their

lowest level at 20 hpi but increased again at 24 hpi. The down-

regulation of the three Bc-mRNAs coincided with, or followed

shortly after, an increase of the levels of their corresponding Sl-

sRNAs. Specifically, the lowest expression of the three Bc-mRNAs

occurred at 20 hpi, while Sl-sRNAs levels were high at 14 hpi or 16

hpi (Figure 1). Interestingly, levels of these three selected Sl-sRNAs

all displayed an approximate doubling in the early stage of fungal

infection between 12 and 14 hpi, or between 14 and 16 hpi.
Generation of B. cinerea mutant with
synonymous substitutions at the target
site in Bcspl1

From B. cinerea genes that were predicted to be targeted for

silencing by tomato sRNAs, we selected one gene for experimental

validation of a causal relation between the presence of the tomato

sRNA and the down-regulation of its target B. cinerea mRNA.

Selection of the gene was based on three criteria: its transcript

should decrease at some time during infection, as compared to

previous time point(s) in the dataset; the transcript should be

(predicted to be) targeted by a single tomato sRNA, in order to

minimize the impact of multiple sRNA-mRNA interactions; the
Frontiers in Plant Science 05
gene should participate in virulence of B. cinerea. The Bcspl1 gene

was selected as it is the predicted target of a single tomato sRNA

(sRNA1187) and encodes a cell-death inducing effector protein with

a role in virulence (Frıás et al., 2011). Only 30 genes were predicted

to be targeted by a single tomato sRNA (Supplementary Data 2) and

Bcspl1 was the only gene in this list that had been reported to

participate in virulence. During B. cinerea infection on tomato

leaves, Bcspl1 displayed a peak in transcript level at 12 hpi and was

~10-fold down-regulated at 20 hpi (Figure 1). The lower transcript

level of Bcspl1 coincided with a transient peak in the level at 16 hpi

of the tomato sRNA1187 (Figure 1), which is produced from a

transposable element on tomato chromosome 6 (Figure 2A).

In order to disrupt the ability of Bcspl1 mRNA to interact with

sRNA1187, we aimed to generate a B. cinereamutant carrying a Bcspl1

allele with mutations in the sRNA target site. A substitution of five

nucleotides would result in a change of free energy of the hybrid

between sRNA1187 and the Bcspl1 mRNA from -28 kCal/Mol (wild

type) to -11 kCal/Mol (mutant), without changing the encoded protein

(Figure 2B). The cut-off for free energy of RNA hybrids is -20 kCal/Mol

(Marıń and Vanıč́, 2011), implying that this substitution would fully

abolish sRNA-mRNA hybrid formation. We checked that the

synonymous substitutions in the Bcspl1 target site would not result

in a sequence that could inadvertently be targeted by different tomato

sRNAs in the dataset. A gene replacement construct was generated that

encompassed the entire Bcspl1 gene (containing the desired five-

nucleotide substitution) and a part of the downstream gene

Bcin03g00510 with a hygromycin-resistance cassette (hph) inserted
TABLE 2 Selected predicted B. cinerea target genes and their corresponding Sl-sRNA sequences.

Annotation of target B.
cinerea gene

Gene
namea

IDb Sl-sRNA – Bc-mRNA alignment Free energy
(kCal/Mol)

5-oxoprolinase Bcoxp1 Bcin04g01040 -34.51

Calcineurin-dependent (CND)
gene

Bccnd1 Bcin08g05540 -20.19

Cerato-platanin Bcspl1 Bcin03g00500 -28.41
FIGURE 1

Quantification of production levels of three Sl-sRNAs (blue bars) and mRNA levels of their predicted target genes in B. cinerea (pink lines). The
expression data were collected from four experiments, and the predicted target B. cinerea gene is indicated above each chart.
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in the intergenic region (Figure 3A). Transformation of this construct

to wild type B. cinerea strain B05.10 yielded seven transformants of

which two contained the hph cassette in the target locus and five were

ectopic transformants (Figure 3B). The Bcspl1 gene from both

transformants was amplified and sequenced. Transformant #5

contained the desired substitution and was named spl1-5mnt.

Transformant #1 contained a wild type Bcspl1 sequence, presumably

as a result of recombination with the target locus downstream of the

sRNA target site (orange dashed lines in Figure 3A). This transformant

was designated spl1-wt and served as a control transformant to exclude

an impact on transcript levels caused by introducing a hph cassette

close to the Bcspl1 locus.
Effect of substitutions at the sRNA target
site on Bcspl1 expression profile

We hypothesized that if the tomato sRNA would indeed

participate in silencing of Bcspl1 in B. cinerea during infection,

the synonymous substitutions in the sRNA target site would result

in a distinct Bcspl1 transcript profile during infection, i.e., the

downregulation between 16 and 24 hpi (as observed in Figure 1)

would be abolished. This might result in a higher virulence of the

fungal mutant if the increased production of BcSPL1 protein would

enable the fungus to trigger host cell death more effectively.

We inoculated tomato leaves with both the spl1-5mnt B. cinerea

mutant and the control spl1-wt transformant and sampled the

tomato leaf samples at four timepoints between 12 and 36 hpi.

RT-qPCR was performed to quantify the Bcspl1 expression in spl1-

5mnt and spl1-wt mutants. Contrary to the hypothesis, the Bcspl1

transcript profile in spl1-5mnt was similar to that in spl1-wt

(Figure 4A), indicating that the downregulation of Bcspl1 at

24 hpi was not abolished despite the substitution in the predicted

target site for sRNA1187. Additionally, the level of tomato

sRNA1187 was not significantly different between the leaf tissues

infected by spl1-wt or spl1-5mnt isolates (Figure 4B). Infection

assays were performed to compare the virulence of both

transformants to each other and to wild type strain B05.10. As

shown in Figure 5, there was neither a difference in virulence
Frontiers in Plant Science 06
between spl1-5mnt and spl1-wt, nor between spl1-wt and wild

type B05.10. These experiments did not provide any evidence for

participation of tomato sRNA1187 in the downregulation of Bcspl1

mRNA during infection.
Discussion

In an earlier study (Qin et al., 2022) we could not identify any

evidence for the contribution of B. cinerea small RNAs to virulence

through the induction of ckRNAi during infection. There are

several examples that individual small RNAs, as those produced

by B. cinerea, can indeed silence plant genes when expressed in

stable or transiently transformed plants at high levels, as reported by

Weiberg et al. (2013) and Wang et al. (2017). In a natural infection

of B. cinerea on a host plant, however, the amount of fungal biomass

is very low as compared to plant biomass at early time points of the

interaction. As argued by Veloso and van Kan (2018), the decisive

processes that determine success or failure in the Botrytis-host

interaction occur around 16 hpi. In this phase of the interaction,

our RNA samples typically contained ~1% fungal RNAs (both for

the sRNA and mRNA pools) in the entire dataset. Fungal hyphae

that penetrate the plant surface and enter the interior plant tissues

are vastly outnumbered by plant cells. Furthermore, the fungal

sRNA population consists of thousands of distinct unique

sequences and their potency in silencing target mRNAs in a host

plant is essentially defined by random chance (Qin et al., 2022). If a

specific fungal sRNA (at such low abundance) is able to target a

plant mRNA and induce its silencing, it is unlikely that this will

result in effective interference with crucial plant functions in the

short time span of just a few hours. Indeed, our earlier study (Qin

et al., 2022) showed that B. cinerea mutants in which both Dicer-

like genes were deleted did not produce any detectable transposon-

derived sRNAs, and could infect four distinct host plant species as

effectively as the wild type of fungus.

One can envisage that the inverse situation (plant sRNAs

targeting fungal mRNAs) is distinct, as the abundance of plant

RNAs largely exceeds that of fungal RNAs. In an early phase of the

plant-fungus interaction, fungal hyphae that penetrate the host
BA

FIGURE 2

(A) Representation of the tomato genomic locus producing the sRNA1187 (tomato chromosomes presented as orange boxes) and the B. cinerea
Bcspl1 locus (B. cinerea chromosomes are presented as blue boxes). (B) Alignment of the sequences between tomato sRNA1187 and the wild type
Bcspl1 transcript or the mutated version designed to abolish interaction with the sRNA.
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surface and enter the plant tissue are surrounded by a large number

of plant cells, each of which may produce and release small RNAs.

B. cinerea can take up sRNAs present in exocytotic vesicles that

accumulate at the extracellular interface between the plant and

fungal cells (Cai et al., 2018). Fungal appressoria and invasive

hyphae could have a high propensity to take up host plant

exocytotic vesicles containing sRNAs.

During the B. cinerea-tomato interaction, numerous fungal

genes were downregulated over the course of the infection process.

Based on observations of Weiberg et al. (2013) and Wang et al.

(2016), and the identification of 88,196 potential, predicted Sl-
Frontiers in Plant Science 07
sRNA – Bc-mRNA interactions in our dataset (Qin et al., 2022), it

was tempting to consider that many changes in fungal transcript

levels were indeed caused by cross-kingdom RNAi. However,

other explanations for down-regulation of fungal transcripts

should also be taken into consideration. B. cinerea undergoes

infection-related developmental transitions during penetration of

the host tissue, by forming either appressoria or infection

cushions, each with their specific developmental and

transcriptional program (Leroch et al., 2013; Choquer et al.,

2021). Once these infection structures have completed host

surface penetration (10-14 hpi), they become redundant and the
B

A

FIGURE 3

(A) Schematic representation of recombination events resulting in the generation of the transformants spl1-5mnt (red dashed lines) or spl1-wt
(orange dashed lines). The blue dashed lines indicate the 3’-recombination event. The positions of primers used in genotyping the transformants are
indicated. (B) Genotyping of transformants by PCR. Colony 1 (marked in orange) was the spl1-wt transformant while colony 5 (marked in red) was
the spl1-5mnt mutant. Colonies 2-4 and 6-7 were ectopic transformants.
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fungus switches to an intercellular hyphal growth while

suppressing host cell death (Veloso and van Kan, 2018). From

~16 hpi, host cells are triggered to undergo programmed cell death

and the fungus is exposed to oxidative stress in dying host tissue

(Torres et al., 2006; Choquer et al., 2007). These developmental

transitions and changes in chemical environment are likely to

have a much greater impact on fungal gene expression than the

presence of any plant sRNAs.

We identified three B. cinerea genes related to fungal infection

that were predicted to be targeted by tomato sRNAs and did indeed

display a transient reduction of mRNA level during infection, as

compared to liquid culture. RT-qPCR analysis was performed with

sampling at seven time points between 0 and 24 hpi, in order to

establish an association between the level of the sRNA and its target

mRNA with a high resolution of the dynamics. We observed an

inverse correlation between the level of each selected Sl-sRNA and its

predicted target in B. cinerea, which suggested that ckRNAi possibly

could have contributed to achieving this downregulation. However,

whether the production of unique plant sRNA molecules able to
Frontiers in Plant Science 08
target a fungal mRNA could actually cause the downregulation of its

target was difficult to establish merely from the expression profiles.

We therefore introduced mutations in the target site of a B.

cinerea gene, Bcspl1, aiming to establish a causal relation between

the production of the unique tomato sRNA molecule and the

downregulation of Bcspl1 mRNA in B. cinerea. The B. cinerea

transformant with the allelic variant of Bcspl1 displayed a similar

transcript profile and the same virulence as the control

transformant with an unaltered target site. This result indicated

that the transient downregulation of the Bcspl1 transcript at 24 hpi

was not mediated by the tomato sRNA, but possibly controlled by

an intrinsic regulatory mechanism within the fungus, instead of

resulting from cross-kingdom RNAi. Only a single pair of Sl-sRNA

– Bc-mRNA was examined in this study due to the restriction by the

criteria that we set. In order to study in more detail whether tomato

sRNAs indeed play a role in plant defense against B. cinerea, two

aspects should be taken into account. Firstly, many sRNAs are

derived from transposons, some with multiple closely related, but

non-identical copies, and it is genetically impossible to dissect the
BA

FIGURE 4

Expression levels of Bcspl1 mRNA (A) and sRNA1187 (B) in spl1-wt and spl1-5mnt inoculated tomato leaves during the first 36 hpi. The expression
data are shown by mean relative expression levels with standard error, either in a line chart (A) or a bar chart (B), resulting from four independent
inoculation assays.
BA

FIGURE 5

Virulence of B. cinerea WT B05.10, spl1-wt and spl1-5mnt transformants on tomato leaf, represented by a bar chart (A); and disease symptoms
photographed at 3 dpi (B). The average lesion sizes and standard errors in the bar chart (A) resulted from 92 inoculations in three independent
experiments, and statistical analysis was performed using t-test (ns indicates non-significance).
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function of individual naturally-produced sRNAs from the host. In

order to functionally eliminate the vast majority of tomato sRNAs,

one should use a tomato mutant in which multiple Dicer-like (DCL)

genes are knocked out. There are seven DCL genes in tomato

(SlDCL1, SlDCL2a-d, SlDCL3 and SlDCL4) (Bai et al., 2012), and

SlDCL1 or SlDCL3-silencing mutant as well as single loss-of-

function mutant of SlDCL2b or SLDCL4 are available (Yifhar

et al., 2012; Kravchik et al., 2014a; Kravchik et al., 2014b; Wang

et al., 2018). Phenotypic characterization of these individual

mutants proved that different SlDCL proteins are responsible for

the production of different types of sRNAs. In order to abolish the

biosynthesis of all sRNAs that potentially participate in cross-

kingdom RNAi, multiple SlDCLs-knock-out mutants should be

used. Such plants are, however, not available and research in

Arabidopsis has shown that the deletion of multiple Dicer-like

genes can have serious impact on plant viability and morphology

(Bouché et al., 2006). Besides, the host sRNAs which are naturally

translocated into the fungus are only a small proportion of the total

host sRNAs generated by DCL proteins. Many plants sRNAs have

regulatory functions on endogenous genes by RNAi and influence

developmental processes or resistance to stress. Therefore, an

enhanced susceptibility of plant mutants lacking DCL genes

would not directly prove the function of plant sRNAs in plant

defense via ckRNAi, due to the numerous physiological roles of the

DCL genes.

The natural occurrence and function of the ckRNAi from both

sides of the plant-parasite interaction is a relatively young research

topic. A number of studies concluded that ckRNAi is a naturally

occurring phenomenon. There were also observations that specific

plant sRNAs can play a role in plant defense against pathogens,

however, most ly through indirect methods by either

overexpressing these sRNAs in plants (Hou et al., 2019) or

knocking out their predicted target genes in the pathogen

(Zhang et al., 2016). The technical and biological challenges that

we discussed above clearly limit the capacity to directly prove the

occurrence and importance of natural ckRNAi. It thus remains

debatable to what extent the natural occurrence of ckRNAi

mediated by endogenous host sRNAs contributes to effective

plant defense.
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to be targeted by tomato sRNAs, and the number of unique tomato sRNA

sequences and merged sRNA sequences are shown together with their

predicted matching single fungal gene; ii) the details of log2 fold-change and
the adjusted p-value for each predicted target fungal gene which were

significantly down-regulated at no less than one time point in planta, and iii) a
legend that explains the headings in the columns of the former two sheets.
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