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Introduction: The classification of the four tobacco shred varieties, tobacco silk,

cut stem, expanded tobacco silk, and reconstituted tobacco shred, and the

subsequent determination of tobacco shred components, are the primary tasks

involved in calculating the tobacco shred blending ratio. The identification

accuracy and subsequent component area calculation error directly affect the

composition determination and quality of the tobacco shred. However, tiny

tobacco shreds have complex physical and morphological characteristics; in

particular, there is substantial similarity between the expanded tobacco silk and

tobacco silk varieties, and this complicates their classification. There must be a

certain amount of overlap and stacking in the distribution of tobacco shreds on

the actual tobacco quality inspection line. There are 24 types of overlap alone,

not to mention the stacking phenomenon. Self-winding does not make it easier

to distinguish such varieties from the overlapped types, posing significant

difficulties for machine vision-based tobacco shred classification and

component area calculation tasks.

Methods: This study focuses on two significant challenges associated with

identifying various types of overlapping tobacco shreds and acquiring overlapping

regions to calculate overlapping areas. It develops a new segmentation model for

tobacco shred images based on an improved Mask region-based convolutional

neural network (RCNN). Mask RCNN is used as the segmentation network’s

mainframe. Convolutional network and feature pyramid network (FPN) in the

backbone are replaced with Densenet121 and U-FPN, respectively. The size and

aspect ratios of anchors parameters in region proposal network (RPN) are optimized.

An algorithm for the area calculation of the overlapped tobacco shred region (COT)

is also proposed, which is applied to overlapped tobacco shred mask images to

obtain overlapped regions and calculate the overlapped area.
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Results: The experimental results showed that the final segmentation accuracy

and recall rates are 89.1% and 73.2%, respectively. The average area detection

rate of 24 overlapped tobacco shred samples increases from 81.2% to 90%,

achieving high segmentation accuracy and overlapped area calculation

accuracy.

Discussion: This study provides a new implementation method for the type

identification and component area calculation of overlapped tobacco shreds and

a new approach for other similar overlapped image segmentation tasks.
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1 Introduction

The implementation guidelines set out in Articles 9 and 10 of

the WHO Framework Convention on Tobacco Control (FCTC)

require the manufacturers and importers of tobacco products to

disclose the contents of tobacco products to government

authorities, including the type of tobacco shred and each type

blending ratio of tobacco shred. Tobacco manufacturers must also

have equipment and methods for detecting and measuring tobacco

shred components (Acuña, 2017; Niu et al., 2022). The relative

proportions of each tobacco shred type (tobacco silk, cut stem,

expanded tobacco silk, and reconstituted tobacco shred) impacts

the smoke characteristics, physical indicators, and sensory quality of

cigarettes (State Tobacco Monopoly Administration, 2009; Chen

et al., 2015). Therefore, high-precision and high-efficiency tobacco

shred type identification and component determination are crucial

to ensuring the quality of the tobacco shred blending process,

homogeneity of production, examination of formula design, and

accurate identification of tobacco products.

The detection of tobacco shred components has been

extensively investigated using both manual and instrumental

detection methods. The manual sorting approach involves

identifying the tobacco silk, cut stem, expanded tobacco silk, and

reconstituted tobacco shred varieties by means of human

observation, and then calculating the proportion of various

tobacco shreds after weighing. However, this technique has low

detection efficiency and is to some extent subjective (Wei et al.,

2022). Instrumental detection methods include tobacco shred red,

green, and blue (RGB) analysis, hyperspectral imaging analysis,

near-infrared spectroscopy, thermal analysis technology, cigarette

smoke, anhydrous ethyl ketone, machine vision, and others. Kou

et al. (2021) measured the RGBmean value of tobacco powder made

from different proportions of the tobacco silk and cut stem varieties.

They developed a polynomial regression model that combined the

blending ratio and the RGB mean value and proposed a ratio

determination method based on RGB image processing to predict

cut stem components of tobacco shred. Mei et al. (2021)

distinguished the sample components using the spectral data of

all sample pixels and proposed a method for identifying tobacco
02
shred components relying on hyperspectral imaging technology. Li

et al. (2019) collected the near-infrared spectral data of tobacco

shred samples with various component ratios, established an

infrared spectral model with the partial least squares regression

(PLS) method, and proposed an approach for predicting the

blending uniformity of tobacco shreds using infrared

spectroscopy. Zhang et al. (2019) utilized the thermogravimetric

analysis method to determine the similarity of the tobacco shreds’

thermogravimetric reaction rate curves and established a method

for calculating the blending uniformity of tobacco shred according

to the coefficient of variation between the similarities. Ye et al.

(2013) analyzed and compared the smoke indicators and

conventional chemical components of tobacco shreds with

varying mixing ratios to determine the differences in the blending

components. Lin et al. (2020) made use of the fact that the floating

rate of expanded tobacco silk under anhydrous ethyl ketone is

significantly higher than that of other tobacco shred types, and

subsequently developed a method for determining the proportion of

components of expanded tobacco silk. Dong et al. (2015); Dong

et al. (2016a); Dong et al. (2016b) acquired tobacco shred images

through machine vision technology, creating a feature database

using different types of tobacco shred images using RGB, HSV (hue,

saturation, value) color space pixel variance, contrast, entropy, and

others to determine the tobacco shred type. However, all of these

detection techniques have some limitations, such as issues with

destructive testing, long testing periods, and the incomplete

detection of tobacco shred types.

In recent years, machine vision-based deep learning methods

have provided advanced and efficient image processing solutions in

agriculture. Deep learning methods, combined with machine vision

technology, have been widely used in plant disease and pest

classification, including the classification of fresh tobacco leaves of

various maturity levels (Chen et al., 2021); the classification of

tobacco plant diseases (Lin et al., 2022); the classification of wheat

spike blast (Fernández-Campos et al., 2021); the classification of rice

pests and diseases (Yang et al., 2021); the detection of plant parts

such as tobacco leaves and stems (Li et al., 2021); the detection of

tomato diseases (Liu et al., 2022); the detection of wheat head

diseases (Gong et al., 2020); the detection of brown planthoppers in
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rice (He et al., 2020); plant image segmentation, such as tobacco

planting areas segmentation (Huang et al., 2021); field-grown wheat

spikes segmentation (Tan et al., 2020); rice ear segmentation (Bai-yi

et al., 2020; Shao et al., 2021); rice lodging segmentation (Su et al.,

2022); photosynthetic and non-photosynthetic vegetation

segmentation (He et al., 2022); weed and crop segmentation

(Hashemi-Beni et al., 2022); and wheat spike segmentation (Wen

et al., 2022). Deep learning methods combined with machine vision

technology have been utilized in research focused on the

classification of tobacco shred images. Gao et al. (2017) proposed

a method for identifying tobacco shreds using convolutional neural

networks that is based on differences in the structural characteristics

of various tobacco shreds. Zhong et al. (2021) built a recognition

model utilizing a residual neural network and optimized the

model’s pre-training weights, optimization algorithms, and

learning rates. They found that both the accuracy and recall rate

of the trained model were higher than 96%. Niu et al. (2022) used

ResNet50 as the network’s primary framework and optimized it by

increasing the multi-scale structure, in turn optimizing the number

of blocks and loss function. Their experimental results showed that

the network’s tobacco shred classification accuracy was 96.56%.

In the above research on tobacco shred image classification

methods, tobacco shred classification was always carried out using

single tobacco shred image samples. In practice, tobacco blends

found on the quality inspection line will inevitably contain different

types of overlapping and stacked tobacco shreds. The object

detection and segmentation methods of overlapping and stacked

tobacco shred images have rarely been investigated. However, the

type identification and component determination of overlapped

and stacked tobacco shred directly affect the calculation accuracy of

the blending ratio of tobacco shred components, which is a crucial

aspect of research.

The object detection and segmentation methods of overlapped

images using machine vision technology have been studied in some

fields. Fan et al. (2020) developed a 3D-Mask region-based

convolutional neural network (3D-Mask RCNN) for the mass

detection and segmentation of overlapping tissue during

screening. The 3D-Mask RCNN achieved an average precision

(AP) of 0.934 and a false negative rate (FNR) of 0.053. Wang and

He (2022) focused on the overlapped images of covered apples in an

orchard to perform accurate segmentation. Taking 3D-Mask RCNN

as the segmentation network’s mainframe, the attention mechanism

was added to enhance the network’s ability to extract features. The

model achieved a recall rate, precision rate, F1 score, and

segmentation mean average precision (mAP) of 97.1%, 95.8%,

96.4%, and 0.917, respectively. Yu et al. (2019) achieved accurate

segmentation and picking point positioning for overlapping

strawberries with a 3D-Mask RCNN and localization algorithm.

The average detection precision rate was 95.78%, the recall rate was

95.41%, and the mean intersection over union (MIoU) rate, for

instance segmentation, was 89.85%. Qi et al. (2022) concentrated on

detecting dense occlusion and overlapped images of auxiliary

equipment in an engine room using SsdNet as a mainframe

network while adding repulsion loss. The mAP reached 78.95%,

which was 5.63% higher than the original SsdNet (SSD). Wen D

et al. (2022)’s study set out to identify overlapping bubbles in high
Frontiers in Plant Science 03
void fraction conditions with the use of a convolutional neural

network (CNN), and their algorithm reached 85% accuracy under

high overlap rate conditions. Wu et al. (2022) employed a residual

U-Net network to detect overlapped immunohistochemistry-

positive cells in the proposed dataset. Their technique detected

86.04% of the overlapped cells, and the proposed genetic algorithm

(GA) outperformed the baseline methods. Su et al. (2019) focused

on overlapped ship detection in high-resolution synthetic aperture

radar (SAR) imagery using a modified version of the RetinaNet

network. The final AP50 reached 94.2%. Prasetyo et al. (2020)

investigated the performance of two CNN-based segmentation

methods, that is, YOLO (you only look once) and Mask RCNN

(mask region-based conventional neural network), for separating

the heads and tails in images of fish with high variability in terms of

their background and illumination, and with overlapping objects.

YOLO was high performing, as shown by its 98.6% and 96.73%

precision rates. Jia et al. (2020) proposed a model for harvesting

robot vision detectors utilizing Mask RCNN to realize the

recognition and segmentation of overlapped apples. The precision

and recall rates were 97.31% and 95.70%, respectively. Zhang et al.

(2022) developed a mask-labeling methodology for particles with a

varying degree of overlap that can establish a large and diverse

training set without manual labeling. This could be an efficient

sample-labeling method.

Regarding the image segmentation of overlapped tobacco shreds,

the small size of single-tobacco shreds, their various shapes, and tiny

tobacco shreds have complex physical and morphological

characteristics, with little difference in macro-scale features between

the tobacco silk and expanded tobacco silk varieties, and this

complicates the identification and classification of single tobacco

shreds with machine vision technology. Furthermore, there are 24

overlapped tobacco shreds derived from four distinct types. The self-

winding varieties are more difficult to separate than overlapped types,

posing considerable challenges for the segmentation tasks of images

of overlapped tobacco shreds and the subsequent calculation of the

component area.

This study proposes an overall solution based on an improved

Mask RCNN instance segmentation model and an algorithm for the

area calculation of overlapped tobacco shred region to identify

overlapped tobacco shred types and calculate the area of the

overlapped region. The focus is on the identification of

overlapped tobacco shred types, as our research object is

determining the best method of identifying tobacco shred

components for real-world use in field quality inspection lines.

This study’s contributions to this research area are as follows:
• Establishing two types of original overlapped tobacco shred

image datasets, 920 common objects in context (COCO)

and 920 visual object classes (VOC). The two datasets

consist of images captured from four tobacco shred

varieties with 24 overlapped types. The raw overlapped

tobacco shred datasets are initially established and applied

in a tobacco field, avoiding overfitting and field-specificity.

• Developing an accurate Mask RCNN model to achieve

overlapped tobacco shred detection and segmentation

utilizing digital images. Segmentation models were
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developed and compared using the SsdNet, Deeplap_v3,

FcnNet, and RetinaNet architectures with the chosen

datasets. The constructed improved Mask RCNN network

(Densenet121, U-FPN, anchors parameters) demonstrated

the highest instance of segmentation accuracy. It provides

good segmentation capability for overlapped tobacco shred

images with different sizes and types, outperforming other

similar segmentation models.

• Proposing a calculation of overlapped tobacco shred region

(COT) algorithm to be first applied to overlapped region

identification and overlapped area calculation. This

algorithm accurately detects and calculates areas in the

images of overlapping tobacco shred, and effectively

avoids the negative optimization situation of identifying

and calculating overlapped areas.

• Providing a new implementation method for the

identification of tobacco shred type and component area

calculation of overlapped tobacco shreds and a new

approach for other s imi lar over lapped image

segmentation tasks.
2 Data acquisition and preprocessing

2.1 Data collection

Cigarette samples in this study were obtained from the Xuchang

Tobacco Research Institute of the China National Tobacco

Corporation. Each cigarette was a mixture with a certain ratio of

four tobacco shred varieties, that is the tobacco silk, cut stem,
tiers in Plant Science 04
expanded tobacco silk, and reconstituted tobacco shred varieties

(shown in Figure 1). Cigarettes were randomly selected from a

specific brand, and thereafter all blended tobacco shreds were

obtained. Tobacco shred from a batch with a known serial

number was inserted into the vibration device, and then vibration

experiments were performed.

The classification results of the vibrated tobacco shred through

the vibration experiment are shown in Figure 2. In this experiment,

tobacco shred was categorized as (A) single tobacco shred; (B) self-

winding tobacco shred; (C) adhesion tobacco shred; (D) inter-

overlapped tobacco shred; or (E) stacked tobacco shred. Hence, the

overlapped tobacco shreds were defined as one of three overlapped

types, namely (A) self-winding tobacco shreds (based on their

length); (B) adhesion tobacco shreds (the borders of the two

tobacco shreds were connected); or (C) inter-overlapped tobacco

shreds, (there was tendency for overlap between two

tobacco shreds).

An image acquisition darkroom with four photographic

reflectors was designed to obtain high-quality tobacco shred

images. Figure 3 is a photograph of an image acquisition system

(Niu et al., 2022). The camera and light source were fixed on the

bracket, including the universal light source lighting frame, the

settings of which could be changed with a fine-tuning knob attached

to a 600 mm threaded rod. A Hikvision MV-CE100-30GC

industrial camera, a 10-megapixel color camera, was used and

equipped with a MVL-HF1224M-10MP 12 mm focal length

Hikvision industrial lens. The Hikvision Technology Industrial

Ring Angle Light Source R120-80-25 was selected as a ring light

source to provide uniform brightness in the shooting field of view,

eliminating the influence of shadows cast by the tobacco shreds. The

computer and the industrial camera were connected by a network
B C DA

FIGURE 1

The four tobacco shred varieties: (A) tobacco silk; (B) cut stem; (C) expanded tobacco silk; and (D) reconstituted tobacco shred.
B C D EA

FIGURE 2

The vibrated tobacco shred types: (A) single tobacco shred; (B) self-winding tobacco shred; (C) adhesion tobacco shred; (D) inter-overlapped
tobacco shred; and (E) stacked tobacco shred.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1108560
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1108560
cable, ensuring that the tobacco shred images were transmitted over

a stable connection at high speed.

Table 1 shows the overlapped tobacco shred types and the

number of images utilized in this study. The overlapped tobacco
Frontiers in Plant Science 05
shred images were obtained from the four tobacco shred varieties

[cut stem (G), expanded tobacco silk (P), tobacco silk (Y), and

reconstituted tobacco shred (Z)]. A total of 920 overlapped tobacco

shred images of 24 overlapped tobacco types (i.e., four self-winding

tobacco shreds, 10 adhesion tobacco shreds, and 10 inter-

overlapped tobacco shreds) were taken. The size of a single image

was 3,840 × 2,748 pixels. The number of tobacco shred images taken

differs for various overlapped tobacco shreds. For the tobacco shred

overlaps of the same type (for example, GG is overlapped with cut

stem and cut stem), the ratio of self-winding, to adhesion, to inter-

overlapped types was set to 1:1:2. For the overlap of different types

of tobacco shred (for example, GP is cut stem overlapped with

expanded tobacco silk), the ratio of adhesion to inter-overlapped

types was set to 1:1. As sample images could not easily be obtained,

and a wide variety of overlapped types exist, the ratio of the training

set to the testing set was set to 8:2.
2.2 Data preprocessing

It was observed that the segmentation model’s training and

testing times increased considerably if the tobacco shred object in
FIGURE 3

The image acquisition system.
TABLE 1 Overlapped tobacco shred datasets.

Overlapped tobacco shred
types

Self-winding tobacco
shred

Adhesion tobacco
shred

Inter-overlapped tobacco
shred

Number of
images

GG 98

GP 96

GY 80

GZ 95

PP 95

(Continued)
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the overlapped tobacco shred images obtained by the image

acquisition system was small, and if the images contained a lot of

background information. The image preprocessing approach starts

by treating the overlapped tobacco shred images with the OpenCV

algorithm, then finding the minimum circumscribed circle of the

object and cutting the contour. The algorithm flow chart is shown in

Figure 4. The image preprocessing algorithm ensures that the

invalid background information in the picture is reduced by

preserving the foreground information of the image, thereby

significantly reducing the size of the image.
Frontiers in Plant Science 06
The preprocessed overlapped tobacco shred images were labeled

using LabelMe, an image annotation tool, to generate corresponding

mask images. Thereafter, the COCO official datasets were used to

develop the code and the overlapped tobacco shred datasets of the

COCO data type. The four tobacco shred regions in the image were

marked, and the rest were taken as the image’s background. The

labeled image of the inter-overlapped GP is shown in Figure 5.

3 Methods

3.1 Segmentation method

There are three main challenges in the task of overlapped

tobacco segmentation:
(1) The size of a single tobacco shred is small, the shape of the

tobacco shred is variable, and tiny tobacco shreds have

complex physical and morphological characteristics; in

particular, there is substantial similarity between

expanded tobacco silk and tobacco silk.
FIGURE 4

Overlapped tobacco shred image preprocessing process.
TABLE 1 Continued

Overlapped tobacco shred
types

Self-winding tobacco
shred

Adhesion tobacco
shred

Inter-overlapped tobacco
shred

Number of
images

PY 89

PZ 97

YY 91

YZ 93

ZZ 86

Total 920
GG, cut stem and cut stem; GP, cut stem and expanded tobacco silk; GY, cut stem and tobacco silk; GZ, cut stem and reconstituted tobacco shred; PP, expanded tobacco silk and expanded
tobacco silk; PY, expanded tobacco silk and tobacco silk; PZ, expanded tobacco silk and reconstituted tobacco shred; YY, tobacco silk and tobacco silk; YZ, tobacco silk and reconstituted tobacco
shred; ZZ, reconstituted tobacco shred and reconstituted tobacco shred.
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(2) There are 24 types of overlapped tobacco shreds that can be

extracted from the four different varieties, and shreds of the

self-winding type are not easily distinguished.

(3) Overlapped tobacco shreds are small target objects,

meaning that their segmentation is difficult.
The following approaches were used to overcome the

above challenges:
• Mask RCNN is a state-of-the-art CNN-based method in

which the detection and segmentation of objects are

performed simultaneously to address broad problems

associated with overlap across multiple domains.

Therefore, Mask RCNN, as the mainframe of the

segmentation network, was used to complete the target

detection of the overlapped tobacco shreds in the image and

segment various types of tobacco shreds.

• In the case of complex classification tasks and limited

datasets, the Resnet in the backbone of the Mask RCNN

was replaced with Densenet121, because the latter adopts a

dense connection mode between layers. As a result, multiple

rounds of shallow information were used to increase

the ability of the Mask RCNN to extract tiny features in

the shallow information of the overlapped tobacco shreds.

The Densenet121 can achieve better performance using

fewer datasets compared with the Resent.

• Because of the rich shallow features in the tiny overlapped

tobacco objects, the deep features contain less target

information. Accordingly, the feature pyramid network

(FPN) in Mask RCNN was changed to a U-FPN. In

contrast to the FPN, U-FPN performs feature multiplexing

on C2 and C3 and features multiplexing on P2, P3, P4, and

P5, which significantly enhances the utilization rate of tiny

features in shallow information.

• The anchors parameters in the region proposal network

(RPN) were optimized, and the size and aspect ratios

suitable for the small objects of overlapped tobacco shred

were designed to ensure that the RPN could extract region

of interest (ROI) features from different levels efficiently. In

this way, the extraction and bounding boxes performance of

small objects was significantly improved without a
tiers in Plant Science 07
correspondingly large increase in the computational cost,

and this increased the model’s ability to detect tobacco

shred and enhanced its accuracy.
3.2 Segmentation network

3.2.1 Overall model framework of improved
Mask RCNN

The Mask RCNN network was introduced by He et al. (2017).

The network has achieved excellent results in various tasks by

utilizing the Microsoft Common Objects in Context (MS COCO)

dataset, including object detection, instance segmentation, and

keypoint detection. The mainframe of the segmentation network

in this paper adopts the improved Mask RCNN network. The

network structure of the improved Mask RCNN network is

composed of main modules with backbone (CNNs and FPNs),

RPNs, ROI aligns, fully convolutional networks (FCNs), and fully

connected (FC) layers.

The overall framework of the improved Mask RCNN network is

shown in Figure 6. It can be seen that the model input size is

500 × 500 pixels of overlapped tobacco shred images, and that the

backbone network uses the DenseNet121+U-FPN group to perform

feature extraction that obtains the feature map. Moreover, the feature

map output from the backbone is fed to the RPN to generate

proposals. Subsequently, the ROI output from the RPN is mapped

to extract the corresponding overlapped tobacco shred features in the

shared feature map. Finally, the instance segmentation of overlapped

tobacco shred images is completed with FC layers and FCNs. The

model’s output is the overlapped tobacco shred type.

3.2.2 Improved Mask RCNN performance
brought about by a change in backbone

Because of the different morphological characteristics and the

slight differences in the features of the overlapped tobacco shreds,

extracting the features of different overlapped tobacco shreds is

challenging, particularly in the overlapped region. In the Mask

RCNN network, using Resnet50 to extract different levels of features

from the overlapped tobacco shred input images is less effective.

However, an increased number of Densenet121 network layers can

enhance the ability to extract small target detail information of
B CA

FIGURE 5

Overlapped tobacco shred example of instance segmentation: (A) original image; (B) mask image of instance segmentation; and (C) visualization of
the mask image. G, cut stem; P, expanded tobacco silk.
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different tobacco shreds. The dense connection form can effectively

extract the small differences in the features, and features of different

tobacco shreds in the overlapped regions. Therefore, DenseNet121

can effectively extract small-sized target detail information and

small features in larger-sized overlapped tobacco shreds, which

enhances the overall feature extraction ability of the model in

regions with overlapped tobacco shred, and to a certain extent

solves the problem of shallow feature loss. Densenet121 was set to

four feature extraction layers, that is Dense Block 1, Dense Block 2,

Dense Block 3, and Dense Block 4. The four feature return values

have undergone different downsampling times (i.e., 2, 3, 4 and 5s)

and lateral connections. Accordingly, Densenet121 constitutes a

new type of backbone, as shown in Figure 7.
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3.2.3 Improved Mask RCNN about U-FPN
After being extracted by the CNN network, the receptive field of

the shallow-feature map is small, and more detailed information

about the tobacco shred targets is produced, whereas the receptive

field of the deep-feature map is large, and the information it

produces about these tiny targets is less detailed. Although the

top-down and same-layer connected structure of the FPN combines

deep and shallow features to a certain extent to meet the needs of

subsequent classification and detection of overlapped tobacco

shreds, it still cannot make up for the complete usage of small

features in the shallow parts. The shallow feature information of

small targets overlapped tobacco shred detection is rich and vital.

Therefore, a bottom-up and horizontal feature multiplexing

structure was added based on the top-down structure, and the

shallow information was transmitted to each feature layer (P3, P4,

P5, and P6), which enhanced the effective use of shallow feature

information. The modified FPN network structure was named U-

FPN, as shown in Figure 8. P3 in Figure 8 indicates that adding P2

and C3 to P3 through 3 × 3/2 Conv and 3 × 3Conv helped obtain

the shallow information of the P2 layer, and that incorporating the

C3 layer into the P3 layer enhanced the fusion of the general shallow

feature information.
3.2.4 Improved Mask RCNN about RPN
In the Mask RCNN model, the scales and aspect ratios of the

anchor were set to [128, 256, 512] and [1:1, 1:2, 2:1], respectively,

with nine reference anchors being set for each position on the

feature map. The RPN selects and adjusts anchor output ROIs

according to the features of each stage. For instance, in P2, the

layer’s feature map was 256 × 256, and the step was 4; hence each

pixel on P2 generated a 4 × 4 anchor frame with an area of 16 based

on the current coordinates. According to the scales and aspect ratios

of the anchor, bounding boxes of the three sizes and three shapes

were generated at each pixel point. The foreground and background

classification and offset regression of the bounding boxes were

conducted after two convolution layers.
FIGURE 7

A new type of backbone (Densenet121+FPN).
FIGURE 6

The overall framework of the improved Mask RCNN. FC layers, fully connected layers; FCNs, fully convolutional networks; Mask RCNN, mask region-
based conventional neural network; ROI align, region of interest align.
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The minor anchor scale in the Mask RCNN was 128 × 128, but

there were many small targets in the overlapped tobacco shred, some

of which were much smaller than this scale, resulting in the model’s

inability to detect this target object. Ideally, the smaller the target, the

denser the anchors to cover all the candidate regions, and the larger

the target, the fewer and sparser the anchors should be. Otherwise,

the anchors overlap and cause redundant computation. However, the

anchors parameter set in Mask RCNN, focusing on small targets in

the images of overlapped tobacco shred objects, led, to a certain

extent, to the anchors for small targets being few and sparse, and the

anchors for detecting large targets being many and dense. In this case,

the detection performance of small objects can be significantly

improved by adjusting appropriate anchor scales and aspect ratios

without greatly increasing the amount of computation.

According to the statistics of the aspect ratios in each batch of

images and the pixel size for tobacco shred of [0, 0.5, 0.6, 0.8, 1.0, 1.3,

1.5, 2.0], a series of anchor scales and aspect ratios were designed as

[128, 256, 512], [64, 128, 256], [32, 64, 128], [32, 64, 256] and [0.5, 1,

2], [0.5, 1, 1.5, 2], [0.5, 0.75, 1, 2], [0.5, 0.75, 1, 1.5, 2], and [0.5, 1, 3].
Frontiers in Plant Science 09
Finally, the anchor scale and size were experimentally determined as

[32, 64, 128, 256] and [0.5, 1, 1.5, 2], respectively.
3.3 Area calculation of overlapped tobacco
shred algorithm

Based on the improved Mask RCNN network, the above

detection model can effectively achieve instance segmentation for

overlapped tobacco shreds with different shapes and forms and

obtain the contours for the overlapped tobacco shred targets. Based

on this, it is possible to calculate the pixel area and respective area

proportions of the corresponding tobacco shreds for the mask

image through the OpenCV algorithm. However, the overlapped

region of the occluded tobacco shred cannot be obtained. The

omission of the overlapped area in the covered tobacco shred

directly leads to errors in the calculation of the respective areas

for different tobacco shreds and the total area in the tobacco shred

group during the subsequent determination of its components.

The area calculation of overlapped tobacco shreds requires

using the improved Mask RCNN network to generate a mask

image of the overlapped tobacco shred, determine the occluded

tobacco shred, draw and fit the overlapped region according to the

distribution of the occluded overlapped tobacco shred, and

determine the actual overlap region with the fitted overlapped

region and the unoccluded area. Finally, the pixel area in the

overlapped part is calculated. The algorithm for area calculation

in the overlapped region, named the COT algorithm, is as follows,

and the specific process is shown in Figure 9:
• Determine the occluded tobacco shred object. First,

grayscale and binarize the mask image, and calculate and

count the number of tobacco shred contours. A single

contour is an unoccluded tobacco shred (see unoccluded

image in Figure 9). Multiple contours are occluded tobacco

shreds (see occluded image in Figure 9).

• Fit the overlapped region in the tobacco shred (see Mask

processing in Figure 9). The multiple contours of the shrouded

tobacco shred are cyclically judged, and two contours are

found according to the size of the contour area. First, use the
FIGURE 9

Specific process of the calculation of overlapped tobacco shred region (COT) algorithm.
FIGURE 8

The U-FPN network structure.
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Fron
cv2.pointPolygonTest and cv2.minMaxLoc in the OpenCV

function to construct the smallest rectangle inside the outline.

Then draw the smallest inscribed circle round _1 with the

center of the rectangle as the dot, the side length as the

diameter, the center as (x1, y1), and the diameter as d1.

Then, draw the smallest inscribed circle round _2 of the

second contour, whose center is (x2, y2), and whose

diameter is d2. Connect the centers (x1, y1) and (x2, y2) of

the two inscribed circles, and draw a straight line L0. By

extending the straight line L0, draw outer tangent lines L1 and

L2 with the diameter of each circle for round _1 and round _2.

Draw the fitted overlap region trapezoid _1 according to L1

and L2 (see the quasi-coincident area in Figure 9).

• Determine the overlapped region of the actual tobacco

shred and pixel area by calculating the overlapped region.

First, use cv2.fillPoly function to generate a mask image for

the fitting area, then perform a mask operation according to

the outline of the unoccluded image and find the

overlapped area (see the overlapped areas in Figure 9).

Finally, the pixel area of overlapped area is calculated using

OpenCV
3.4 Evaluation index

3.4.1 Improved Mask RCNN
The COCO evaluation index is the current mainstream target

detection and instance segmentation evaluation index. This paper

uses the COCO evaluation indicators, i.e., training time (T-time)

and prediction time (P-time) as evaluation indicators for improved

Mask RCNN and other baseline segmentation models. As an image

of overlapped tobacco shreds is a small target object, among the

COCO evaluation indicators, six indicators (AP,AP50,AP75,APs,

AR10 and ARs) were selected for network performance evaluation,

where AP50 and ARs represent the precision and recall rates,

respectively. The higher these values, the more ideal the

segmentation model (Tong et al., 2020).

Average precision (AP):
AP % AP at IOU = 0.50: 0.0.5: 0.95 (primary challenge metric)

AP50 % AP at IOU = 0.50 [PASCAL Visual Object Classes

(PASCALVOC) metric]

AP75 % AP at IOU = 0.75 (strict)
AP Across scales L:
APs % AP for small objects: area< 322
Average recall (AR):
AR10 % AR give 10 at detections per image

AR Across scales:

ARs % AR for small objects: area< 322
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3.4.2 COT algorithm
This paper uses Eqs 1–4 to calculate the actual area ratio (AAR),

COT area ratio (CAR), average actual area ratio (Avg_AAR), and

average COT area ratio (Avg_CAR) as evaluation indicators of the

COT algorithm. The higher the CAR and Avg_CAR values, the

higher the COT algorithm’s area calculation accuracy to

compensate for the overlapped region of occluded tobacco shred

and the more ideal the algorithm.

AAR =
AD

Area _ 1 + Area _ 2
(1)

CAR =
AD + CD

Area _ 1 + Area _ 2
(2)

Avg _AAR = o
n
i=1AARi

n
(3)

Avg _CAR = o
n
i=1CARi

n
(4)

AAR actual area ratio

CAR COT area ratio

AD actual detection area

CD detection area

Area_1 the pixel area of tobacco shred 1

Area_2 the pixel area of tobacco shred 2

Avg_AAR average actual area ratio

Avg_CAR average COT area ratio

n total number of AAR or CAR

The overlapped tobacco shred samples consist of four randomly

combined tobacco shreds in pairs. Tobacco shred 1 is defined as the

unshielded tobacco shred in the overlapped tobacco shred samples,

and tobacco shred 2 is the occluded tobacco shred for evaluating the

COT algorithm. The sum of the area of tobacco shred 1 and tobacco

shred 2 is the arbitrary actual total area of the overlapped tobacco

shred. The actual detection (AD) area is the complete pixel area of

the overlapped tobacco shred image calculated by the OpenCV

algorithm without considering the occlusion of any overlapped

tobacco shred sample. The COT detection (CD) overlapped area is

the pixel area of the overlapped area calculated with the COT

algorithm upon obtaining the overlapped region outline of tobacco

shred 2 in the overlapped tobacco shred image.
4 Results

4.1 Implementation details

4.1.1 Experimental platform
The experiment in this paper was performed on a Windows 10

operating system. The GPU used was the GeForce GTX 3080 (10GB

video memory), the processor used was the Intel Core i7-12700K

CPU@3.61GHz, and the running memory was 64 GB. The model’s

construction, training, and testing were implemented in Python

using the PyTorch deep learning framework. In addition, the
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CUDA 11.0 parallel computing framework was used alongside the

Pycharm development environment.

4.1.2 Details of segmentation model training
For the overlapped tobacco shred dataset, the training set

images were randomly shuffled before input to reduce the

influence of the image sequence on the model. During the model

training process, the batch size for model training was set to 8, the

number of training arguments was taken as 60, and the initial

learning rate was taken as 0.08. In the model gradient optimization,

the gradient descent was performed after multiple iterations using

the stochastic gradient descent (SGD) optimizer and the learning

rate was attenuated during the model training process to obtain

better segmentation performance.
4.2 Results of the segmentation model

4.2.1 Improved Mask RCNN performance test
The overlapped tobacco shred datasets were used for network

training and testing using the improved Mask RCNN. Figure 10

shows the segmentation effect diagrams for 24 overlapped types of

tobacco shreds. The proposed method can accurately classify self-

winding and adhesion tobacco shreds. The average target

recognition accuracy for the four self-winding tobacco shreds was

99% (A99%, J99%, O99%, and V99%). The average object

recognition accuracy for overlapped tobacco shreds across nine
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adhesion types was 94% (B99%, D99%, F99%, H66%, K96%, M99%,

P90%, T99%, and W99%). The average target recognition accuracy

for the inter-overlapped tobacco shreds that were difficult to

segment was 86.9% (C99%, E99%, G41%, I80%, L99%, N67%,

Q99%, S99%, and X99%). Therefore, the above analysis indicates

that various overlapped tobacco shreds can be accurately identified

using the improved Mask RCNN. Although the improved network

leads to increased training and inference time, it can still ensure

accurate segmentation and recognition relatively quickly.

The experimental results show that after 60 training rounds, the

loss and mAP of the model remained stable, the training time was

4454.8 s, and the inference time was 0.04 s. The average precision

(AP50) and average recall (ARs) for the object detection performance

of the improved Mask RCNN model were 90.2% and 75.2%,

respectively. Additionally, the AP50 and ARs for the segmentation

performance of the Mask RCNN model were 89.1% and 73.2%,

respectively. The improved network performance is shown in Table 2.

The segmentation model performance is separately explained below.

4.2.2 Performance test of the Densenet121
This section evaluates the model performance of the DenseNet121

for segmenting overlapped tobacco shreds. The following networks

were selected as baseline backbones: Vgg11 (Simonyan and Zisserman,

2014), MobileNet (Howard et al., 2017), Resnet50 (He et al., 2016),

Resnet101 (Xu et al., 2020), and Densenet121 (Huang et al., 2017). The

performance index comparison of different CNN backbone networks is

shown in Table 3.
B C D E F

G H I J K L

M N O P Q R

S T U V W X

A

FIGURE 10

A–X are recognition results of 24 overlapped tobacco shreds, including self-winding, adhesion, and inter-overlapped GG, PP, YY, and ZZ, and
adhesion and inter-overlapped GP, GY, GZ, PY, ZP, and ZY. G, cut stem; P, expanded tobacco silk; Y, tobacco silk; Z, reconstituted tobacco shred;
GG, cut stem and cut stem; GP, cut stem and expanded tobacco silk; GY, cut stem and tobacco silk; GZ, cut stem and reconstituted tobacco shred;
PP, expanded tobacco silk and expanded tobacco silk; PY, expanded tobacco silk and tobacco silk; PZ, expanded tobacco silk and reconstituted
tobacco shred; YY, tobacco silk and tobacco silk; YZ, tobacco silk and reconstituted tobacco shred; ZZ, reconstituted tobacco shred and
reconstituted tobacco shred.
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Table 3 compares the Mask RCNN using Densenet121 as the

backbone with Mask RCNN using lightweight networks such as

ResNet50 and MobileNet as the backbone. Although the training

time (4466.9s) and inference time (0.041s) of the DenseNet121 were

longer than those of the ResNet50 (3725.4s and 0.035s, respectively)

and the MobileNet (3986.2s and 0.016s, respectively), DenseNet121

had the best AP50 and ARs at 0.861 and 0.695, respectively, and the

remaining indices were also the better than or comparable to the other

backbones. The training time and inference time of the DenseNet121

backbone network were minimal, and the performance indicators were

the best when compared with the Mask RCNN using Vgg11 or

ResNet101 as the backbone. This means that in lightweight and deep

networks, Mask RCNN with the DenseNet121 backbone network can

effectively identify and segment overlapped tobacco shreds.

4.2.3 Performance test based on U-FPN
Based on the improved proof in 3.2.2, the model performance

for small-target detection based on the U-FPN algorithm was

evaluated. The performance indices of Mask RCNN–FPN, Mask

RCNN–U-FPN, and Mask RCNN–U-FPN–Densenet121 are listed

in Table 4.

Table 4 indicates that the Mask RCNN–U-FPN network shows

noticeable improvements in small-target detection and

segmentation performance compared with the Mask RCNN-FPN

network, which proves that even when the backbone was the

ResNet50 network, U-FPN showed excel lent network
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performance. Compared with the Mask RCNN–U-FPN network,

Mask RCNN–U-FPN–Densenet121 demonstrated effective

network performance improvements without significantly

increasing the network training and prediction time. The AP50

and ARs of the Mask RCNN–U-FPN–Densenet121 network were

the best recorded, at 0.877 and 0.727, respectively. Except for time,

the other indicators were still the best in the Mask RCNN–U-FPN–

Densenet121 network, which proves U-FPN’s effectiveness.

4.2.4 Performance test based on RPN
In this section, Mask RCNN–U-FPN–Densenet121 is referred

to as P-Mask RCNN for convenience. A series of Anchor sizes (A1–

E1) and aspect ratios (A2–E2) was designed on the premise that the

aspect ratios of all images was [0, 0.5, 0.63, 0.8, 1.0, 1.26, 1.59, 2.0],

as shown in Figure 11. Additionally, the anchors parameters in the

RPN of the P-Mask RCNN model were adjusted, the overlapped

tobacco shred datasets were inputted, and the model’s network

performance was compared. Table 5 shows different P-Mask RCNN

performances under different sizes and aspect ratios. In Table 5, the

P-Mask RCNN-A1A2 represents the original network with the

default anchors parameters. The networks with adjusted anchors

parameters range from P-Mask RCNN-A1B2 to P-Mask

RCNN-E1D2.

Table 5 shows that choosing inappropriate anchors parameters,

such as B1A2, B1B2, B1C2, E1B2, and E1D2, led to a decline in

network performance, and this proves the importance of improving
TABLE 2 Improved Mask region-based convolutional neural network (RCNN) performance.

Network structure AP AP50 AP75 APs AR10 ARs T-time (s) P-time (s)

Improved Mask RCNN
Detection 0.677 0.902 0.787 0.749 0.752 0.752

4454.8 0.044
Segmentation 0.641 0.891 0.733 0.728 0.732 0.732
f

Mask RCNN, mask region-based conventional neural network.
TABLE 3 The performance index comparison of different convolutional neural network (CNN) backbone networks.

Network Structure AP AP50 AP75 APs AR10 ARs T-time (s) P-time (s)

Mask RCNN Vgg11 0.523 0.817 0.547 0.646 0.648 0.648 4610.0 0.053

Mask RCNN MobileNet 0.602 0.840 0.661 0.695 0.697 0.697 3986.2 0.016

Mask RCNN ResNet 50 0.466 0.805 0.476 0.582 0.583 0.583 3725.4 0.035

Mask RCNN ResNet 101 0.533 0.834 0.590 0.640 0.642 0.642 4771.3 0.043

Mask RCNN Densenet 121 0.612 0.861 0.666 0.698 0.695 0.695 4466.9 0.041
Mask RCNN, mask region-based conventional neural network.
TABLE 4 The performance index comparison of different feature pyramid networks (FPNs).

Network structure AP AP50 AP75 APs AR10 ARs T-time (s) P-time (s)

Mask RCNN–FPN 0.466 0.805 0.476 0.582 0.583 0.583 3725.4 0.035

Mask RCNN–U-FPN 0.498 0.819 0.493 0.609 0.608 0.608 0.608 0.608

Mask RCNN–U-FPN–Densenet121 0.637 0.877 0.689 0.724 0.727 0.727 4523.1 0.042
Mask RCNN, mask region-based conventional neural network.
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parameters. In addition, it indicates that changing the anchors

parameter can effectively improve the network performance at the

cost of a slight increase in training time. Finally, it was determined

that the Anchor sizes [0.5, 1, 1.5, 2] and the aspect ratios [32, 64,

128, 256] performed the best. Although the training time and

prediction time of the P-Mask RCNN-B1D2 network were

slightly higher than with other anchors parameters, performance

indices were better.
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4.2.5 Comparison with other instance
segmentation methods

In order to further prove the effectiveness of the improved Mask

RCNN at solving the problem of overlapped tobacco shred image

segmentation, SsdNet (Liu et al., 2016), Deeplap_v3 (He et al.,

2022), FcnNet (Wu et al., 2022), RetinaNet (Lin et al., 2017), and

Mask RCNN were selected as baseline models. The performance

index obtained is shown in Table 6 and Figure 12.
FIGURE 11

A series of Anchor sizes (A1–E1) and aspect ratios (A2–E2).
TABLE 5 The performance index comparison of different sizes and aspect ratios.

Network parameter AP AP50 AP75 APs AR10 ARs T-time (s) P-time(s)

P-Mask RCNN-A1A2 0.636 0.877 0.689 0.724 0.727 0.727 4523.1 0.042

P-Mask RCNN-A1B2 0.628 0.884 0.717 0.713 0.715 0.715 4528.2 0.041

P-Mask RCNN-A1C2 0.612 0.874 0.673 0.699 0.701 0.702 4473.1 0.043

P-Mask RCNN-A1D2 0.632 0.888 0.702 0.709 0.712 0.712 4436.0 0.04

P-Mask RCNN-B1A2 0.605 0.862 0.650 0.688 0.693 0.693 4441.5 0.042

P-Mask RCNN-B1B2 0.647 0.862 0.710 0.721 0.724 0.724 4466.2 0.041

P-Mask RCNN-B1C2 0.614 0.860 0.666 0.716 0.718 0.718 4630.5 0.041

P-Mask RCNN-B1D2 0.641 0.891 0.733 0.728 0.732 0.732 4454.8 0.044

P-Mask RCNN-C1A2 0.615 0.877 0.648 0.709 0.711 0.711 4438.8 0.042

P-Mask RCNN-C1B2 0.632 0.875 0.708 0.718 0.720 0.720 4448.6 0.041

P-Mask RCNN-C1C2 0.627 0.877 0.699 0.712 0.715 0.715 4432.5 0.042

P-Mask RCNN-C1D2 0.635 0.871 0.711 0.717 0.719 0.719 5220.2 0.041

P-Mask RCNN-D1A2 0.641 0.873 0.736 0.732 0.735 0.735 4430.3 0.041

P-Mask RCNN-D1B2 0.642 0.871 0.735 0.728 0.730 0.730 5127.5 0.041

P-Mask RCNN-D1C2 0.633 0.873 0.697 0.720 0.723 0.723 4593.7 0.042

P-Mask RCNN-D1D2 0.634 0.882 0.706 0.720 0.723 0.723 4568.4 0.041

P-Mask RCNN-E1A2 0.628 0.876 0.699 0.714 0.716 0.716 4735.7 0.042

P-Mask RCNN-E1B2 0.625 0.867 0.701 0.713 0.716 0.715 4556.7 0.043

P-Mask RCNN-E1C2 0.634 0.871 0.735 0.718 0.720 0.720 4481.3 0.04

P-Mask RCNN-E1D2 0.610 0.861 0.670 0.693 0.696 0.696 4447.3 0.041
fr
Mask RCNN, mask region-based conventional neural network.
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Table 6 and Figure 12 show that compared with the SsdNet,

Deeplap_v3, FcnNet, and RetinaNet models, Mask RCNN

demonstrated the best performance, with an AP50 and ARs of

approximately 0.805 and 0.583, respectively. Other indicators were

also better in Mask RCNN, which proves that Mask RCNN can best

solve the problem of overlapped image segmentation. Compared with

the Mask RCNN network, the improved Mask RCNN network

achieved a better performance, with an AP50 and ARs of 0.891 and

0.732, respectively, which represents an improvement of 8.6% and

14.9%, respectively, although there was also an increase in training

time and inference time. In summary, the improved Mask RCNN

proposed in this study performed the best of the baseline networks

studied and can effectively and accurately carry out image

segmentation of overlapped tobacco shreds.
4.3 Evaluation of the COT algorithm

This paper proposes an algorithm for the overlapped region

and calculating the overlapped area to obtain an accurate

estimation of the overlapped area in the covered tobacco shred,

hence overcoming the issues of obtaining the overlapped region in

the covered tobacco shred and the failure to detect the overlapped

area when different types of tobacco shred overlap. Twenty

samples from four tobacco shred types were selected to develop

the original tobacco shred sample set, as shown in Table 7. It can

be seen that Y-1 to Y-5 are five tobacco silk samples with different

shapes, G-1 to G-5 are five different shapes of cut stem samples, P-

1 to P-5 are five samples of expanded tobacco silk with different

shapes, and Z-1 to Z-5 are five samples of reconstituted tobacco

shred with varying shapes. The actual tobacco shred area in each

of the 20 samples obtained by the OpenCV algorithm is shown

in Table 8.

In this study, 24 various overlapped samples based on the 20

original tobacco shred sample sets were constructed, as shown in

Table 9. The abscissa is the serial number (1–4) of the tobacco shred

sample, and the vertical coordinate is the type of overlapped tobacco

shred (GY, GZ, PG, PY, PZ, and YZ).

The outline of the overlapped region in the covered tobacco

shred was obtained, and its area was calculated using the COT

algorithm for 24 different random tobacco shred overlap types. The

experimental results are shown in Table 10.
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Table 10 indicates that among the total area of overlapped

tobacco shreds calculated by the OpenCV algorithm, the PG-4

overlapped type sample showed the worst area detection effect, with

an AAR of 0.648, whereas the GY-2 overlapped type sample showed

the best area detection effect, with an AAR of 0.933. The average

actual area ratio detected of overlapped tobacco shred areas was

0.812. However, it can be seen that there is still a large discrepancy

between the observed overlapped total area in the tobacco shreds,

and the actual area, because there is a missing overlapped area in the

covered tobacco shred. The overlapped area obtained by the COT

algorithm effectively makes up for the lack of the total area.

Moreover, the GY-1 overlapped type had the worst area detection

effect, with a CAR of 0.789. The best area detection effect, with a

detection rate of 1%, was shown for the GY-3 and GZ-3 overlapped

types. The average area detection rate of the overlapped tobacco

shred reached 0.90. The worst and best area detection increase rates

of CAR compared with AAR were 1.8% and 15.8%, respectively.

The average area detection increase rate was 8.8%. In addition, the

COT algorithm was applied to 24 experimental sets, and no

negative optimization occurred, showing that the algorithm had

excellent performance and was effective.
5 Conclusion

This study develops an improved Mask RCNN segmentation

model with a COT algorithm to overcome the problems of having
FIGURE 12

Multi-network performance comparison about AP50.
TABLE 6 The performance index comparison of different instance segmentation methods.

Network structure AP AP50 AP75 APs AR10 ARs T-time (s) P-time (s)

SsdNet 0.111 0.246 0.082 0.111 0.337 0.362 1187.2 0.01

Deeplap_v3 0.368 0.558 0.312 0.351 0.491 0.491 2616.4 0.024

FcnNet 0.391 0.623 0.347 0.383 0.532 0.532 2047.0 0.026

RetinaNet 0.416 0.783 0.370 0.416 0.575 0.589 2484.4 0.033

Mask RCNN 0.466 0.805 0.476 0.582 0.583 0.583 3725.4 0.035

Improved Mask RCNN 0.641 0.891 0.733 0.728 0.732 0.732 4454.8 0.044
Mask RCNN, mask region-based conventional neural network.
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many types of overlapped tobacco shreds, difficulty in the

segmentation of small overlapped tobacco shred objects, and

obtaining overlapped region and area calculation. The proposed

model can be used to calculate the area of overlapped parts in

tobacco shred images. Within the study context, this model was

successfully applied to the instance segmentation and area calculation

of overlapped tobacco shreds. Based on the aforementioned

statements, the following innovations were achieved:
Fron
1. A database of 920 overlapped tobacco shred images and two

originaloverlappedtobaccoshred imagedatasetswasdeveloped

to segment overlapped tobacco shred types, effectively avoiding

overfitting and ensuring suitability for actual field use.
tiers in Plant Science 15
2. An improved Mask RCNN network was proposed by

adopting DenseNet121 as the backbone, adding

upsampling and connection with C2 and C3 level as U-

FPN structure, and optimizing anchors parameters,

effectively improving the segmentation accuracy for

overlapped tobacco shred images. The DenseNet121

model improves the ability of the Mask RCNN network

to extract tiny features in the shallow information of

overlapped tobacco shreds. The utilization rate of the

shallow information and extracted tiny features of

tobacco shreds was enhanced with the U-FPN structure.

anchors parameters were optimized to reduce both the

failure to detect tobacco shreds and redundant calculations.
TABLE 7 The original tobacco shred sample datasets.

Type of sample 1 2 3 4 5

Y

G

P

Z

G, cut stem; P, expanded tobacco silk; Y, tobacco silk; Z, reconstituted tobacco shred.
TABLE 8 The actual area of tobacco shred in each of the 20 samples.

Area (category) 1 2 3 4 5

Y 6611 8952 9747.5 8243 5956

G 7650 9692.5 7359.5 9813 11227

P 3917.5 7227.5 4999 4861 6277.5

Z 7305 5289.5 8593.5 5464.5 6706.5
frontie
G, cut stem; P, expanded tobacco silk; Y, tobacco silk; Z, reconstituted tobacco shred.
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Fron
3. A COT algorithm was proposed to obtain the overlapped

tobacco shred region and calculate the overlapped area,

which avoids the loss in the overlapped region area. The

COT algorithm significantly improves the detection

accuracy of the total area of the overlapped tobacco

shreds without negative optimization.
tiers in Plant Science 16
Accordingly, the method proposed in this paper can accurately

perform image segmentation of overlapped tobacco shreds and area

calculation of the overlapped region. However, this study has several

limitations, namely that the number of samples within the datasets was

insufficient, the segmentation accuracy must be further improved, and

the stacked tobacco shred in abnormal tobacco shred was not studied.
TABLE 9 The 24 overlapped tobacco shred samples with different overlapped types.

Type of overlapped sample 1 2 3 4

GY

GZ

PG

PY

PZ

YZ
GP, cut stem and expanded tobacco silk; GY, cut stem and tobacco silk; GZ, cut stem and reconstituted tobacco shred; PY, expanded tobacco silk and tobacco silk; PZ, expanded tobacco silk and
reconstituted tobacco shred; YZ, tobacco silk and reconstituted tobacco shred.
frontiersin.org
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Follow-up work should consider the aspects below:
Fron
(1) More abnormal tobacco shreds in the production line

should be collected to expand the overlapped tobacco

shred datasets under different overlapped types.

(2) The effects of different geometric features of tobacco shreds,

such as their length, width, area, and aspect ratios, on the

segmentation of overlapped tobacco shreds must be

explored. These features and image information must be

input into the segmentation network to enhance the

network performance of the model.

(3) Although the content of the stacked tobacco shreds is small,

it still significantly impacts the accuracy of the component

determination. In future studies, the stacked tobacco shreds

in the abnormally shredded tobacco should also be sent to

the datasets for segmentation.
tiers in Plant Science frontiersin.org17
,

(4) The scheme proposed in this paper must be installed and

applied in real-world scenarios to verify the performance of the

model and algorithm.
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silk; GY, cut stem and tobacco silk; GZ, cut stem and reconstituted tobacco shredPY, expanded tobacco silk and tobacco silk; PZ, expanded tobacco silk and reconstituted tobacco shred; YZ
tobacco silk and reconstituted tobacco shred.
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