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Volatile organic compounds such as terpenes influence the quality parameters of

grapevine through their contribution to the flavour and aroma profile of berries.

Biosynthesis of volatile organic compounds in grapevine is relatively complex

and controlled by multiple genes, the majority of which are unknown or

uncharacterised. To identify the genomic regions that associate with

modulation of these compounds in grapevine berries, volatile metabolic data

generated via GC-MS from a grapevine mapping population was used to identify

quantitative trait loci (QTLs). Several significant QTLs were associated with

terpenes, and candidate genes were proposed for sesquiterpene and

monoterpene biosynthesis. For monoterpenes, loci on chromosomes 12 and

13 were shown to be associated with geraniol and cyclic monoterpene

accumulation, respectively. The locus on chromosome 12 was shown to

contain a geraniol synthase gene (VvGer), while the locus on chromosome 13

contained an a-terpineol synthase gene (VvTer). Molecular and genomic

investigation of VvGer and VvTer revealed that these genes were found in

tandemly duplicated clusters, displaying high levels of hemizygosity. Gene

copy number analysis further showed that not only did VvTer and VvGer copy

numbers vary within the mapping population, but also across recently

sequenced Vitis cultivars. Significantly, VvTer copy number correlated with

both VvTer gene expression and cyclic monoterpene accumulation in the

mapping population. A hypothesis for a hyper-functional VvTer allele linked to

increased gene copy number in the mapping population is presented and can

potentially lead to selection of cultivars with modulated terpene profiles. The

study highlights the impact of VvTPS gene duplication and copy number variation

on terpene accumulation in grapevine.
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Introduction

Terpenes are one of the largest classes of metabolites in plants,

where they serve various primary and specialized roles. Volatile

terpenes, such as monoterpenes and sesquiterpenes, mainly

function as specialized metabolites and are involved in plant-

pathogen interactions, protection of plants against herbivores, and

are also produced to attract pollinators and seed-dispersing animals

(Dudareva et al., 2013; Vranová et al., 2013). Together with

additional volatile organic compounds (VOCs) such as short-

carbon chain compounds (green leaf volati les) , C13-

norisoprenoids and methoxypyrazines, they contribute to the

varietal aroma of grape berries (Dunlevy et al., 2009). Indeed,

monoterpenes and sesquiterpenes have been extensively studies

for their contribution to the distinctive varietal aroma of aromatic

cultivars such as Muscat-cultivars (monoterpene alcohols including

linalool, geraniol, and a-terpineol), ‘Shiraz’ (the sesquiterpene

rotundone), ‘Riesling’ and ‘Gewürztraminer’ (the monoterpene

rose-oxide) (Dunlevy et al., 2009).

Biosynthesis of monoterpenes and sesquiterpene occurs via the

methyl-erythritol-phosphate (MEP) and mevalonic acid (MVA)

pathways, respectively. The first step in the MEP pathway is

catalysed by 1-deoxy-D-xylylose-5-phosphate synthase (DXS), an

enzyme which is considered to be the vital rate-limiting enzyme in

plastidial terpene biosynthesis(Tholl, 2015; Bosman and

Lashbrooke, 2023). Several QTL mapping and association studies

in grapevine have identified a singular SNP in the active site of

VvDXS1 as a causal mutation for increased monoterpene content in

Muscat cultivars (Doligez et al., 2006; Battilana et al., 2009;

Emanuelli et al., 2010). A SNP at position 1822 of VvDXS1 (G>T)

in Muscat cultivars causes a non-synonymous substitution of a

lysine (K) with an asparagine (N) at position 284 of the VvDXS1

protein. Functional characterisation of VvDXS1 showed that the

non-synonymous amino acid substitution influences enzyme

kinetics by increasing the catalytic efficiency of VvDXS1, thereby

increasing the total monoterpene content of cultivars carrying this

SNP (Battilana et al., 2011).

While VvDXS1 is able to regulate total monoterpene

accumulation via biosynthesis of the prenyldiphosphate

precursors, terpene synthases (TPSs) are responsible for the

formation of specific terpenes (Steele et al., 1998; Chen et al.,

2011). Monoterpene synthases catalyse the coupled ionisation,

isomerisation and cyclisation of geranyldiphosphate (GPP)

leading to the formation of a reactive carbocation intermediate

and subsequent reactions e.g. deprotonation or ring closures will

form the final monoterpene product (Davis and Croteau, 2000;

Degenhardt et al., 2009).

The Vitis vinifera reference genome, PN40024, has a greatly

expanded TPS gene family, with an initial prediction of 152 loci and

69 putatively functional TPSs (Jaillon et al., 2007; Martin et al.,

2010). However, the recent availability of phased diploid grapevine

genomes of various cultivars (Minio et al., 2019; Zhou et al., 2019;

Massonnet et al., 2020) reveals that the TPS gene family size varies

greatly between cultivars (Smit et al., 2020). Furthermore, VvTPSs

are organised in large tandemly duplicated clusters, and a great

portion of genes are hemizygous (Martin et al., 2010; Jiang et al.,
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2019; Smit et al., 2020). Recent research has also shown that

grapevine has cultivar-specific TPS genes (Drew et al., 2016; Smit

et al., 2019). Cultivar-specific TPSs arise due to small sequence

variations, such as single nucleotide polymorphisms (SNPs), which

cause a functional change of the enzyme. The extensive level of

duplication and functional plasticity of VvTPSs contribute to the

neofunctionalisation of these enzymes and results in the large

diversity in metabolites formed by VvTPSs (Bosman and

Lashbrooke, 2023).

This study utilises a biparental grapevine cross population

established by crossing a wine cultivar and a table grape cultivar.

A dense linkage map has previously been created for this mapping

population (Vervalle et al., 2022) which segregates for various traits,

including aromatic profile. Quantification of volatile organic

compounds in this population over several seasons was

performed and genomic regions associated with these compounds

identified. Genomic regions containing multiple TPS genes were

further interrogated, and the large variety in cultivar specific TPS

copy number associated with accumulation of specific

monoterpenes characterised.
Materials and methods

Plant materials and sampling

82 progenies of the mapping population (‘Deckrot’ x G1-7720),

which is held at the Agricultural Research Council (ARC)

Nietvoorbij (Stellenbosch, South Africa, 33° 54’ 47.6’’ S, 18° 51’

54.9’’ E) were used for analysis. G1-7720 is a table grape selection

developed by the ARC and is a cross between ‘Black Rose’ and

‘Muscat Seedless’. Grape berries from the progenies and parents

were sampled at veraison (EL-stage 35) in January 2019, and at

harvest ripeness (EL-stage 38) in February 2021 and 2022. Veraison

berries from each bunch were further divided into “pre-veraison”

(berries that were still green and firm) and “veraison” (berries which

had changed colour and softened). The skin and flesh of all berries

(pre-veraison, veraison and harvest ripe) were separated.

Additionally, the parent cultivars were sampled at various early

developmental stages (EL-stages 19, 23, 26, 29, 31 and 33) between

October-December 2020. Three biological replicates were sampled

for both cultivars at each developmental stage. Flowers and berries

were removed from the rachis, and the rachis was discarded. All

plant material was frozen in liquid nitrogen, ground to a fine

powder and stored at -80°C.
Volatile organic compound analysis

Approximately 150 mg of ground frozen berry skin tissue was

weighed into a 20-mL GC vial and 2 ml tartaric acid buffer (5 g.L-1

tartaric acid, 2 g.L-1, 0.8 g.L-1 and 4.28 M NaCl; pH 3.2), containing

5 g.L-1 internal standard (3-octanol), was added to the vial.

Headspace solid phase microextraction (HS-SPME) and gas

chromatography mass spectrometry (GCMS) were performed

according to the method described in Joubert et al. (2016).
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Samples were extracted from the vial head space using a 50/30 µm

grey divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/

PDMS) fiber (Supelco, USA). The GCMS analysis was carried out

on an Agilent 7890B GC equipped with a 5977B MSD and a PAL

RSI 85 autosampler. Chromatographic separation was achieved

using a HP-5MSUI capillary column (30m x 0.25 µm x 0.25 mm).

The purge flow was 30 mL.min-1 (for 90 seconds). The oven

parameters were as follows: initial temperature of 40°C (2 min), a

linear increase to a final temperature of 250°C (at a rate of 6°C.min-

1), and the temperature was held at 250°C for a final 5 min. The MS

detector was operated in scan mode (from 35 to 350 m/z).

Agilent MassHunter Qualitative and Quantitative software

packages were used for data analysis. Volatile compounds were

identified according to their elution times and masses compared to

those of respective authentic standards. Compounds without

available authentic standards were identified by matching their

mass spectrum with the NIST (Linstrom and Mallard, 2001) mass

spectral library, in combination with Kovatz retention indices (RIs).

Relative quantification of the compounds was achieved by

normalising the peak area of each compound with the peak area

of the internal standard. Concentrations are expressed as µg of 3-

octanol equivalents per gram fresh weight.

For a-terpineol and geraniol, quantification was achieved

through external standard calibration which was done by plotting

standard curves using the internal response ratio versus the

standard concentration. The resultant concentrations in mg.L-1

were then normalised to the berry fresh weight to obtain the

concentration (in µg.g-1 FW).
QTL mapping

A total of 137 progeny of the ‘Deckrot’ x G1-7720 mapping

population have previously been genotyped with the Vitis18K SNP

chip and 92 simple sequence repeat (SSR) markers (Vervalle et al.,

2022). The genotyping data were used to construct parental linkage

maps for ‘Deckrot’ and G1-7720 with JoinMap®5 (Van Ooijen,

2006). Both maps represented all 19 linkage groups of grapevine

and contained 1910 and 2252 markers in the maternal and paternal

maps respectively. The maps displayed an average inter-locus gap

distance of 0.80 cM. The genetic maps were combined with the

metabolomic data to perform QTL analyses in MapQTL®6 (Van

Ooijen, 2009). QTL regions were first identified through interval

mapping with the maximum likelihood mixture model algorithm.

Subsequently, regions were further defined with the multiple-QTL

models (MQM) mapping. Genome-wide significant LOD

thresholds were determined with permutation tests of 1000

permutations each. All maps were drawn with MapChart v2.32

(Voorrips, 2002).
Genomic analysis of significant QTLs

The position of significant QTLs on the grapevine reference

genome (PN40024) version 2 (Jaillon et al., 2007) was determined

from the physical positions of the two neighbouring flanking
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markers. Annotated genes within each QTL were retrieved from

URGI (https://urgi.versailles.inra.fr/Species/Vitis/Annotations) and

is based on the VCost v.3 structural annotation of the 12X.2

reference genome (Jaillon et al., 2007; Canaguier et al., 2017).

Gene function was predicted via BLASTp analysis (https://

blast.ncbi.nlm.nih.gov/Blast.cgi) by querying protein sequences

against the UniProtKB/SwissProt database and selecting the top

hit for each sequence. Candidate genes were selected based on

evidence from literature and their function was further investigated

through molecular phylogeny. Phylogenetic trees were created on

“Geneious Tree Builder” 2022.0.1 (https://www.geneious.com)

using the default ‘Geneious Tree Builder” function which used the

UPGMA method with the Jukes-Cantor distance measure

algorithm and 100 bootstrapping replicates. Multiple sequence

alignments were created using the default ‘Geneoius Alignment’

setting. Candidate gene expression was compared to metabolite data

using the Transcriptomics & Metabolomics integrated database

(TransMetaDb) (Savoi et al., 2016; Savoi et al., 2017) available on

the V i t i s V i sua l i z a t i on p l a t f o rm (Vi tV i z ) (h t tp : / /

www.vitviz.tomsbiolab.com/).
TaqMan SNP genotyping assay

A custom TaqMan SNP genotyping assay (ThermoFisher

Scientific) was designed for the VvDXS1 SNP and used to

genotype the mapping population under investigation. Genomic

DNA was extracted from grape berry skins as described in Reid

et al. (2006) however the DNase treatment step was substituted with

a RNase treatment to eliminate RNA. The custom assay mix

consisted of 1X TaqMan® MasterMix (ThermoFisher Scientific),

1X Custom Assay mix which contains the custom primers and

probes (Table S1), and 1 µL (10-40 ng) of genomic DNA. Primers

and probes were designed using PrimerExpress (Singh and Pandey,

2015). The assay was performed in QuantStudio 3 Real-Time PCR

System with the following conditions: a pre-read stage for 30

seconds at 60°C, initial denaturation at 95°C for 5 minutes, 40

cycles of denaturation (95°C for 15 seconds) and annealing/

extension (60°C for 1 minute), and then a post-read stage for 30

seconds at 60°C.

Confirmation of the results from the TaqMan assay was performed

for a subset (20 progeny and the parents) of the mapping population.

VvDXS1 was isolated from gDNA via polymerase chain reaction

(PCR). The reaction mixture (25 mL) contained 0.2 mM of the

forward (5’-GTCATAGGTGATGGAGCCA-3’) and reverse (5’-

ATCTTACCTGTTCTGTCTAGC-3’) primers (Emanuelli et al.,

2014), 1 mL DNA (approximately 50 ng) and 1X GoTaq®Green

Master Mix (Promega, USA). PCR products were visualised on a 1%

agarose gel, excised and purified using Zymoclean Gel DNA recovery

kit, and subsequently sequenced via Sanger sequencing.
Analysis of gene copy number variation

Total genomic DNA was extracted from pre-veraison samples

as described in in Reid et al. (2006), and relative gene copy number
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was determined via a qPCR-based method described previously

(Ma and Chung, 2014; Bhattacharya et al., 2019). qPCR was

performed in a QuantStudio 3 Real-Time PCR System

(ThermoFisher) in a 15 µL reaction mixture which contained 1X

SYBR (Power SYBR Green, Applied Biosystems), 0.2 µM of each

primer pair, 2 µL of genomic DNA (approximately 90 ng) and

nuclease-free water. Reactions were repeated in technical triplicate

for each gene-sample combination, making use of VvActin primers

to normalise for the amount of genomic DNA assayed in each

sample and either VvGer or VvTer gene specific primers for

amplification of the respective gene copies (for primer sequences

see Table S2). The PCR conditions were: initial denaturation step at

95°C for 3 minutes, 40 cycles (95°C for 3 seconds and 60°C for 20

seconds), and melt curve analysis from 60 to 95°C. Relative gene

copy number was determined with the 2−DDCt method (Ma and

Chung, 2014), making use of the QuantStudio Design and Analysis

Desktop Software package (v1.5.1) from Applied Biosystems for

processing relative copy number and 95% confidence intervals. All

gene copy numbers are reported relative to the gene copies present

in the ‘Deckrot’ cultivar.

Correlation analysis, Pearson’s correlation (R) and Spearman’s

rank correlation (r), between expression, copy number and

metabolite data was performed with XLStat (version 20213.1)

add-on for Excel (Addinsoft, 2023).
Gene expression quantification

Total RNA was extracted from pre-veraison samples using the

Spectrum™ Plant Total RNA Kit (Sigma-Aldrich) with the removal

of genomic DNA via on-column DNase digestion using the On-

Column DNase I Digestion Set (Sigma-Aldrich) according to the

manufacturer’s instructions. 1 µg of RNA was converted to cDNA

using the GoScript™ Reverse Transcription mix, Oligo

(dT) (Promega).

The relative expression of genes was measured via qPCR using

primers from literature or newly designed primers (Table S2) with

VvActin used as an endogenous control. qPCR was performed as

described for gene copy number variation analysis above. Gene

expression data for the progeny is reported relative to the individual

with the lowest expression, while gene expression data for the

parents’ developmental stages are reported relative to gene

expression in ‘Deckrot’ green berry stage (EL-stage 33).
Gene isolation, transformation, sequencing

Genes were isolated from cDNA samples via polymerase chain

reaction (PCR) using primers listed in Table S2. The PCR mixture

(25 mL) contained 0.2 mM of the forward primer and reverse

primers, 5 mL cDNA (1:10 dilution), 1X ExTaq Buffer and 1U

ExTaq polymerase (Takara). The reaction was performed in an

Applied Biosystems™ MiniAmp thermal cycler (ThermoFisher

Scientific) and conditions were as follows: initial denaturation at

95°C for 3 minutes, then 40 cycles (95°C for 30 seconds, 55°C for 30

seconds, 72°C for 2 minutes) and a final elongation step at 72°C for
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7 minutes. PCR products were purified using Zymoclean Gel DNA

Recovery Kit (Zymo Research) as per the manufacturer’s protocol.

PCR products were ligated into pGEM® T-Easy Vector System

(Promega) overnight at 4°C. Ligated vectors were subsequently

transformed into competent DH5a E. coli cells via heat-shock.

Transformed cells were plated on LB agar containing ampicillin and

after overnight incubation at 37°C, colonies were screened via PCR

using M13 primers. Plasmids were isolated from positive colonies

using GenElute™ Plasmid Miniprep Kit (Sigma-Aldrich), as per the

manufacturer’s protocol. Sanger sequencing was performed by the

Central Analytical Facilities at Stellenbosch University

(Stellenbosch, South Africa).
Results

The parents of the cross population differ
for terpene accumulation

68 different volatile compounds were identified from the GCMS

analysis: six alcohols, three ketones, ten aldehydes, two esters, four

C13-norisoprenoids, 18 monoterpenes and 25 sesquiterpenes

(Table S3). The volatile profiles of the parent cultivars were

compared (Figure 1) and show clear segregation. Overall, the

table grape selection, G1-7720, which is categorised as having a

muscat aroma (Vervalle et al., 2022), has a higher volatile content

regardless of developmental stage. While, the terpene content of

both parents is highest at veraison, G1-7720 has a significant

increase in sesquiterpene content from pre-veraison to veraison

berries. G1-7720 shows significantly higher terpene levels than that

of ‘Deckrot’. Aldehydes and alcohols also make up a major

proportion of the volatile composition of each cultivar,
FIGURE 1

The volatile composition of the parent cultivars ‘Deckrot’ and G1-
7720 during pre-veraison, veraison and harvest ripe stage.
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specifically ‘Deckrot’, with hexanal, trans-2-hexenal and (E)-3-

hexen-1-ol being the most significant contributors.

The distribution of the various volatile compound classes in the

progeny is shown in Figure S1. Aldehydes are the most abundant

compound class in the population; the average ratio of total

aldehydes to total VOCs ranges between 34-47% across the

various developmental stages. Trans-2-hexenal (an aldehyde) is

the most abundant compound in the population. In fact, all six-

carbon volatiles, also known as green leaf volatiles (GLVs), are

among the most abundant VOCs within the population in all

development stages. Sesquiterpenes are the most diverse class of

compounds identified (26 compounds) in this study however they

are present in low concentrations during most years, with the

highest concentrations found in unripe veraison berries.
Candidate genes for were identified in
several genomic regions associated with
volatile organic compounds

186 Significant QTLs were identified associated with 54

compounds across the various seasons under analysis (Table S4).

Consistent QTLs which were identified in at least two stages were

mapped to the PN40024 v2 genome and annotated genes in each

region were counted and inspected manually for their potential to

regulate the associated metabolic phenotypes. QTLs associated with

various monoterpenes were identified on chromosomes 5, 12, 13

and 17, while a QTL associated with the sesquiterpenes trans-

caryophyllene and a-cubebene was identified on chromosome 19

and a QTL for total aldehydes and trans-2-hexenal was identified on

chromosome 2 (Figure 2). Inspection of these genomic regions

identified an average of 370 candidate genes in each QTL (Table 1).

A QTL on chromosome 2 associated with both total aldehydes

and trans-2-hexenal and contained 335 genes. A Stearoyl-[acyl-

carrier-protein] 9-desaturase 6 (SAD) was identified as candidate

gene from this region. The Vitis vinifera SAD (VvSAD) was

compared to other functionally characterised SAD enzymes from

various species (Figure S2 and Table S5) to infer function.

Three geraniol derived compounds, namely cis-rose oxide, (E)-

citral and nerol oxide associated with a QTL on chromosome 17.

The enzymes involved in conversion of geraniol to cis-rose oxide,

(E)-citral and nerol oxide are not described in grapevine however

the reaction likely starts with the reduction of geraniol by an

unknown reductase (Lin et al., 2019). To that end five short-chain

dehydrogenase/reductases (VvSDR1-5) which co-localises with this

QTL were selected as candidate genes. Comparison of VvSDR1-5

expression to metabolite data using TransMetaDb showed that

VvSDR4 and VvSDR5 had strong positive correlation with

citronellol accumulation (R = 0.71 and 0.70, respectively), while

VvSDR1 had a negative correlation (R = -0.54) with citronellol.

Additionally, VvSDR3 had a negative correlation (R = -0.62) with

nerol. Molecular phylogenetic analysis of the protein sequences of

the identified VvSDRs were compared to that of other plant SDRs

(Figure S3 and Table S5), and it was found that the VvSDRs cluster

with three nepetalactol synthases which catalyse the conversion of

8-oxogeranial to nepetalactol in catmint (Lichman et al., 2019).
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While total sesquiterpenes did not produce any significant

QTLs, the sesquiterpenes a-cubebene and trans-caryophyllene

associated with a QTL on chromosome 19. This QTL co-localises

with two predicted sesquiterpene synthases (VvTPS29 and

VvTPS69), however VvTPS69 represented a partial gene and was

thus not considered a candidate.

The QTLs associated with monoterpenes predominantly

localised to chromosomes 5, 12 and 13. The majority of

monoterpenes associated with a QTL region on chromosome 5

which co-localises with VvDXS1. Similarly, total monoterpenes and

total C13-norisoprenoids, localised to the same region on

chromosome 5. While the C13-norisoprenoid 6-Methyl-5-hepten-

2-one (MHO) also showed a QTL on the same region on

chromosome 5.

The acyclic monoterpenes geraniol and b-myrcene associated

with an additional QTL on chromosome 12 while several cyclic

monoterpenes associated with an additional QTL on chromosome

13. Genomic inspection of these QTLs found that they co-localise

with clusters of terpene synthases (TPSs). When compared to the

PN42004 v2 reference genome the QTL on chromosome 12 was

found to co-localise with a cluster of eight TPS genes, while the

QTL on chromosome 13 was found to co-localise with a TPS

cluster that contains 11 terpene synthases (summarised in

Table S6).

A phylogenetic tree comparing the VvTPSs in these QTL

regions to functionally characterised Vitis vinifera TPSs is shown

in Figure 3. VvTPS52 and VvTPS51 fall within a cluster with

functionally characterised geraniol synthases (TPS-g), indeed

VvTPS52 is the PN40024 gene model for geraniol synthase

(VvGer) (Martin et al., 2010) and therefore VvTPS52/VvGer was

selected as candidate gene for the QTL associated with geraniol in

this mapping population. VvTPS39, VvTPS119 and VvTPS116

cluster with VvTer1 and VvTer2, a-terpineol synthases in the

TPS-a clade, however, VvTPS119 and VvTPS16 represent

pseudogenes (disrupted by numerous deletions, frameshifts and/

or stop codons) in the PN40024 v2 genome. VvTPS39/VvTer was

therefore considered the likely candidate gene underpinning the

QTL region. Lastly, VvTPS29 clusters with trans-caryophyllene

synthases (VviSHTPS27, VviMATPS27 and VvGwECar2) and a

germacrene D synthase (VvGerD) in the TPS-a clade.
A SNP in VvDXS1 is associated with
monoterpene accumulation

DNA sequencing of the VvDXS1 alleles revealed that while

‘Deckrot’ was homozygous (GG) for the wild-type allele, G1-7720

was heterozygous (GT) for the muscat aroma linked SNP (Doligez

et al., 2006; Battilana et al., 2009; Emanuelli et al., 2010). A TaqMan

assay was used to ascertain how the mapping population under

investigation segregates for the G>T SNP. Results show that of the

82 progenies genotyped, 50 were heterozygous (GT) and 32 were

homozygous (GG) (Table S7). Comparison of the total

monoterpene content in the progeny with the occurrence of the

G>T SNP found that GG-progeny displayed relatively low
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monoterpene accumulation, while GT-progeny displayed relatively

increased monoterpene accumulation levels, with a continuous

variation in distribution (Figure 4). Orthogonal partial least

squares (OPLS) analysis of the full volatile dataset across the

population and VvDXS1 genotypes show that the population

clearly segregates for the SNP (Figure S4). The population

segregate for the SNP across principal component 1 (PC1) which

explains 27.1% of the variation.
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Expression of VvTer shows correlation with
cyclic monoterpene accumulation

VvTer and VvGer gene expression was quantified during the late

flower and early berry development in ‘Deckrot’ and G1-7720

(Figure 5). VvGer showed the highest level of expression in young

flowers for both parents, while geraniol content only peaked in the

following stage. VvTer expression was highest after fruit-set
FIGURE 2

Linkage maps with associated QTLs. The chromosome number is indicated above each map and all QTLs are numbered a – q. The associated
compounds for each QTL are listed. a) aldehydes total (veraison 2019) and trans-2-hexenal (veraison 2019). b) aldehydes total (2022) and trans-2-
hexenal (2022). c) E-citral (veraison & 2021), b-citronellol (pre-veraison & 2022), cis-rose oxide (veraison, 2021 & 2022), geraniol (2022), limonene
(2022), linalool (2022), total monoterpenes (2022), nerol oxide (veraison), p-mentha-1,5-dien-8-ol (veraison & 2021), trans-b-Ocimene (2022), a-
terpinene (2022), a-terpineol (2022), a-terpinolene (2022), b-Myrcene (2022), g-Terpinene (2022), p-Cymene (2022). d) 6-Methyl-5-hepten-2-one
(pre-veraison, veraison, 2021), cis-rose oxide (pre-veraison), linalool (pre-veraison), p-Cymene (pre-veraison & veraison), p-mentha-1,5-dien-8-ol
(pre-veraison), trans-b-Ocimene (pre-veraison & veraison), a-terpinene (veraison), g-Terpinene (pre-veraison & veraison). e) b-Citronellol/Nerol (pre-
veraison & 2021), C13-norisoprenoids total (veraison & 2021), geraniol (pre-veraison, veraison & 2021), limonene (pre-veraison, veraison & 2021),
linalool (2021), linalool oxide (pre-veraison, veraison & 2021), monoterpenes total (pre-veraison, veraison & 2021), nerol oxide (pre-veraison &
veraison), p-Cymene (2021), Terpinene-4-ol (pre-veraison, veraison & 2021), trans-b-Ocimene (2021), a-terpinene (veraison & 2021), a-Terpineol
(pre-veraison, veraison & 2021), a-terpinolene (pre-veraison, veraison & 2021), b-Myrcene (pre-veraison, veraison & 2021), g-Terpinene (2021).
f) Geraniol (pre-veraison) & b-Myrcene (pre-veraison). g) Geraniol (veraison) & b-Myrcene (veraison). h) a-Terpineol (veraison) & a-terpinolene
(veraison). (I) Terpinene-4-ol (2021). j) 1,8-Cineole (pre-veraison & veraison), limonene (veraison), nerol oxide (veraison), p-Cymene (veraison &
2021), p-mentha-1,5-dien-8-ol (pre-veraison & veraison), Terpinene-4-ol (pre-veraison & veraison), a-terpinene (pre-veraison & veraison), g-
Terpinene (pre-veraison). k) limonene (pre-veraison), a-terpinene (2021), g-Terpinene (veraison). l) p-Cymene (pre-veraison), p-mentha-1,5-dien-8-
ol (2021), a-terpinolene (pre-veraison). m) cis-rose oxide (2021) & nerol oxide (veraison). n) nerol oxide (pre-veraison). o) cis-rose oxide (veraison).
p) E-citral (2021) & cis-rose oxide (pre-veraison). q) a-Cubebene (pre-veraison & veraison) & trans-caryophyllene (pre-veraison and veraison).
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(EL-29), while a-terpineol concentration peaked earlier in the

flowering stages. Both VvTer and VvGer expression, as well as a-
terpineol and geraniol concentration, d-ecrease towards later berry

development and is lowest in green berries (EL-33). Furthermore,

a-terpineol and geraniol concentration is significantly higher in G1-
Frontiers in Plant Science 07
7720 than ‘Deckrot’, irrespective of developmental stage or gene

expression (Figure 5).

The expression of VvTer and VvGer was measured in a subset of

the progeny to determine whether gene expression correlates with

cyclic monoterpene or geraniol accumulation, respectively. The

expression was measured in progenies with the VvDXS1 SNP

(GT) and without the VvDXS1 SNP (GG). Linear regression

analysis showed weak correlations between VvTer expression and

cyclic monoterpene accumulation and between VvGer expression

and geraniol accumulation (Figure S5). However, in progeny

possessing the VvDXS1 SNP, VvTer gene expression and cyclic

monoterpene content showed relatively strong correlation (R =

0.78, p < 0.0001), indicating a positive linear relationship between

VvTer expression and cyclic monoterpene accumulation (Figure 6).
Multiple VvTer and VvGer gene copies
were isolated from ‘Deckrot’ and G1-7720

Multiple cDNA clones of VvTer and VvGer from both ‘Deckrot’

and G1-7720 were sequenced in order to identify potential sequence

variants. Using single primer pairs for each gene several unique

expressed VvTer and VvGer gene copies were isolated from each

parent cultivar (Table 2 and Figure S6). The nucleotide sequences of

all gene copies were compared to functionally characterised terpene

synthases in Vitis vinifera via molecular phylogeny (Table S8 and

Figure 7). Regardless of cultivar, all VvTer sequences fall within the

TPS-b family cluster while VvGer falls within the TPS-g subfamily.
FIGURE 3

Phylogenetic tree of functionally characterised V. vinifera TPSs and
VvTPSs identified in QTLs of interest from this study. The tree is
coloured according to TPS-subfamilies: TPS-a subfamily is in red,
TPS-b is orange and TPS-g subfamily is blue. Candidate genes are
shown in bold typeface.
TABLE 1 List of candidate genes for significant QTLs associated with VOCs.

Linkage
group Compounds

12xV2
position
(bp)a

Number of
genes

Candidate
gene

Accession
number

Function (based on UniProt/
SwissProt hit)

chr02
Total aldehydes
Trans-2-hexenal

9086122 -
15054521

335 VvSAD Vitvi02g01527
Stearoyl-[acyl-carrier-protein] 9-

desaturase 6 (SAD)

chr05

Several monoterpenes
b

Total monoterpenes
Geranyl acetone

6-Methyl-5-hepten-2-
one

Total C13-
norisoprenoids

2217503 -
4373666

214 VvDXS1 Vitvi05g00372
1-deoxy-D-xylulose-5-phosphate synthase

(DXS)

chr12
Geraniol and b-

myrcene
7725827-
9589001

225 VvTPS52/VvGer Vitvi12g02178 Geraniol terpene synthase

chr13
Several cyclic
monoterpenes c

18786002-
21772519

201 VvTPS39/VvTer Vitvi13g01307 a-terpineol synthase

chr17
Cis rose-oxide
Nerol oxide
E-citral

5844409 -
8181258

262

VvSDR1
VvSDR2
VvSDR3
VvSDR4
VvSDR5

Vitvi17g00538
Vitvi17g00537
Vitvi17g00534
Vitvi17g00535
Vitvi17g01453

Short chain dehydrogenase/reductase
(SDR)

chr19
Trans-Caryophyllene

a-Cubebene
8950369-
20638362

984 VvTPS29 Vitvi19g00956 Germacrene D synthase
aThese positions provide a consensus region for overlapping QTLs on the same chromosome. Table S4 shows the exact position of each compounds’ associated QTL.
ba-terpinene, p-Cymene, trans-b-Ocimene, g-Terpinene, Linalool Oxide, a-terpinolene, Linalool, cis-Rose oxide, Terpinene-4-ol, a-Terpineol, Geraniol, Limonene, b-Citronellol/Nerol,
(E)-Citral, b-myrcene.
ca-terpinene, p-Cymene, 1,8-Cineole, g-Terpinene, a-terpinolene, Terpinene-4-ol, a-Terpineol.
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Interestingly, ‘Deckrot’ VvTer genes (DRTer) and G1-7720 VvTer

genes (G1Ter) form two distinct clusters. Furthermore, VvGer gene

copies from ‘Deckrot’ and G1-7720 share sequence similarity with

functionally characterised V. vinifera geraniol synthases (VvGer,

VvGwGer and VvPNGer), respectively. DRTer gene copies are

similar to functionally characterised a-terpineol synthases (VvTer1

and VvTer2), while G1Ter gene copies share sequence similarity with

an (E)-b-ocimene/myrcene synthase (VvCSbOciM). VvTer1, VvTer2

and VvCSbOciM are described as TPS39 genes with VvTer1 and

VvTer2 being isolated from ‘Gewürtztraminer’, while VvCSbOciMwas

isolated from Cabernet Sauvignon (Martin and Bohlmann, 2004;

Martin et al., 2010).
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Copy number of VvTer is correlated with
cyclic monoterpene content

The relative copy numbers of VvTer and VvGer were

determined for 82 progenies of the mapping population, as well

as the parents (Table S9). Both VvTer and VvGer copy numbers

were higher in G1-7720 than in ‘Deckrot’; VvGer had a 10:19 ratio

for ‘Deckrot’:G1-7720 while VvTer had a 5:12 ratio. Gene copy

number in the population were expressed as relative to ‘Deckrot’

gene copies, such that VvTer copy number ranges between 0.7-2.8

relative copies, while VvGer ranges between 1 – 2.1 relative copies.

Additionally, a few individuals from the progeny were outliers.
A

B

FIGURE 4

The total monoterpene content in the mapping progeny at (A) pre-veraison and (B) veraison. Each bar represents a member of the progeny, and the
parents are shown in yellow. The bars are grouped into absence/presence of the VvDXS1 SNP.
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TABLE 2 The number of unique VvTer and VvGer cDNA clones that were identified for ‘Deckrot’ and G1-7720.

Parent cultivar Gene of interest cDNA clones sequenced unique cDNA sequences Putatively functional

‘Deckrot’
VvTer 16 14 10

VvGer 16 14 12

G1-7720
VvTer 14 12 9

VvGer 23 18 15
F
rontiers in Plant Science
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A B

FIGURE 6

(A) VvTer expression compared to cyclic monoterpene content and (B) VvGer expression compared to geraniol content. Gene expression analysis
and volatile quantification was done using pre-veraison berry skins. Circles represent progeny with the VvDXS1 SNP (GT), triangles represent the
parents 'Deckrot' (empty) and G1-7720 (filled).
A B

FIGURE 5

The expression of (A) VvGer and (B) VvTer in the parental cultivars, ‘Deckrot’ and G1-7720, during early berry development. The a-terpineol and
geraniol concentrations at each stage is shown (values on right-side y-axis). n = 3; error bars represent standard error.
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VvGer had the most outliers (6 progenies) with copy numbers up to

12.8 times higher than that observed for ‘Deckrot’.

Spearman’s rank correlation (r) analysis found VvTer copy

number possessed a strong correlation with VvTer expression (r =

0.748), but VvGer copy number and expression had weak correlation

(r = 0.189). The geraniol and total cyclic monoterpene content was

binned into three categories: low, moderate and high (Figure 8A).

VvGer copy number shows no discernible pattern between geraniol

content and copy number, while total cyclic monoterpene content

seems to show a positive correlation with VvTer copy number. The

correlation between gene copy number and several monoterpenes was

investigated in the progeny (Figure 8B). There was no correlation

between VvGer copy number and any monoterpenes in the progeny,

regardless of the presence of the VvDXS1 SNP. However, VvTer

showed different degrees of correlation with cyclic monoterpenes

depending on the presence of the VvDXS1 SNP. Progeny which did

not have the G>T VvDXS1 SNP (GG) showed weak correlation (-0.1<

r < 0.1) between VvTer copy number and cyclic monoterpenes, while

in progeny with the VvDXS1 SNP (GT) there was a strong positive

correlation (r > 0.6).
Heterozygous distribution of terpene
synthases observed in a diploid Vitis
vinifera genome

Analysis of the draft diploid genome of Cabernet Sauvignon

identified 29 putative a-terpineol synthase (VvCSTer) loci, and nine
putative geraniol synthase (VvCSGer) loci (Table S10). The majority

of a-terpineol synthases were localised to chromosome 13 while

geraniol synthases predominantly localised to chromosome 12, and
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the remaining genes were unplaced (Table S10). The nucleotide

coding sequences of VvCSTer genes had a pairwise identity of 90.8%

and VvCSGer genes shared 98.2% pairwise identity. Furthermore,

the loci appeared in clusters on the chromosomes, with adjacent

genes in clusters being less than 100 kb apart (Figure 9). Haplotype

2 of chromosome 13 has three separate VvCSTer clusters which are

approximately 1 Mb apart. The high similarity as well as proximity

of these genes indicate an extensive level of tandem gene

duplication, particularly for VvCSTer genes.

11 of the 29 predicted Cabernet Sauvignon a-terpineol synthase
loci encode for putatively functional enzymes, while 4 of the 9

geraniol synthase loci encode for putatively functional enzymes. A

phylogenetic tree (Figure S7) was constructed to compare the

putatively functional Cabernet Sauvignon a-terpineol and

geraniol synthases with functionally characterised Vitis vinifera

terpene synthases. All putatively functional VvCSGer proteins fall

within the TPS-g cluster while VvCSTer proteins fall within the

TPS-b cluster.
Discussion

Elucidation of the genetics underlying the
VOC profile of the mapping population

Studies analysing volatile accumulation showmixed results with

regards to the accumulation pattern of different VOC classes

(Ferrandino et al., 2012; Vilanova et al., 2012; JI et al., 2021; Liu

et al., 2022), and it is therefore challenging to compare the

metabolite data observed here with previous studies. Importantly,

however, the genetic control of VOC accumulation was evident

through the observed segregation of compound accumulation in the

population under study, and the subsequent associated QTLs that

were identified. The significant QTL on chromosome 5 associated

with total monoterpene content, houses the well described VvDXS1

gene (Doligez et al., 2006; Battilana et al., 2009; Emanuelli et al.,

2010). In the population under investigation here we show that the

SNP contributing to high terpene level and a “muscat like aroma” is

derived from G1-7720, the aromatic parent. Importantly this SNP

was found to be a prerequisite for high monoterpene levels in the

progeny, but not an absolute indicator (Figures 4, S4). This is likely

due to the multigenic nature of terpene formation, further

highlighted by the various other QTLs identified in this study and

others (Doligez et al., 2006; Battilana et al., 2009; O’Reilly-Wapstra

et al., 2011; Yu et al., 2017; Reichardt et al., 2020; Barbey et al.,

2021). Importantly, accumulation of the plastid derived C13-

norisoprenoids also associated with this SNP, while the cytosolic

derived sesquiterpenes did not. This suggests that, at least in the

case of this grapevine population, there is limited isoprenoid

crosstalk from plastid to cytosol (Gutensohn et al., 2013).

While the VvDXS1 SNP can be considered a master regulator of

monoterpene accumulation, candidate genes which co-localise with

QTLs for geraniol, cyclic monoterpenes and sesquiterpenes were

also identified in this study. Geraniol shows a QTL on chromosome

12 which co-localised with a cluster of eight terpene synthase genes.

VvTPS52, one of the eight VvTPSs in this region, was predicted to
FIGURE 7

Phylogenetic tree (nucleotide sequences of coding regions) of
‘Deckrot’ and G1-7720’s VvTer and VvGer gene copies compared to
functionally characterised V. vinifera terpene synthase genes.
Clusters are coloured according to which TPS-subfamily the genes
fall under. “G1” and “DR” indicate cultivar origin of isolated gene (G1-
7720 and ‘Deckrot’, respectively).
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function as a geraniol synthase (VvGer) and has indeed been

previously functionally characterised as a geraniol synthase in

various other cultivars (Martin et al., 2010). Several cyclic

monoterpenes showed overlapping associated QTLs on

chromosome 13. These QTLs co-localise with a cluster of terpene

synthase genes containing putative a-terpineol synthases. VvTPS39
Frontiers in Plant Science 11
was proposed as candidate gene for this QTL as it was the closest

related gene that was not a predicted pseudogene and has been

characterised as an a-terpineol synthase (VvTer) via in vitro

enzyme assay in ‘Gewurztraminer’ (Martin and Bohlmann, 2004).

Interestingly, the authors found that VvTPS39 produced a-
terpineol, 1,8-cineole and b-pinene as major products and various
A

B

FIGURE 8

(A) The copy number of VvGer (i) and VvTer (ii) in progenies with the VvDXS1 SNP. Progenies were binned for low (blue), moderate (yellow) and high (red)
geraniol (i) or total cyclic monoterpene (ii) content. n = 3; error bars represent standard error. (B) Spearman’s correlation between relative gene copy number
(VvGer and VvTer) and monoterpenes. Correlation between gene copy number and monoterpenes were analysed separately for progeny with the VvDXS1
SNP (GT) and without the SNP (GG). Correlation values in boldface were statistically significant; p < 0.001.
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minor product including a-thujene, a-pinene, myrcene, sabinene,

b-pinene, limonene, and terpinolene. The multi-product nature of

terpene synthases may explain why this study found multiple cyclic

monoterpenes mapping to the same region on chromosome 13. It is

likely that VvTer (and possibly some of the other VvTPSs that

clustered in the same region) produce cyclic monoterpenes in

varying ratios, with a-terpineol being the major product.

The sesquiterpenes a-cubebene and trans-caryophyllene,

associated with a large QTL (approximately 11.65 Mbp) on

chrosomome 19. VvTPS29 was proposed as a candidate gene and

this was further supported by molecular phylogenetic evidence.

VvTPS29 showed to be closely related to functionally characterised

trans-caryophyllene synthases and a germacrene D synthase
Frontiers in Plant Science 12
(Figure 3). Additionally, an isocaryophyllene/b-cadinene synthase

(VvShirazTPS-Y2) which shares 100% similarity with VvTPS29 has

been characterised in ‘Shiraz’ (Dueholm et al., 2019).

Non-terpene VOCs were also found to associate with QTLs in

this study. C6-compounds or green leaf volatiles (GLVs) were the

most abundant VOCs present in the progeny at all developmental

stages, as has been reported in other studies (Kalua and Boss, 2009;

Vilanova et al., 2012). A QTL associated with trans-2-hexenal and

total aldehydes was identified on chromosome 2 and co-localised

with a Stearoyl-[acyl-carrier-protein] 9-desaturase 6 (SAD). SAD

catalyses the conversion of stearoyl-ACP to oleoyl-ACP which

serves as a precursor for the fatty acids a-linolenic acid and

linoleic acid. a-linolenic acid and linoleic acid in turn can be
A

B

D

C

FIGURE 9

The position of predicted ‘Cabernet Sauvignon’ VvTer and VvGer genes on chromosome 13 (A, B) and chromosome 12 (C, D), respectively. Black
blocks indicate the position of the predicted VvTer or VvGer clusters on the chromosomes, and squares underneath provide a magnified view of the
region. Green arrows represent predicted genes as annotated in Massonnet et al. (2020), while red lines indicate the position of BLAST hits for VvTer
or VvGer.
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broken down to form green leaf volatiles which are synthesised via

the lipoxygenase (LOX) pathway (Matsui and Engelberth, 2022).

GLVs are rapidly released upon plant wounding which is thought to

play a role in plant signalling and defence (Matsui, 2006;

Bouwmeester et al., 2019; Matsui and Engelberth, 2022). C6-

aldehydes and -alcohols contribute to the undesirable “green

aroma” of wine (Dunlevy et al. , 2009), and therefore

understanding their metabolism may contribute to improved

wine aroma.

A QTL associated with cis-rose oxide, E-citral and nerol oxide

was identified in the same region on chromosome 17. A cluster of

five short chain dehydrogenase/reductases which co-localised with

the QTL were selected as candidate genes. All three of the

compounds are derived from geraniol, however importantly

geranio l d id not assoc ia te wi th this QTL. Geranio l

dehydrogenases which catalyse the formation of citral and

citronellol have been identified in several plant species but not in

grapevine (Iijima et al., 2006; Sato-Masumoto and Ito, 2014; Xu

et al., 2017). Lin et al. (2019) summarises a proposed pathway for

citronellol, nerol and cis-rose oxide in grapevine but to date none of

the proposed enzymes in the pathway have been identified and

characterised. Further characterisation of the VvSDRs identified in

this QTL may therefore prove promising in elucidating the

biosynthesis of these compounds.
Investigation of the VvTer and VvGer loci
highlights extensive gene duplication

In an attempt to isolate the monoterpene synthase genes

underlying the QTLs associated with geraniol and cyclic

monoterpene accumulation it was discovered that there were

more gene copies than represented in the reference genome.

Furthermore, as the genes isolated represent cDNA clones, the

number of gene copies shown in Table 2 is not exhaustive

representation of all the possible VvTer and VvGer copies.

Importantly, phylogenetic analysis of the sequenced ‘Deckrot’ and

G1-7720 VvTer and VvGer gene copies found strong cultivar

specific clustering, indicating this gene duplication has occurred

post cultivar diversification.

Due to the somewhat surprising nature of observed VvTPS gene

duplication in the cultivars in this study an in silico analysis of

VvTer and VvGer in the diploid ‘Cabernet Sauvignon’ genome was

performed. This analysis confirmed massive gene duplication and

revealed that both genes occur in tandem duplications on

chromosome 13 and chromosome 12, respectively. VvTer had the

most extensive duplications with 29 copies on the ‘Cabernet

Sauvignon’ genome. Analysis of the draft diploid genome further

indicated that VvTer genes were unequally distributed between the

two haplotypes of chromosome 13. VvGer genes also occurred

unequally distributed on the haplotypes of chromosome 12. The

distribution VvTer and VvGer loci were uneven on the two

haplotypes of chromosomes 12 and 13, revealing a high level of

hemizygosity. Furthermore, due to the high sequence similarity

between these genes, it is difficult to predict which loci are allelic and

which are hemizygous.
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Further study is necessary to ascertain the function of the VvTPS

candidate genes in this mapping population. High levels of gene

duplication contribute to the diverse functions of TPSs through

neofunctionalisation and sub-functionalisation (Tholl, 2015).

Furthermore, the function of TPSs can be changed by small amino

acid substitutions which alter the active site conformation and further

contributes to the diverse functions of TPSs (Degenhardt et al., 2009;

Karunanithi and Zerbe, 2019) and this has also been shown by the

presence of cultivar-specific TPSs in grapevine (Martin et al., 2010;

Drew et al., 2016; Smit et al., 2019) therefore it remains a challenge to

predict the function of VvTPSs based on sequence similarity to

functionally characterised genes alone.
VvTer gene copy number and
expression correlate with cyclic
monoterpene accumulation

The pattern of VvGer and VvTer expression was similar in both

parent cultivars during berry development, but the expression

patterns did not correspond with the accumulation of a-terpineol
or geraniol. Previous studies have shown that VvTPS developmental

expression patterns do not always match the accumulation patterns

of their associated metabolites (Martin et al., 2012; Matarese et al.,

2013; Matarese et al., 2014). Furthermore, only the volatile fractions

of geraniol and a-terpineol were quantified in this study, while

monoterpenes are also present in non-volatile glycosylated forms in

grapevine (Dunlevy et al., 2009; Hjelmeland and Ebeler, 2015).

However, the expression of VvTer across the mapping

population correlated with several cyclic monoterpenes,

specifically in progeny containing the VvDXS1 SNP. The high

similarity between VvTer paralogs potentially skews qPCR data as

the primers have the potential to bind to more than one VvTer gene

locus. This fact together with the VvTPS gene duplication data

described above led to investigation of the VvTer gene copy

number. Importantly, the parent cultivars under investigation

showed unequal VvTer gene copy number, with G1-7720 showing

2.4-fold greater number of copies of VvTer than ‘Deckrot’. Relative

VvTer gene copy number showed a positive correlation with the

accumulation of several individual cyclic monoterpenes as well as

total cyclic monoterpenes. The correlation of VvTer gene expression

with multiple monoterpenes is in agreement with the fact that this

gene cluster co-localises with the QTL for cyclic monoterpenes.

Furthermore, VvTer is potentially a multi-product forming enzyme

similar to other terpene synthases (Martin et al., 2010; Karunanithi

and Zerbe, 2019), and potentially forms several structurally related

monoterpene compounds, such as cyclic monoterpenes.

Hypotheses for the correlation ofVvTer copy number and cyclic

monoterpene accumulation are somewhat more speculative and are

detailed in the following sections. The first hypothesis is that VvTer

copy number may cause a dosage effect, i.e. the more copies of the

gene, the more transcripts produced, and the more enzyme

translated. This is supported by the strong correlation between

VvTer expression and copy number. However, dosage does not

explain why some low copy number individuals have high levels of

cyclic monoterpenes and vice versa (Figure 8).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1112214
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bosman et al. 10.3389/fpls.2023.1112214
Another possible explanation is that a “hyper-functional” gene/

genetic element co-localises with the high copy number allele

(Figure 10). “Hyper-functional” is defined as any sequence

variation which significantly improves cyclic monoterpene

synthase enzyme activity, resulting in increased cyclic

monoterpene biosynthesis. In Figure 10 we assume that ‘‘Deckrot’

has 5 copies of VvTer (3 copies on allele A and 2 copies on allele B)

and G1-7720 has 12 copies (8 copies on allele A and 4 copies on

allele B) as this fulfils the 5:12 (‘Deckrot’:G1-7720) ratio of VvTer

copy number in the parents. It is important to note that while the

exact gene copy numbers cannot be determined, sequencing of

cDNA clones suggests a relatively high VvTer copy number.

Furthermore, the fact that the progeny typically presented a

higher copy number than ‘Deckrot’, and a lower copy number

than G1-7720, indicate that both alleles for G1-7720 have a higher

copy number than the ‘Deckrot’ alleles.

In this hypothesis the progeny has an equal chance of

inheriting one allele from each parent in four potential

different combinations. If a hyper-functional gene/genetic

element co-localizes with the high copy number allele, all

individuals that inherited the high copy number allele will
Frontiers in Plant Science 14
have high cyclic monoterpene levels. Therefore, individuals

with a high copy number do not have higher levels of cyclic

terpenes due to additive effects but due to the co-segregation of

high copy number and a “gain-of-function” gene/genetic

element. The high level of hemizygosity of VvTer genes in the

‘Cabernet Sauvignon’ genome, as well as the large discrepancy

between VvTer copy numbers of ‘Deckrot’ and G1-7720 (G1-

7720 has 2.4 times as many VvTer copies as ‘Deckrot’) support

this theory. While the exact distribution of VvTer loci in the

parent cultivars are unknown, it is safe to assume that both also

have high hemizygosity which results in them having either a

“high copy number” or “low copy number” allele.

This hypothesis also explains why some individuals have a low

copy number but high cyclic monoterpene level. If the hyper-

functional element is transferred to a “low copy number” allele

during a recombination event, some low copy number individuals

will have high cyclic monoterpene levels. Recombination events at a

specific locus are rare and would thus only affect a few individuals in

the population (Choi, 2017). Furthermore, this hypothesis explains

why there is no correlation between VvGer copy number and

geraniol levels. The difference in VvGer copy numbers between
FIGURE 10

A diagram to explain the correlation between VvTer copy number and cyclic monoterpene accumulation. VvTer genes are represented by shaded
blocks and the “hyper-functional” gene is shown in red. The “hyper-functional” gene falls on the parent allele with the highest copy number and is
the causal factor for higher cyclic monoterpene content in this parent. The progeny from ‘Deckrot’ x G1-7720 have an equal chance having one of
four possible VvTer copies: 6, 7, 10 or 11. Progenies with 6 or 7 copies would be considered “low copy number” individuals and would not inherit the
“hyper-functional” gene resulting in lower/normal accumulation of cyclic monoterpenes. Progenies with 10 or 11 copies would be considered “high
copy number individuals” and will inherit the “hyper-functional” gene resulting in higher cyclic monoterpene accumulation.
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G1-7720 and ‘Deckrot’ is less prominent, therefore making

differentiation between “high copy number” and “low copy

number” alleles difficult. The “hyper-functional” element of

VvGer thus co-segregates with high copy number similarly to

VvTer, but the difference between high and low copy number is

too small to make any significant distinction and no correlation

is observed.
Conclusion

During berry development VvGer and VvTer gene expression

patterns did not align with the accumulation patterns of geraniol

and a-terpineol, respectively, indicating that terpene synthase gene
expression cannot solely be used to infer gene function.

Furthermore, the extensively duplicated nature of the TPS gene

family complicates gene expression analysis as well as identification

of sequence variants leading to enzyme activity modulation. VvGer

and VvTer genes are present in tandemly duplicated gene clusters

and these clusters are unequally distributed across chromosome

haplotypes indicating extreme levels of hemizygosity for these

genes. Furthermore, VvTer is highly duplicated in grapevine

genomes and VvTer copy number correlated with cyclic

monoterpene accumulation.

Extensive gene duplication is a common feature of TPS-gene

families in several plant species and results in the presence of

multiple highly similar gene paralogs in these genomes. While the

influence of small polymorphisms, such as SNPs and indels, on TPS

functions and terpene accumulation are commonly researched, very

few studies investigate the influence of this gene copy number

variation on terpene accumulation. The knowledge gained from this

study further contributes to our understanding of terpene

metabolism in grapevine and the potential impact of TPS copy

number variation on grapevine terpene accumulation.
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