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As phenomics data volume and dimensionality increase due to advancements in

sensor technology, there is an urgent need to develop and implement scalable

data processing pipelines. Current phenomics data processing pipelines lack

modularity, extensibility, and processing distribution across sensor modalities

and phenotyping platforms. To address these challenges, we developed

PhytoOracle (PO), a suite of modular, scalable pipelines for processing large

volumes of field phenomics RGB, thermal, PSII chlorophyll fluorescence 2D

images, and 3D point clouds. PhytoOracle aims to (i) improve data processing

efficiency; (ii) provide an extensible, reproducible computing framework; and (iii)

enable data fusion of multi-modal phenomics data. PhytoOracle integrates

open-source distributed computing frameworks for parallel processing on

high-performance computing, cloud, and local computing environments. Each

pipeline component is available as a standalone container, providing

transferability, extensibility, and reproducibility. The PO pipeline extracts and

associates individual plant traits across sensor modalities and collection time

points, representing a unique multi-system approach to addressing the

genotype-phenotype gap. To date, PO supports lettuce and sorghum

phenotypic trait extraction, with a goal of widening the range of supported

species in the future. At the maximum number of cores tested in this study (1,024

cores), PO processing times were: 235 minutes for 9,270 RGB images (140.7 GB),

235 minutes for 9,270 thermal images (5.4 GB), and 13 minutes for 39,678 PSII

images (86.2 GB). These processing times represent end-to-end processing,

from raw data to fully processed numerical phenotypic trait data. Repeatability

values of 0.39-0.95 (bounding area), 0.81-0.95 (axis-aligned bounding volume),

0.79-0.94 (oriented bounding volume), 0.83-0.95 (plant height), and 0.81-0.95
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(number of points) were observed in Field Scanalyzer data. We also show the

ability of PO to process drone data with a repeatability of 0.55-0.95

(bounding area).
KEYWORDS

phenomics, morphological phenotyping, physiological phenotyping, distributed
computing, high performance computing, image analysis, point cloud analysis,
data management
1 Introduction

The world population is expected to reach 10 billion people by

2050 with a projected 50% decrease in global freshwater resources

(Searchinger et al., 2019; Gupta et al., 2020). Although existing crop

improvement methods have maintained stable increases in crop

yields, a continuation of these trends is not sustainable (Grassini

et al., 2013). Crop improvement methods continue to rely on

subjective, manually collected phenotype data. However, advances

in sensor technology have contributed to the emergence of plant

phenomics, the study of plant phenotypes, over the last decade

(Andrade-Sanchez et al., 2014; Araus and Cairns, 2014; Pauli et al.,

2016). Low-cost, user-friendly sensors now enable the collection of

objective data at high throughput. The resulting data volumes are

substantial and reveal bottlenecks in data processing, data

management, and data storage. To date, a variety of phenomics

bottlenecks related to data collection have been resolved, but

computational bottlenecks related to data volume and velocity

have been largely overlooked (Furbank and Tester, 2011). The

volume and velocity of plant phenomics data collection makes it

difficult to extract phenotypic trait data using existing software at

the scale required for breeding programs and basic research.

Therefore, addressing bottlenecks in computational throughput

would enable the efficient processing of data and, as a result, the

study of variation and plasticity of fine-scale traits at high temporal

resolution. These high-resolution datasets may improve the

elucidation of genetic components controlling agronomic and

functional traits (Furbank and Tester, 2011).

Phenotyping, various marker technologies, and statistical

methods have enabled the prediction of genotypic values and

genetic mapping (Bernardo, 2020). The application of these

methods allows for the dissection of the genetic and

environmental components of phenotypic trait variance. Such

studies require the measurement of quantitative traits that are

often collected visually, in the case of observational data, and

manually using handheld devices such as PAM fluorometers for

chlorophyll fluorescence measurements, spectroradiometers for

UV-VIS-NIR, protractors for leaf angle, rulers for plant height,

and weight scales for yield. Visual and manual phenotyping are

common due to having low initial investment costs, but these

approaches lack throughput and reproducibility due to the labor

required and subjectivity of measurements (Reynolds et al., 2019).

Emerging technologies, such as automated high-throughput plant
02
phenotyping platforms, often have higher initial investment costs

compared to traditional phenotype collection, but this is quickly

changing. High-throughput platforms are diverse, including robots,

drones, phones, and carts (White and Conley, 2013; Bai et al., 2016;

Thompson et al., 2018; Thorp et al., 2018; Yuan et al., 2018; Guo

et al., 2020; Roth et al., 2020). Compared with traditional methods,

these platforms improve data collection throughput, reduce

subjectivity through varying levels of automation, and enable

higher phenotyping resolution, referred to here as fine-scale

phenotyping (Reynolds et al., 2019). The resolution provided by

fine-scale phenotyping has enabled studies revealing genetic loci

associated with drought resistance (Li et al., 2020), stomatal

conductance (Prado et al., 2018), temporal salinity responses

(Campbell et al., 2015), and panicle architecture (Rebolledo et al.,

2016). Other studies have captured natural variation in

photosynthetic efficiency (van Bezouw et al., 2019; Khan et al.,

2020) as well as highlighted the feasibility of phenomics selection

(Rincent et al., 2018; Parmley et al., 2019; Zhu et al., 2021) based on

traits such as stay-green (Rebetzke et al., 2016) and spectral

reflectance (Aguate et al., 2017; Lane et al., 2020).

The high temporal and spatial resolution of fine-scale

phenotyping using automated plant phenotyping platforms

provide new opportunities to study dynamic patterns in

phenotype expression in response to varying conditions. For

example, the phenotypic effects of induced variation can be

assessed in mutant populations and natural variation in diversity

panels (Khan et al., 2020), allowing for the detection of temporal

fluctuations in trait expression and associations between

morphological and physiological phenotypic traits. Future

research and development in computational plant phenomics

could help improve selection accuracy due, in part, to

increasingly precise extraction of fine-scale phenotypes enabled by

complementary analytical methods and algorithms. In plant

phenomics, the level of extraction required to dissect agronomic

and functional traits would involve processing large volumes of

image, spectral, and point cloud raw data across thousands of plants

and time points to identify unique, obscure patterns of

morphophysiological responses to various environments. The

integration of these fine scale phenomics datasets within and

across projects would further expand our knowledge of traits and

aid in hypothesis generation (Coppens et al., 2017).

The data volumes generated by biological sciences research outpace

existing computing infrastructure (Chen et al., 2013; Qin et al., 2015;
frontiersin.org
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Stephens et al., 2015; Sivarajah et al., 2017). Additionally, data variety

within biological sciences research is widening due to the emergence of

phenomics, particularly in plant science research (Furbank and Tester,

2011; Furbank et al., 2019; Harfouche et al., 2019). The increasing

availability and diversity of modular, high-quality sensors mounted on

automated phenotyping platforms has led to the collection of large

volumes of various data types, including morphological and

physiological traits (Coppens et al., 2017). These expanding data

volumes pose new challenges related to computation, data

integration, and data management – a problem that is likely to be

exacerbated by continued improvements and widespread use of sensor

technology (Kim et al., 2017). In information science, it has long been

recognized that existing computational techniques are inadequate in

dealing with big data, primarily due to bottlenecks in the extraction of

information from large volumes of data and the associated bottlenecks

of scalability and data management. The bottleneck in information

extraction is actively being addressed through the development of

methods including machine learning (ML) and artificial intelligence

(AI), while parallel processing is addressing scalability (Chen et al.,

2013; Jukić et al., 2015; Sivarajah et al., 2017). Although these methods

improve scalability and information extraction, they do not address

data management. Parallel computing systems (PCSs) are

characterized by the co-location of input data and processing code,

representation of processing in terms of data flows and

transformations, and scalability. Collectively, these characteristics

facilitate the processing of datasets once considered intractable due to

previous limitations in computing (Kale, 2020). The required

computational resources in PCSs are commonly data-dependent,

meaning that each dataset requires a different set of computational

resources. To increase processing efficiency and reduce computing

costs, PCSs could allow users to tailor CPU/GPU, high-memory/high-

processor nodes, and other computational resources to specific

datasets. This capability may become increasingly important as

expanding data volumes pose a higher cost if computational

resources are used inefficiently.

For phenomics data to provide actionable genome-phenome

insights in combination with other -omics data, large scale

phenomics data must be processed in a scalable and reproducible

manner, stored in publicly accessible data stores, and be

interoperable with other data types (Coppens et al., 2017; Kim

et al., 2017). To address these requisites, a variety of established

resources can be leveraged. For example, data management systems

such as the CyVerse Data Store, a cloud-based data management

system built on the Integrated Rule-Oriented Data System (iRODS),

provides storage and cross-platform command line interface (CLI)

access to data (Goff et al., 2011; Merchant et al., 2016). Container

technologies, such as Docker and Singularity, serve as stand-alone

environments with required dependencies pre-installed by software

developers for increased extensibility (Kurtzer et al., 2017). High

performance computers (HPCs) supply numerous processors, dual

in-line memory modules (DIMMs), internal disk, and networking

ports to scale up processing tasks. Container technology and data

management systems coupled with HPCs provide reproducible and
Frontiers in Plant Science 03
scalable environments, respectively (Devisetty et al., 2016; Kurtzer

et al., 2017). Large volume datasets further require advanced PCSs

capable of leveraging thousands of computers or cluster nodes for

parallel processing on local, cloud, and/or HPC compute resources.

A suite of computing tools for deploying scalable applications

known as the Cooperative Computing Tools (CCTools) consists

of Makeflow and Work Queue, a language and computational

resource management framework for distributed computing,

respectively (Albrecht et al., 2012). When coordinated, the above-

mentioned computational resources can improve the processing

and management of raw data and enable large scale analyses of

extracted phenomics data.

Several image analysis pipelines exist for morphological and

physiological phenotype trait extraction including: ImageHarvest

(Knecht et al., 2016); Greenotyper (Tausen et al., 2020); and

PlantCV (Fahlgren et al., 2015; Gehan et al., 2017). Most of

these software were developed for automated phenotyping

platforms in controlled greenhouse environments and would

require significant modification for processing field phenomics

data due to variations in image illumination and the lack of

spacing between plants in field settings. Although some

pipelines integrate multi-processing or distributed computing

capabilities, there is currently no published pipeline that

integrates data management systems, container technologies,

PCSs, and multi-system deployment within a single framework.

Importantly, many existing image analysis software were not

designed to enable customization of computational resources, a

critical component for efficiently processing phenomics’

expanding data volumes (Kale, 2020).

Here, we present PhytoOracle (PO), a suite of data processing

pipelines for phenomics data processing. PhytoOracle combines

data management systems, container technologies, distributed

computing, and multi-system deployment into a single

framework capable of processing phenomics data collected with

RGB cameras (RGB), photosystem II chlorophyll fluorescence

imagers (PSII), thermal cameras (thermal), structured-light laser

scanners (3D). Each pipeline component is containerized and can

be removed, replaced, rearranged, or deployed in isolation.

PhytoOracle provides advanced PCS and automation capabilities

for processing large phenomics datasets across HPC, cloud, and/or

local computing environments. The PO suite organizes all

processing tasks and computational resource specifications within

a single YAML file, which enables customization of computational

resources, processing modules, and data management systems.

Users can target pipelines to the optimal computational resources

whether that be high-memory, high-processor, and/or GPU nodes.

The modularity and distributed computing capabilities of PO

enable the efficient extraction of time series, individual plant

phenotypic trait data from large, multi-modal phenomics

datasets. The PCSs like PO improve data analysis and

information processing, providing large scale data that can help

answer questions that were previously intractable due to data

volumes outpacing computing systems’ capacities.
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2 Materials and methods

2.1 Plant material

For this study, a panel of 241 lettuce genotypes were evaluated

at the University of Arizona’s Maricopa Agricultural Center (MAC)

in Maricopa, Arizona (33°04’24.8”N 111°58’25.7”W). The soil type

is a Casa Grande sandy loam (fine-loamy, mixed, superactive,

hyperthermic Typic Natrargids). The panel consisted of two

subpopulations of lettuce, a diversity panel (147 genotypes) that

represented all major market classes of lettuce and a recombinant

inbred line (RIL) mapping population (94 genotypes) developed

from a cross of the cultivars “Iceberg” and “Grand Rapids.” The

population was organized in a randomized incomplete block design

with three replications of both lettuce panels per irrigation

treatment level with common checks used throughout the field.

The borders around each irrigation treatment were of the cultivar

“Green Towers.” The three irrigation treatments were: well-watered

(WW), level 1 drought (D1), and level 2 drought (D2)

(Supplementary Figure 1). The WW treatment was defined as

24% volumetric soil water content (VSWC) which represents field

capacity. To achieve the D1 and D2 conditions, 75% and 50% of the

WW irrigation amounts were applied to the plots, respectively.

Raised vegetable beds on 1.02 m row spacing were shaped to have a

surface width of 0.56 m with two seed lines per bed spaced at

0.31 m; plots were 4.00 m in length. Experimental plots consisted of

one of the individual seed lines per raised bed so that two genotypes

were planted per raised bed.

The crop was established using sprinkler irrigation for the first

35 days before switching to subsurface drip irrigation. Buried within

each bed, at a depth of 0.20 m, was pressure compensated drip tape

(Model 06D63613.16-12, Netafim, Tel Aviv, Israel) supplying a

constant 0.38 liters per hour of water. Soil moisture conditions were

recorded using a neutron probe (Model 503, Campbell Pacific

Nuclear, CPN, Martinez, CA, USA) with readings taken at depths

of 10, 30, 50, 70, and 90 cm on a weekly basis. Neutron probe access

tubes were distributed throughout the field to capture the VSWC

across the different irrigation treatments over the growing period.

Once plants were established and being irrigated with subsurface

irrigation, plots were thinned to a density of 10 equidistant plants to

facilitate individual plant phenotyping. After thinning,

approximately 26,000 plants were present in the field, with each

treatment containing approximately 9,000 plants. Standard

cultivation practices and agronomic management for lettuce

production in the Southwest were followed. A total of 1,472

plants, one from each plot within the WW and D2 treatments,

were harvested and their fresh weights were recorded at the end of

the growing period (2020-03-03).
2.2 Phenotyping platforms

The Field Scanalyzer (FS) is a ground-based, automated

phenotyping platform that moves along rails that are 394.1 m in

length running North-South with 28 m separation between the rails;
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the area covered by the FS is approximately 1.11 hectares. This area

is split into two fields with scannable areas of 0.37 hectare for the

north field and 0.46 hectare for the south field; for the purposes of

the present research, only the south field was used (Figure 1A). The

FS is equipped with a ventilated sensor box that holds multiple

imagers and cameras including the following: Allied Vision

Prosilica GT3300C stereo RGB cameras (RGB), LemnaTec

photosystem II chlorophyll fluorescence prototype imager (PSII),

FLIR A615 thermal camera (Thermal), pair of Fraunhofer

structured-light laser scanners (3D), and two Headwall

HyperSpec Inspector pushbroom hyperspectral imagers (visible to

near infrared [VNIR] and short-wave infrared [SWIR]) (Figure 1B

and Supplementary Table 1). The sensor box can move vertically

from 0.43 to 6.26 m above ground level to accommodate varying

scanning distance requirements for each sensor and to maintain a

consistent distance from the instrument to plant canopy throughout

the growing season.

The FS scanning scheme is controlled by custom operating

scripts that specify the scan area, pattern, and scheduling for data

collection of each sensor. These operating scripts are set to collect

data on specific regions of the field, agricultural plots, or the entire

field by the FS operator. The RGB, thermal, and PSII sensors collect

binary (BIN) format images, while the 3D laser scanners collect

depth and reflectance imagery from which point clouds are

generated using manufacturer-provided software (Table 1). Each

data collection is accompanied by metadata files in JavaScript

Object Notation (JSON) format containing FS variable position,

sensor fixed position (location of sensors within sensor box), preset

scanning area, and timestamps. Positioning information is collected

by a series of barcodes along the rails (X and Y axes) and a string

encoder (Z axis) using a right-handed coordinate system (+X

South-to-North, +Y East-to-West, and +Z 0.76 cm above soil

upwards). Additionally, environmental sensors collect and log

information on downwelling irradiance, photosynthetically active

radiation, air temperature, relative humidity, brightness, ambient

air carbon dioxide concentration, precipitation, and wind velocity

and direction all at 5-second intervals in JSON format.
2.2.1 Data collection and management
For this study, the FS scanned the south field during the day and

night throughout a growing season, collecting high-resolution, time-

series images and point cloud data. The total number of RGB, thermal,

PSII, and 3D data collections were 36, 36, 13, and 46, respectively. The

RGB, thermal, and 3D laser scanner data collections covered the entire

field while PSII data collections covered the center of each bed within a

single treatment (Table 1). The FS total raw data sizes for each sensor

were as follows: 0.12 terabytes (TBs) for thermal, 1.19 TBs for PSII, 3.20

TBs for RGB, and 8.77 TBs for 3D. Altogether, the FS data collections

resulted in 13.36 TBs of raw data for the lettuce trial

(Supplementary Figure 2).

In addition to FS data, drone (DR) flights were conducted over

the same 0.46-hectare south field on a weekly basis using a DJI

Phantom 4 Pro V2 (DJI, Nanshan, Shenzhen, China) and

DroneDeploy software (v. 4.2.1; DroneDeploy, San Francisco, CA,

USA) installed on an Apple iPad Mini 4 (Model #MK9P2LL/A;
frontiersin.org
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Apple, Cupertino, CA, USA) (Figure 1). The flight mission settings

were as follows: 15 m altitude, 80% front - 80% side overlaps, 0.41

cm/pixel ground sample distance, resulting in approximately 450

images per flight. In total, the DR collections resulted in 0.08 TBs of

raw image data for the lettuce trial (Supplementary Figure 2). For a

complete list of FS and DR data collection dates, refer to

Supplementary Table 2.

2.2.2 Data management
The FS data collections were temporarily stored on a platform-

mounted server and transferred to a cache server located at MAC.

After a three-day retention period, each data collection was

programmatically archived, producing a single “.tar.gz” archive
Frontiers in Plant Science 05
file per data collection (one sensor’s scan), and programmatically

transferred to the CyVerse Data Store servers located in Tucson, AZ

using Internet2. Each DR data collection was uploaded to the

CyVerse Data Store manually. The DR and FS archives were

placed in a publicly available location in the CyVerse Data Store

for general use and CLI access during data processing (Goff et al.,

2011) (see Data Availability Statement).
2.3 Parallel computing system

The PO pipelines require ML models for object detection and

point cloud segmentation during data processing. Data must be
TABLE 1 Data collection summary for Field Scanalyzer (FS) and drone (DR) phenotyping platforms of data types supported by PhytoOracle.

Data Collection time Concurrent scan Scanning area Data type Benchmark data size Total scans Total size

RGB-FS 5 Thermal-FS Full field BIN 140 36 2.91

Thermal-FS 5 RGB-FS Full field BIN 5 36 0.10

PSII-FS 5 – Paired-plot center BIN 80 18 1.00

3D-FS 9 – Full field PLY 350 32 8.37

RGB-DR 0.5 – Full field JPEG 3 19 0.059
fr
The scanning area listed as full field encompassed the south portion of the field (0.63 hectare). Benchmark data size, gigabytes; total size, terabytes.
Collection duration (hours) represents the time from first data capture to final data capture.
B C

A

FIGURE 1

Overview of the Field Scanalyzer (FS) and DJI Phantom 4 Pro V2 drone (DR) phenotyping platforms, the components that make up each platform’s
sensor array and resulting data types. (A) An aerial photograph showing the area scanned by the FS which totals 0.63 hectare. Orange dots indicate
the ground control point (GCPs) configuration, consisting of five sets of four GCPs running east to west for a total of 20 GCPs. (Top B) The FS sensor
box contains a photosystem II (PSII) chlorophyll fluorescence imager, stereo RGB cameras, a thermal camera, two pushbroom hyperspectral imagers
(visible near-infrared [VNIR] and shortwave near-infrared [SWIR]), a pair of structured-light laser scanners, and environmental sensors. (Botton B)
Collected data included RGB, thermal, and PSII 2D image data and 3D point cloud data. (Top C) The DJI Phantom 4 Pro V2 drone (DR) was
equipped with a 20-megapixel RGB camera and flown with automated flight mapping software at an altitude of 15 meters. (Bottom C) Collected
data included RGB 2D image data.
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annotated, models trained, and performance assessed before data

processing can be performed. As such, a description of model

training is presented before describing PO processing pipelines in

detail. Together with a season-specific GeoJSON containing plot

boundaries, a YAML file specifying processing tasks, and

computational resources, PO can distribute tasks across

processing nodes of an HPC.

2.3.1 Training and assessing performance of
machine learning models
2.3.1.1 2D object detection

To prepare image data for manual annotation, RGB and

thermal data collections were processed up to the plot clip step to

produce plot clipped orthomosaics (Figure 2A, Steps 1-4). Thermal

and RGB plot clipped orthomosaics were converted from

georeferenced Tag Image File Format (GeoTIFF) to PNG format

(GeoTIFFs are not supported by annotation tools). Thermal image
Frontiers in Plant Science 06
pixel values were normalized to the range of 0 to 255 to enhance

visible features for manual annotation. Heat map images, with each

pixel representing height, were generated from 3D point cloud data.

The scripts for each of these steps is publicly accessible (see Code

Availability Statement).

To train object detection ML models for RGB and thermal

imagery, a total of 2,000 images per sensor type were randomly

selected for developing training data (see Code Availability

Statement). A total of 200 3D-derived heatmap images were

randomly generated to train object detection ML models. The

RGB, thermal, and 3D-derived heatmap image datasets were

uploaded to Labelbox (http://labelbox.com; Labelbox, San

Francisco, CA, USA) and manually labeled with a single

bounding box around each plant. All images were manually

reviewed to ensure label quality. A JSON file containing label

bounding box coordinates for all images in a dataset was

programmatically converted to XML files, resulting in one XML
B

C

D

E

A

FIGURE 2

PhytoOracle two-dimensional (2D) image processing workflow. (A) The 2D pre-processing steps include the conversion of binary (BIN) files (RGB,
thermal, PSII chlorophyll fluorescence) to GeoTIFF files, correction of georeferencing information within each GeoTIFF metadata using Megastitch
for RGB and thermal data, clipping corrected GeoTIFF images to plots using a GeoJSON file with plot boundary information, and generation of plot
level orthomosaics (Zarei et al., 2022). (B) RGB & thermal plot level orthomosaics are run through a Faster R-CNN detection model for plant
detection and phenotype extraction; PSII images are run through FLIP for extraction of minimum (F0) and maximum (FM) fluorescence values,
variable fluorescence (FV), and maximum yield of primary photochemical efficiency (FV/FM). (C) Upon completion of data processing for a single
experiment, individual plant detections from RGB and thermal data are associated over time using agglomerative clustering. Agglomerative clustering
uses longitude and latitude to associate multiple plant observations, giving them a shared, unique plant identifier. (D) The growth and temperature of
individual plants can be tracked and visualized using the unique plant identifier. A merged, full season RGB and thermal data file can then be
combined with PSII (plot level) and 3D laser phenotype data using the unique plant/plot identifiers. (E) The results of PhytoOracle are time series
datasets with plant geographical coordinates of the bounding box predictions and plant centers; bounding area (BA); median and mean canopy
temperatures (MEDT and MEAT, respectively); plant height (PH), axis-aligned and oriented bounding box volumes (AABV and OBV, respectively), and
convex hull volume (CHV); and plot level F0, FV, FM, and FV/FM for each detected plant.
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file per image (see Code Availability Statement). The RGB and

thermal datasets were each randomly split into training, validation,

and test sets (80%, 10%, and 10%, respectively). Transfer learning

was employed to train a Faster R-CNN (region-based convolutional

neural network) ResNet-50 FPN pre-trained model for RGB,

thermal, and 3D-derived image datasets, separately, using the

Detecto Python package (v. 1.2.1, http://github.com/alankbi/

detecto) (Ren et al., 2017). The models for all data types were

trained on a single label (“plant”). Training was performed on a

HPC compute node with two AMD Zen2 48-core processors

(AMD, Santa Clara, CA, USA), 512 GB of RAM, sixteen 32 GB

memory DIMM, 2 TB SSD disk, and a V100S graphics processing

unit (GPU) (NVIDIA, Santa Clara, CA, USA) with 32 GB memory.

The selected setting of training parameters was 10 epochs, batch

size of one, learning rate of 5 x 10-3, 5 x 10-4 weight decay (L2

regularization), and step size of three.

Model performance was assessed by calculating Intersection

over Union (IoU), recall, precision, and F1 scores for RGB, thermal,

and 3D-derived test datasets. To determine model performance

more finely across the developmental stages of lettuce, we

assessed IoU of randomly selected plots over the course of the

season for RGB and thermal models. The IoU values were

calculated as follows:

IoU =
A ∩ Bj j
A ∪ Bj j (1)

where A is the area of the predicted bounding box, B is the area

of the ground truth bounding box, and ∩ is the intersection and ∪ is

the union of predicted and ground truth boxes. Detections with an

IoU ≥ 0.5 were classified as true positives (TP, correctly detected

plant), those with an IoU< 0.5 were classified as false positives (FP,

plant is not present but detected), and detections with an IoU = 0

were classified as false negative (FN, plant is present but not

detected). Recall, precision, and F1-score were calculated as follows:

Recall  =  
TP

TP + FN
(2)

Precision  =  
TP

TP + FP
(3)

F1  =  2 ·  
Precision · Recall
Precision + Recall

(4)
2.3.1.2 3D segmentation

To train segmentation ML models, a random sample of

individual plant point clouds were collected and labeled using a

model-assisted labeling (MAL) approach (Model-assisted labeling

(MAL); Huxohl and Kummert, 2021). The MAL script fit a plane to

each point cloud and resulted in the labeling of two classes: plant

and soil (see Code Availability Statement). The results were

visualized, and segmentation errors were manually corrected,

resulting in a total of 160 annotated individual plant point clouds;

plant point clouds were randomly split into train, validation, and

test sets (80%, 10%, and 10%, respectively). A Dynamic Graph CNN

(DGCNN) was trained on a server with four AMD EPYC 7702 64-
Frontiers in Plant Science 07
Core processors (AMD, Santa Clara, CA, USA), 1 TB of RAM, and

three NVIDIA Tesla T4 GPUs (NVIDIA, Santa Clara, CA, USA)

(Wang et al., 2019). The following training parameters were

selected: 30 epochs, learning rate of 0.01, 1 x 10-4, momentum of

0.9, and batch size of 32. The classes predicted by the DGCNN

model for each point were compared with manually annotated data

to collect TP, FP, TN, FN values, which were used to calculate the

point-wise accuracy as follows:

Point  −  wise accuracy   =   
TP + TN

TP + FP + TN + FN
(5)
2.3.2 Multimodal pipeline deployment
The processing instructions for PO data processing are defined in

a Yet Another Markup Language (YAML) file (Ben-Kiki and Evans,

2001). The PO YAML template consists of four sections: “tags”,

“modules”, “workload_manager”, and “paths”. The “tags” section

allows users to define season-specific metadata for documentation

purposes. The “modules” section is where users define their processing

tasks by specifying the container to be used, the command to be run

within the container, and the inputs and outputs. The user can select

to run the workflow locally or remotely, that is using existing local

cores or remote worker cores. The “workload_manager” key defines

computational resource specifications required by pipeline worker

nodes including the cores per worker, number of workers, and

memory per core. The information provided within the

“workload_manager” key is used to request jobs using the Slurm

workload manager. Importantly, this allows users to customize the

computing system to accommodate datasets of varying levels of

processing scales and computational complexities. The “paths”

section defines CyVerse Data Store paths for raw data download,

including ML models to be used within the processing steps, and

output data uploads. At the moment, only CyVerse Data Store paths

are supported, but other storage providers can be supported with a few

changes to the code. Users can specify their project-specific CyVerse

Data Store paths or keep data locally without uploading it onto a data

store. Users can select to use data transfer nodes, if running PO on

HPC systems. Examples of YAML files for data processing of RGB,

PSII, thermal, and 3D phenomics data of lettuce and sorghum are

publicly available (see Code Availability Statement).
2.3.2.1 RGB processing pipeline

The full field RGB-FS datasets each consisted of 9,270 BIN files.

Each image capture collected two BIN files, one from each RGB

camera, and an associated JSON metadata file. Due to the physical

arrangement of the stereo RGB cameras and the resulting high image

overlap, only one image of each capture was used in this study. The

RGB pipeline consisted of four containerized components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted BIN files to GeoTIFF images with approximate

GPS bounding coordinates calculated from barcode positioning

information contained within the JSON metadata file generated by

the FS. The second container deployedMegaStitch, which is a software

for efficient image stitching of large-scale image datasets (Zarei et al.,

2022). Megastitch was run in a non-distributed manner as all images
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are required for the global optimization stitching method, which

generated geometrically corrected GeoTIFFs. The third container

clipped GeoTIFFs to plot boundaries using a GeoJSON file that

delimits plots within the field. The fourth container deployed a

Faster R-CNN model to detect individual plants within each plot-

clipped orthomosaic, which output bounding box coordinates.

Bounding box coordinates were converted from pixel coordinates to

geographic coordinates using the geotransform information of each

plot-clipped orthomosaic. All georeferencing was calculated in the

World Geodetic System (WGS84) coordinate reference system

(Lohmar, 1988). Longitude was calculated as follows:

Longitude  =  a · x + b · y + a · 0:5 + b · 0:5 + c (6)

where c is the upper left Easting coordinate of the image, a is the

E-W pixel spacing, c is the rotation, and x and y are the bounding

box image coordinates. Latitude was calculated as follows:

Latitude  =  d · x + e · y + d · 0:5 + e · 0:5 + f (7)

where d is the rotation, e is the N-S pixel spacing, f is the upper

left Northing coordinate, and x and y are the bounding box image

coordinates. The four geographical corner coordinates were

converted to UTM coordinates and used to calculate plant

bounding area (BA) as follows:

Plant bounding area  =   SEe �  NWeð Þ · SEn �  NWnð Þ (8)

where SEe is the southeast corner Easting coordinate of the

image, NWe is the northwest corner Easting coordinate, SEn is the

southeast corner Northing coordinate, and NWn is the northwest

corner Northing coordinate.

The RGB drone (RGB-DR) images from each data collection

were processed using Pix4DMapper software (Pix4D S.A., Prilly,

Switzerland). For each collection date, the “3D Maps” processing

template was used, which generated an orthomosaic, point cloud,

and depth maps. The “GCP/MTP Manager” interface was used to

load GCP coordinates, co-align GCPs within images to known GCP

coordinates, and confirm adequate placement of GCPs within the

generated ray cloud. The resulting orthomosaics were processed

using PO containers described above starting with the third

container that clipped GeoTIFFs to plot boundaries.

2.3.2.2 Thermal processing pipeline

The full field thermal-FS datasets each consisted of 9,270 BIN

files. Each image capture collected one BIN file and an associated

JSON metadata file. Each pixel within a thermal-FS image

represents an uncalibrated digital number (DN), a dimensionless

value corresponding to the output of the detector’s analog-digital

conversion. The thermal pipeline consisted of four components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted BIN files to GeoTIFFs with approximate GPS

bounding coordinates calculated from barcode positioning

information contained within the JSON metadata file. Thermal

calibration measurements were applied to each pixel, converting the

DN value to Celsius. The second container deployed MegaStitch

(Zarei et al., 2022) in a non-distributed manner, which generated

geometrically corrected GeoTIFFs. The third container clipped
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GeoTIFFs to plot boundaries specified within a GeoJSON file.

The fourth container deployed a Faster R-CNN model to detect

individual plants within each plot clipped GeoTIFF, which

outputted bounding box coordinates. To collect individual plant

canopy temperatures, each predicted bounding box, representing a

single plant, was programmatically cropped from plot level

GeoTIFF orthomosaics and K-means clustering was used with

K = 3 (MacQueen, 1967; Poblete-Echeverrıá et al., 2017). The

median and mean canopy temperatures (MEDT and MEAT,

respectively) were collected from the plant pixel clusters for each

plant along with corresponding distribution statistics. A 10x10 pixel

region of interest (ROI) centered within each plant detection was

analyzed for median temperature, referred to as the ROI

temperature. The longitude and latitude for each plant detection

were calculated using Equations 6, 7 respectively for subsequent

plant tracking and multi-modal data association.

2.3.2.3 PSII chlorophyll fluorescence processing pipeline

The PSII-FS datasets each consisted of 39,678 BIN files. Each data

capture resulted in a 101-image stack over a 2-second interval along

with an associated JSON metadata using a validated chlorophyll

fluorescence imaging sensor (Herritt et al., 2020). Unlike RGB and

thermal, these images captured the center of each plot instead of the

full field. One image was captured shortly before LED light saturation,

50 images during the one-second saturating pulse of light, and 50

images after the pulse of light. The illuminating LED flash has a

dominant wavelength in the range of 620-630 nm with an intensity of

up to 7,000 mmol photosynthetically active radiation (PAR) at 70 cm

from plant canopies. A modified version of the FLuorescence Imaging

Pipeline (FLIP) software was used to extract plot level minimum

fluorescence (F0), variable fluorescence (FV), maximum fluorescence

(FM), and maximum yield of primary photochemical efficiency (FV/

FM) (Herritt et al., 2021). Modifications included two containers that

converted BIN files to GeoTIFF images and clipped GeoTIFF images

to plot boundaries using a GeoJSON file. The modification facilitated

multi-modal data merging by acquiring geographical coordinates

instead of pixel coordinates and enabled the integration of the

software into the distributed computing framework. The PSII

chlorophyll fluorescence pipeline consists of four components

(Supplementary Table 3 and Supplementary Figure 3). The first

container converted 101 BIN files to 101 GeoTIFFs with

approximate GPS bounding coordinates calculated from barcode

positioning information contained within the associated JSON

metadata file. The second container clipped GeoTIFFs to plot

boundaries specified within a GeoJSON file. The third container

segmented each pixel within an image into one of five FM
experimentally derived contribution thresholds (Herritt et al., 2021).

The fourth container applied the contribution thresholds to extract F0
and FM values for each image pixel, which were used to calculate FV
and FV/FM for each stack of 101 images were calculated as follows:

FV   = FM − F0 (9)

FV=FM   =  
(FM − F0)

FM
(10)
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2.3.2.4 3D laser scanner processing pipeline

The 3D-FS datasets consist of 320 pairs of PLY files. A pair of

structured-light laser scanners captured depth and reflectance

imagery for preprocessing to point clouds, resulting in two PLY

files per data capture (640 total PLY files). Pre-processing of image

data to point clouds was performed by the manufacturer-provided

software PlyWorker before the data was transmitted offsite. The

pair of scanners captured the 3D structure of plants from east and

west directions, thereby minimizing occlusions. Each pair of PLY

files had an associated JSON metadata file. The 3D laser scanner

pipeline, utilizing the output of the PlyWorker software as an input,

consisted of six components (Supplementary Table 3 and

Supplementary Figure 3). The first container corrected the

orientation and scale of the point cloud tiles and applied the

RANSAC algorithm implemented in the Open3D Python package

(v. 0.11.2) to find a simple translation (X and Y axes) to reduce

misalignment (Fischler and Bolles, 1981; Choi et al., 2015; Zhou

et al., 2018; Zhou et al., 2018) (Figure 3A). The second step co-

aligned 3D point clouds to RGB-derived plant detections. A custom

graphical user interface (GUI) was developed to download and

visualize 3D point cloud data and RGB orthomosaic data on local

computers after selecting a scan date to manually georeference (see

Code Availability Statement). The purpose of this tool was to co-

align 3D and RGB by identifying shared landmark features between

3D point clouds and RGB data. This co-alignment allows for

individual plant clipping using RGB-derived plant detections

(Figure 3B). Selected features included plot stakes, ground control

point (GCP) lids, or distinguishable plants in the field. The GUI (i)

shows the RGB orthomosaic region, (ii) prompts the user to select a

landmark feature, (iii) displays the point cloud tile region that

neighbors the selected landmark feature, (iv) prompts the user to

select the corresponding landmark feature within the point cloud

tile. This process is repeated until an adequate number of landmark

features are selected (Figure 3C). After RGB and 3D data are co-

registered by the user, an affine transformation is calculated from

the correspondences between the selected landmark features. This

transformation maps a point in the original space of the 3D point

cloud into the space of the georeferenced RGB orthomosaic. This

transformation was then saved to a JSON file. The third container

applied the calculated transformation to the point cloud tiles,

resulting in co-aligned, georeferenced point cloud tiles (Figure

3D). The fourth container used RGB-derived plant detections to

clip individual plants from large point clouds tiles (Figure 3E). The

fifth container merged multiple tiles containing the same plant

using the iterative closest point (ICP) method implemented in the

Open3D Python package (v. 0.11.2) (Besl and McKay, 1992; Zhou

et al., 2018) (Figure 3F). The sixth container deployed a Faster R-

CNN model to localize the focal plant on 3D-derived heat map

images (Figure 3G). The seventh container segmented soil and plant

points, which allowed for the isolation of plant points within each

point cloud (Figure 3H). The eighth container removed any residual

neighbor plant points using the DBSCAN clustering algorithm

implemented in the Open3D Python package (v. 0.11.2) (Ester

et al., 1996; Zhou et al., 2018) (Figure 3I). Lastly, the ninth container
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created persistence diagrams for a single plant point cloud using the

Giotto-tda Python package (v. 0.5.1) (Tauzin et al., 2021), from

which the following topological data analysis (TDA) values were

collected: persistence entropy and amplitude (with distance

functions of landscape, bottleneck, Wasserstein, Betti, silhouette,

heat, and persistence image). Plant height (PH) was calculated

as follows:

Plant height  =  Zmax   −  Zmin (11)

Where Zmax is the maximum Z-axis plant point value and Zmin

is the minimum Z-axis plant point value. In addition, the oriented

bounding box volume (OBV), axis-aligned bounding box volume

(AABV), and number of points (NP) were calculated using the

Open3D Python package (v. 0.11.2) (Zhou et al., 2018) (Figure 3J).

2.3.3 Pipeline benchmarking
The RGB, thermal, and PSII pipelines were benchmarked using

a single data collection for each sensor (Table 2). Benchmarking

consisted of manager and worker compute nodes using CCTools

Makeflow and Work Queue (Albrecht et al., 2012). A single HPC

compute node equipped with two AMD Zen2 processors x 48 cores

(94 total cores), 512 GB of RAM, sixteen 32 GB memory DIMM,

and 2 TB SSD disk served as the manager node. Worker nodes, with

the same computational resources mentioned above, were requested

on which the command work_queue_factory (CCTools v. 7.1.12)

was run to request one worker per core, resulting in a total of 94

Work Queue workers per node each with 5 GB of RAM. A

Makeflow file containing information for each data input file was

created programmatically using the PO automation script, which

allowed for parallel distribution of tasks. In addition, this

automation script provided a detailed workflow to each worker,

specifying the processing step to be performed on each input file

using Singularity v3.6 for running containers (Hunt and Larus,

2007; Kurtzer et al., 2017). A single task was performed per worker

to allow for maximum distribution of tasks. Importantly, each

pipeline differs in its definition of a single task input: RGB and

thermal consist of one BIN file; 3D of two PLY files; and PSII of 101

BIN files, each with an associated metadata JSON file. Upon

completion of assigned tasks, the manager compute node

assigned additional tasks in queue to available workers. The

benchmark dataset for RGB, thermal, and PSII sensors was

processed over the following range of available workers: 1, 4, 8,

16, 32, 64, 128, 256, 512, and 1024. Each configuration was

replicated three times, for a total of 30 benchmark data points per

sensor. A log file with information on processing times and number

of workers during processing was collected during processing.

2.3.4 Multi-modal data merging and association
To allow for identification of single plants throughout the

growing period and across sensor modalities, individual plant

detections from each collection date need to be grouped. Two

phases were carried out to accomplish this: (i) data cleaning to

remove any outliers and (ii) a series of sequential clustering steps to

combine multi-modal datasets and enable individual plant tracking.
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2.3.4.1 Removal of outlier plants

The first phase involved the removal of overlapping plants,

hereafter termed outliers, which were the result of two or more

plants growing in proximity andmerging into what appeared to be a

single plant. These outliers resulted in a single plant detection for

this pair of plants, leading to errors in subsequent analyses. To

remove these outliers, the field was manually assessed at the end of
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the season for outliers, which were manually marked with spray

paint for easy visual identification in imagery collected right before

harvesting. A GeoJSON vector layer containing a point for each

outlier was manually created on QGIS (www.qgis.org) and the end-

of-season orthomosaic containing the marked outlier canopies,

which were used to identify these outliers in the multi-

modal dataset.
B

C

D

E F G
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A

FIGURE 3

PhytoOracle 3D point cloud processing workflow. (A) Two raw point cloudscollected simultaneously were rotated, scaled, and georeferenced using
positioning information from the Field Scanalyzer (FS) metadata file. (B) Time series plant detection from RGB data processing were coregistered
with 3D point clouds by landmark selection. (C) Landmark selection involved selecting landmark features in point clouds and selecting the same
landmark feature in RGB images. This step resulted in the co-registration of 3D point clouds with RGB data types. (D) Co-registered point clouds
and plant detections were visualized by painting each plant detection with a green dot and ground control points (GCPs) with a blue dot. (E) Large
point cloud tiles were clipped to known plant locations and (F) merged using the iterative closest point (ICP) algorithm. (G) Focal plants were further
isolated by deploying a trained Faster R-CNN detection model to form a tight bounding box around the focal plant, eliminating neighboring plants.
(H) Plant and soil points were segmented by deploying a trained DGCNN model on focal plant clips, resulting in a point cloud containing only plant
points. (I) Residual neighbor plant points were removed by using the DBSCAN unsupervised clustering algorithm, resulting in a point cloud
containing only focal plant points. (J) Focal plant point clouds were analyzed for morphometric phenotypes such as axis-aligned and oriented
bounding box volumes (AABV and OBV, respectively) and convex hull volume (CHV), plant height (PH), and number of points (NP) as well as
topological data analysis values calculated from persistence diagrams.
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2.3.4.2 Grouping plant phenotypes for individual
plant tracking

The second phase involved the sequential clustering of

phenotypic trait data from various sensor modalities. First, the

full season RGB dataset was combined with the GeoJSON file

containing manually marked outlier plant points generated in the

first phase. Individual plant detections throughout the season were

then clustered using agglomerative clustering, a form of hierarchical

clustering algorithm implemented in the scikit-learn Python

package v0.24.2 (Cox, 1957; Fisher, 1958; Ward, 1963; Pedregosa

et al., 2011). Agglomerative clustering requires a threshold value,

which was empirically derived based on having the lowest number

of outliers grouped into a cluster and reduced fluctuations in growth

curves. The optimal threshold value of 6 x 10-7 was used to

maximize the number of clustered observations of a single plant

and minimize the clustering of weeds and/or neighboring plants.

The full season RGB plant detections were clustered using the

empirically derived threshold value and results were assessed in

QGIS. Each cluster, representing a single plant time series, was

given a unique identifier denoting the plant’s genotype and the

clustering number (“genotype”_”cluster number”). All clusters

containing an outlier point were given the label ‘double’ for the

identification and exclusion of these data points from subsequent

analyses (Supplementary Figure 4). Second, the resulting grouped

RGB dataset was then clustered with the full season thermal data.

Full season RGB and thermal outputs were merged using the same

technique used during clustering of the full season RGB data. This

clustering step resulted in a single dataset containing RGB and

thermal data with a shared unique plant identified. Third, the

merged dataset, containing clustered RGB and thermal

phenotypic trait data, was combined with PSII chlorophyll

fluorescence and 3D laser full season files using plot numbers and

unique plant identifiers, respectively. The final output was a time-

series, multi-modal phenotypic trait dataset at the individual plant

level for RGB, thermal, and 3D phenotype data and plot level for

PSII chlorophyll fluorescence phenotype data.

2.3.5 Analysis of extracted phenotypes
2.3.5.1 Assessing accuracy of plant detection across
growing period

To assess plant detection performance, the median IoU

throughout various time points were quantified for RGB and

thermal image data. Canopy temperature extraction performance

was assessed by manually extracting median canopy temperature

across all time points of a random sample of 200 selected plots, with
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each plot containing a minimum of five plants across 19 collection

dates resulting in 1,481 data points. We examined the correlation

between manually extracted canopy temperature and pipeline

extracted MEDT over an entire season for these selected plots.

The BA extraction performance was evaluated by assessing its

Pearson correlation with harvested, fresh weight biomass for each

plot in the field trial. The median individual plant BA was used for

correlation assessments. A similar assessment of correlation was

conducted for AABV extraction.

2.3.5.2 Assessing grouping of plant
phenotypes performance

The results from the proposed clustering association method

were visualized across 200 plots as a vector layer overlaid on an end-

of-season orthomosaic in which the outliers were marked. Each plot

was imaged over 19 time points, resulting in a total of 3,800 images.

If an identification was marked and the overlaid detection was

identified as an outlier by the clustering algorithm, then the

identification was classified as a true positive (TP). If the plant

was marked and the overlaid detection was not determined to be an

outlier by the clustering script, then the identification was classified

as a false negative (FN). If the plant was not marked and the

overlaid detection was determined to be an outlier by the clustering

script, then the overlaid identification was classified as a false

positive (FP). If the plant was not marked and the overlaid

detection was determined to not be an outlier by the clustering

script, then the overlaid identification was classified as a true

negative (TN).

2.3.5.3 Statistical analysis and data visualization

The BA, NP, OBV, AABV, and PH phenotype trait data were

analyzed after first checking for residual normality and error

variance homogeneity at each collection event. For each trait,

collection time points were analyzed separately using the lme4

package (Bates et al., 2015) in the R programming language (R Core

Team, 2022). Spatial effects were modeled on a row and column

basis. The following linear mixed model was fitted to trait data for

the estimation of variance components:

yijk  =  m  +  gi  +  irgj +  g �  irgij  +  rep(irg)kj  +  row(rep

� irg)lkj  +  col(rep� irr)mkj  +  ϵijklm (12)

where yijk is an individual phenotypic observation; m is the

overall mean; gi is the effect of the i-th genotype; irgj is the effect of

the j-th irrigation treatment which was either WW, D1 or D2; g ×
TABLE 2 Information on each benchmarking dataset’s collection date, size, and number of images.

Sensor Date Start time End time Elapsed time Total size Image count

RGB 03/03/2020 08:45 13:27 04:42 140.7 9270

Thermal 03/03/2020 08:45 13:27 04:42 5.4 9270

PSII 02/27/2020 19:58 00:37 04:39 86.2 39678

3D laser 03/01/2020 18:59 03:54 08:55 308.5 640
Elapsed time, HH : MM; total size, gigabytes.
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irgij is the interaction effect between the i-th genotype and the j-th

irrigation treatment; rep(irg)kj is the effect of the k-th replication

nested within the j-th irrigation treatment; row(rep × irg)lkj is the

effect of the l-th plot grid row nested with k-th replication within the

j-th irrigation treatment; col(rep × irr)mkj is the effect of the m-th

plot grid column nested within the k-th replication within the j-th

irrigation treatment; and eijklm is the residual effect. The variance

component estimates from the full model were used to estimate

repeatability (r) as follows:

r  =  
s 2
g

s 2
g   +  

s 2
gi

nirg
  +   s 2

∈
nplot

(13)

where s 2
g is the genotypic variance due to genotypes, s 2

gi is the

estimated variance with the genotype-by-irrigation treatment

variation, and s 2
∈ and residual variances, respectively. The

variable nirg is the number of irrigation treatments in which each

genotype was observed and nplot is the number of plots in which the

genotype was observed.

All plots presented in this study were generated using the

Seaborn, Matplotlib, and Plotly Python packages using Python

v3.9 (Hunter, 2007; Hossain, 2019; Waskom, 2021). Pearson

correlations presented in the plots were calculated using the SciPy

Python package (v0.15.1) (Virtanen et al., 2020).
3 Results

3.1 Environmental conditions during
growing period

Weather data mean values for the growing season between

2019-11-13 and 2020-03-03 were: 10.72 °C air temperature, 61.88%

relative humidity, 0.62 kPa vapor pressure deficit, and 0.55 MJ/m2

solar radiation (Supplementary Figure 5). The irrigation treatments

resulted in contrasting VSWC, with minimum values at 10 cm of

19.2, 14.7, and 12.8 in irrigation treatments WW, D1, and D2,

respectively. At 30 cm, minimum values were 21.3, 21.5, and 17.2

for WW, D1, and D2, respectively (Supplementary Figure 1).
3.2 Model performance metrics

Faster R-CNN models were separately trained to identify single

plants in RGB and thermal imagery, each trained and evaluated

with 2,000 and 250 images, respectively. Performance was assessed

without any prediction confidence threshold, resulting in 2,752 and

1,450 ‘plant’ class detections for RGB and thermal, respectively. The

RGB detection model detected plants with a 0.98 recall, 0.93

precision, 0.96 F1-score, and 0.96 overall accuracy when tested on

FS (RGB-FS) image data. The RGB detection model performance

was further evaluated with a 400-image RGB-DR test dataset and

resulted in 0.98 recall, 0.96 precision, 0.97 F1-score, and 0.97 overall

accuracy. The thermal detection model performed better than the
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RGB detection model with a 0.98 recall, 0.99 precision, 0.98 F1-

score, and 0.98 overall accuracy. A single DGCNN model was

trained to segment points corresponding to plant and soil classes in

point clouds containing a single plant. The model was trained and

evaluated with 128 point clouds and 16 point clouds, respectively.

The DGCNN model was assessed for point-wise accuracy using the

test set, which was calculated at 0.98 (Table 3).

The median IoU was calculated separately for each distinct

collection time point represented in a 250-image test set to assess

temporal effects on bounding box accuracy. Overall, the median

IoU was 0.84, 0.84, and 0.88 for RGB-FS, RGB-DR, and thermal-FS,

respectively. The median IoU differed between dates, with an

increasing trend as time progressed (Figure 4). This trend was

stronger in the RGB-FS and RGB-DR data as these data were

collected earlier in the season when plants were small with fewer

distinguishable features as compared to thermal scans.
3.3 Validation of pipeline-extracted
phenotypes and multimodal data
association

Across the entire time series clustering test set, the

agglomerative clustering method grouped plant detections into

individual plant, time-series data with 0.99 recall, 0.93 precision,

0.96 F1-score, and 0.96 overall accuracy. The observed coefficient of

determination (r2) between individual plant fresh weight collected

at harvest and pipeline-extracted 3D-FS AABV were 0.29 for

Batavia (p< 0.01), 0.36 for Butterhead (p< 0.0001), 0.55

for Cutting/Crisp (p< 0.0001), 0.59 for Iceberg (p< 0.0001), 0.61

for Leaf (p< 0.0001), and 0.48 for Romaine (p< 0.0001)

(Supplementary Figure 6). The observed coefficient of

determination (r2) between individual plant fresh weight and

pipeline-extracted RGB-FS BA were 0.21 for Batavia (p< 0.01),

0.39 for Butterhead (p< 0.0001), 0.56 for Cutting/Crisp (p< 0.0001),

0.62 for Iceberg (p< 0.0001), 0.61 for Leaf (p< 0.0001), and 0.29 for

Romaine (p< 0.0001) (Figure 5). The observed range of r2 values

between manually extracted and pipeline-extracted median canopy

temperatures (MEDT) over 12 unique collection dates was 0.43-

0.94 (Supplementary Figure 7). The overall observed r2 was 0.95

when considering all dates (p< 0.0001) (Figure 6).
3.4 Collection and processing benchmarks

3.4.1 Field scanalyzer data collection
Benchmark datasets were collected using the FS, with varying

operation times depending on the sensor. The file size of benchmark

datasets ranged from 5.4 GB to 308.5 GB in size and consisted of

640 to 39,678 files. The data collection of RGB and thermal image

data, which occurs simultaneously, took a total of 4 hours and 42

minutes to complete resulting in 9,270 raw images per sensor. The

PSII data collection took 4 hours and 39 minutes, resulting in the

largest raw file count (39, 678 images).
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3.4.2 PhytoOracle data processing
The RGB and PSII processing times saw the largest reduction

from computational parallelization, at 61% and 95% respectively, at

the maximum number of 1024 workers. Thermal processing time

saw the smallest reduction of 22% at the maximum number of 1024

workers. At the maximum number of workers tested in this study,

RGB and thermal each processed in 235 minutes and PSII in 13

minutes (Figure 7).
3.5 Phenotypic repeatability estimates at
individual sampling events

The mean repeatability values for each pipeline are as follows:

0.86 (RGB-DR BA), 0.81 (RGB-FS BA), 0.90 (3D-FS AABV), 0.90

(3D-FS OBV), 0.90 (3D-FS PH), and 0.89 (3D-FS NP) (Table 4). In

general, the repeatability of RGB and 3D phenotypic trait data had

increasing trends over the growing season (Figure 8).
4 Discussion

The proliferation of phenomics technology has led to large data

volumes that need to be processed. Challenges related to

computation of phenomics big data reduce its full application and

efficacy in providing actionable genome-phenome insights into

plant morphophysiological traits. Among the significant

bottlenecks in plant phenomics, we address the lack of scalable,
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modular processing pipelines capable of processing expanding data

volumes to extract morphological and physiological phenotypic

trait data. Although other pipelines, such as Image Harvest and

Greenotyper, have considered and implemented distributed

computing systems, these capabilities have not been fully

developed for general use on HPC clusters or multiple node

deployment. Instead, it is left to the user to undertake that

implementation (Knecht et al., 2016; Tausen et al., 2020). The

PhytoOracle suite of scalable, modular data processing pipelines

addresses critical bottlenecks within plant phenomics including

data diversity, scalability, reproducibility, and extensibility.

PhytoOracle accomplishes this by integrating distributed

computing, container technology, data management systems, and

machine learning into a single suite of phenomics data

processing pipelines.
4.1 PhytoOracle addresses neglected
bottlenecks in phenomics data processing

The PO suite can process data from multiple sensors including

RGB, thermal, and PSII chlorophyll fluorescence 2D image data and

3D point cloud data. Except for PSII chlorophyll fluorescence, PO

data processing pipelines result in individual plant phenotypic trait

data that can be associated using our agglomerative clustering

approach (Figure 2 and Supplementary Figure 5). To date, the

only other published pipeline capable of handling such diverse data

types is PlantCV. However, PlantCV’s approach to individual plant
TABLE 3 Performance metrics for Faster R-CNN detection models for image processing of Field Scanalyzer RGB (RGB-FS), drone RGB (RGB-DR), and
Field Scanalyzer thermal (Thermal-FS).

Model Data Type Detections TP FP FN Recall Precision F1-score Accuracy

A RGB - DR Detection 4356 4097 182 77 0.98 0.96 0.97 0.97

A RGB - FS Detection 2752 2519 178 54 0.98 0.93 0.96 0.96

B Thermal - FS Detection 1450 1404 10 36 0.98 0.99 0.98 0.98

C 3D - FS Segmentation – – – – – – – 0.98
fr
FS, Field Scanalyzer; DR, drone; TP, true positive; FP, false positive; and FN, false negative. For the 3D-FS model, the accuracy reported is a point-wise accuracy collected across points within the
test dataset, as such values for columns Total detections through F1-score are not presented.
FIGURE 4

Change in median Intersection over Union (IoU) across the collection dates represented in RGB and thermal test data sets for the Field Scanalizer
(FS) and Drone (DR) systems. Both RGB Field Scanalyzer scans (RGB-FS) and drone flights (RGB-DR), began earlier than thermal, allowing to capture
the temporal effect of collection date, a proxy to plant size, on the median IoU. Error bands represent 95% confidence intervals around the median.
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phenotyping does not translate well to field phenomics data

(Fahlgren et al., 2015; Gehan et al., 2017). In field phenomics

data, plant spacing creates challenges for individual plant

phenotype extraction. The threshold-based contour approach

used by much software, including PlantCV, works well in

controlled environments, however, most imaging approaches
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outside of controlled environments often capture multiple

overlapping plants under highly variable lighting conditions.

These variable conditions make threshold-based contour

approaches difficult to implement in processing field phenomics

data. For this reason, PO leverages MLmodels that are better able to

handle overlapping plants and variable lighting conditions.

To resolve time series, multi-plant measurements to the

individual plant level, PO leverages ML approaches, such as

Faster R-CNN for object detection and DGCNN for point cloud

segmentation. These ML models make PO robust and generalizable

to other crops. For instance, if a user wants to process a new crop

species, a model could be trained and deployed within PO, requiring

little to no code development. Furthermore, the ML models

presented here can be used by other researchers and/or new

models can be trained using our labeled data and existing

containers. PO also provides a general use solution to training of

Faster R-CNN object detection models.

The PO suite provides scalability through a distributed

computing framework leveraging the open-source CCTools’

Makeflow and Work Queue software (Albrecht et al., 2012),

which provides the language and computational resource

management necessary to scale tasks beyond traditional job

arrays and local computing resources. Importantly, this enables

users to leverage dataset-specific resources across multiple

computing environments during data processing, providing a

path to maximize and optimize computational resource use. For

example, the manager can be launched on an HPC cluster to ensure

adequate storage space while workers could be launched on a lab

workstation. The benefit of this approach is that computational

resources beyond one computer or even one cluster can be

leveraged to process thousands of tasks in parallel. Data
FIGURE 5

Correlation between individual plant fresh weight and pipeline-extracted bounding area (RGB-FS BA, m2) for all plots in the field trial. Genotypes were
grouped by horticultural type, resulting in 6 groups which are Batavia, Butterhead, Cutting/crisp, Iceberg, Leaf, and Romaine. *** = P value ≤ 0.001.
FIGURE 6

Correlation between validation and pipeline-extracted median
canopy temperatures (MEDT). Each point represents an individual
plant temperature collected at a single time point, with the
complete dataset consisting of 12 distinct collection dates.
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processing on a single computer or server constrains users to locally

available memory and processors, preventing scalability. On the

other hand, distributed computing systems allow users to access

processors and memory on remote nodes, allowing the system to, in

theory, linearly scale the processing task at hand. The PO

benchmarking focused on HPC nodes instead of local nodes and

cloud-native options, such as XSEDE, due to those resources not

having the storage space required to store raw and intermediate

data. This is important, as it highlights that computational

resources must consider not only CPU/GPU availability but also

storage space capabilities as large-scale phenomics data processing

results in many intermediate outputs that must be temporarily

stored to serve as input to subsequent steps. In the end, these

intermediate data can be deleted, but they must be able to be

temporarily stored during data processing.

As data volumes increase, scalability will become a higher

priority within research fields aimed at extracting relevant

insights from big data (Chen et al., 2013; Sivarajah et al., 2017).

However, this is likely to exacerbate existing network IO

bottlenecks, which prevent linear scaling (Zhang et al., 2020). For
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example, the presented benchmarking information shows that

although the average number of tasks completed continued to

increase, the total processing time remained relatively stable after

32 workers. These results highlight limitations in scaling likely

associated with network and data transfer bottlenecks. Improving

the utilization of local, cloud, or HPC systems is a major concern

and area of active research (Tanash et al., 2019). Generally, there are

seemingly two options for further improvements to computational

throughput: (i) identifying the optimal worker configurations per

pipeline and/or (ii) moving pipelines closer to where the data are

collected. An analysis of big data environments using Docker

containers found that adding nodes (workers) beyond a certain

threshold decreased performance due to an increase in the time for

a network request to be sent and received (round trip time), which is

similar to the results presented here (China Venkanna Varma et al.,

2016). Moving pipelines closer to the data seems more feasible than

finding optimal worker configurations as there may not be an

optimal worker configuration to mitigate scaling plateaus until

network bottlenecks are resolved. Network bandwidth is

commonly associated with a lack of linear scaling; oftentimes, the
FIGURE 7

Average tasks process per minute and processing times for each PhytoOracle pipeline. (Top) Average tasks processed (tasks/minute) as a function of
the number of worker cores. (Bottom) Total processing time (minutes) as a function of the number of workers (one CPU core per work). Available
workers ranged from 1 to 1024 and the values represent the average of three runs with the same configuration. Error bars represent 95% confidence
intervals.
TABLE 4 Repeatability of pipeline extracted phenotypes collected from Field Scanalyzer (FS) and drone (DR) platforms.

Data Trait Min. Mean Max.

RGB-DR Bounding area 0.55 0.86 0.95

RGB-FS Bounding area 0.39 0.81 0.95

3D-FS Axis-aligned bounding volume 0.81 0.90 0.95

3D-FS Oriented bounding volume 0.79 0.90 0.94

3D-FS Plant height 0.83 0.90 0.95

3D-FS Number of points 0.81 0.89 0.95
Minimum, Min.; Max., Maximum.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1112973
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gonzalez et al. 10.3389/fpls.2023.1112973
processing phase is efficient and would theoretically allow for linear

scaling, but the communication phase creates a bottleneck

preventing linear scaling (Zhang et al., 2020). In our case, raw

data is stored on the CyVerse Data Store due to its volume, velocity,

and variety–making it intractable to keep these data on local servers

for processing. This results in data being located “far” (CyVerse

Data Store servers) from the processing pipeline (HPC), resulting in

significant network requests that negatively impact data processing

throughput. In the future, improvements to network capabilities

may help to further improve processing efficiency.

The PO suite leverages container technology to ensure

consistent, immutable data processing. Each PO processing step is

containerized using Docker and deployable on HPC, cloud, and

local computers on which either Docker or Singularity is installed.

As opposed to running non-containerized processing code,

containers ensure that each processing step is reproducible by

controlling code versions and processing environments. Instead of

users having to install over 40 Python packages to run PO, we

provide containers that contain these libraries, significantly

reducing the barrier to entry (Supplementary Table 4).

Additionally, the PO automation script automatically downloads

and configures CCTools, and requires no additional third-party

Python packages. The only requirements for running PO are

Singularity or Docker, iRODS, and Python. These tools are

generally found on HPC clusters, except for iRODS which can be

installed by system administrators.

The PO suite provides a general use framework through our

automation script. Together with our suite of processing containers,

this automation script automates the complexity of developing a

PCSs, allowing users with little computer programming experience

to leverage PO for processing their own phenomics data. The PO

suite has four existing YAML files that can be customized by other

researchers to process their own data. Users with advanced

programming and command line experience can develop their

own containers for data processing and integrate them into PO

by including each container as a module within the YAML file,

specifying the location of raw data on the CyVerse Data Store or

local storage, and outlining the expected output files. The use of a
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generalizable automation script and a customizable YAML file

makes it possible for users to run PO on various datasets,

allowing researchers to spend more time on analysis than

software development and data processing.
4.2 PhytoOracle extracts repeatable
phenotypes from distinct platforms

The phenotypic trait data extracted from the FS and DR

platforms align with values reported in the literature.

Morphological trait repeatability values collected by the 3D-FS

sensor align with the range of values reported in wheat (Deery et

al., 2019; Walter et al., 2019; Deery et al., 2020). Similar values for

3D-FS phenotypes are reported here: 0.81-0.95 (AABV), 0.79-0.94

(OBV), 0.83-0.95 (PH), and 0.81-0.95 (NP). These values highlight

the usefulness and applicability of PO for phenotype extraction,

particularly morphological phenotypes. Additionally, similar trends

of repeatability values were found across two distinct datasets: 0.55-

0.95 and 0.39-0.95 for RGB-DR and RGB-FS platforms,

respectively. These overlapping repeatability values demonstrate

the applicability of PO to multiple platforms. The lower limit for

repeatability for bounding area is an artifact of varying data

collection start dates: 2019-12-10 for RGB-FS, 2019-12-12 for

RGB-DR, and 2020-01-21 for 3D-FS. These earlier dates had a

greater number of plants per plot, lowering the ability to accurately

extract individual plant phenotypes due to overlap between plants.

The number of plants per plot was reduced to approximately ten on

2020-01-16. Notably, all 3D-FS scans were collected after this date,

resulting in a narrower range of repeatability values due to all scans

being collected on well-spaced, lower overlap conditions.

Repeatability is dependent on data and algorithms, meaning

that any system could result in similar repeatability values as PO.

However, an important difference is the ease at which these other

systems handle and process large volumes of data to extract those

repeatable phenotypic trait values. The PO system addresses this

issue by allowing the extraction of highly repeatable traits in a few

hours. Furthermore, the PO system also provides extensibility. Each
FIGURE 8

Repeatability estimates for pipeline-extracted phenotypes collected during a single year trial. Bounding area, BA; axis-aligned bounding box volume,
AABV; number of points, NP; oriented bounding box volume, OBV; plant height, PH; Field Scanalyzer, FS; drone, DR.
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module within PO collectively results in highly repeatable

phenotypic traits across sensor data types. Even in cases where

scalability is not necessary, such as small volumes of drone data,

these repeatability values across sensors and phenotyping platforms

highlight PO’s wide range of applications. The PO system,

therefore, accelerates data processing of diverse data types from

across phenotyping platforms, enabling the extraction of highly

repeatable phenotypic traits that would otherwise have to be

extracted using various, disparate systems or software that make

it difficult to analyze, interpret, or combine resulting outputs.
4.3 PO enables deployment of future
algorithms across species

The PO suite addresses challenges in scalability and modularity

to improve plant phenomics data processing. This was

accomplished by leveraging existing and emerging technologies to

process large volumes of phenomics data in a scalable, modular

manner. Existing technologies include container technology,

distributed computing frameworks, and data management

systems, while emerging technologies include ML models for trait

extraction. By coordinating this combination of technologies, PO

processes data in an automated, efficient manner across platforms

and sensors. The PO suite serves as a tool for others in plant

phenomics to leverage within their research groups. This is made

possible by the diverse availability of processing containers which

can be deployed on any system on which Docker, Singularity,

iRODS, and CCTools are installed. The phenotypic data

processed by PO show high repeatability values across platforms,

indicating PO’s utility within plant science and plant breeding

programs. Importantly, the PO suite provides large volumes of

phenotypic trait data that can be combined with other -omics data

for applications in selection, dissection of functional and adaptive

traits, and characterization of temporal patterns in trait expression

(Supplementary Figure 8).

As ML methods mature, new models can be implemented within

PO due to its customizable YAML configuration file. For example,

models for leaf segmentation and extraction of traits such as leaf

curling at scale, are the next steps of PO development. Furthermore,

the training of these models is possible due to the large volume of

intermediate data generated by pipelines like PO, which can serve as

(i) training data for these next-generation models and (ii) as samples

for model-generated data to further increase training data sizes.

Containers that deploy these next-generation ML models could

then be added to existing PO pipelines to provide organ-level

phenotypic trait data that complements existing whole plant

phenotypic trait data. This volume and diversity of phenomics data

would enable fine-scale phenotyping at scale, which may uncover

details on the temporal patterns in trait expression.

PhytoOracle addresses many phenomics bottlenecks, but there

are outstanding bottlenecks such as enviromic capabilities and multi-

species support. Enviromic capabilities are limited within PO, which

are important to account for the environmental noise encountered in

field phenomics data. In the future, PO pipelines will be further
Frontiers in Plant Science
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developed to output environmental data directly from the Field

Scanalyzer and neighboring weather stations alongside phenotypic

trait data. As this would be difficult to generalize across users, we

decided not to provide this capability at present. However, the

authors understand that these complementing data would enhance

interpretability and interoperability of processed phenotypic trait

data, therefore, we plan to support these capabilities in the future.

Although the present study focuses on lettuce, PO has been refactored

to process sorghum phenomics data with the same containers used to

process lettuce phenomics data (Supplementary Figure 9). Further

research and development will lead to the extraction of species-

specific traits, and it is our goal to publish updates on these

added functionalities.
5 Conclusion

The scalable, modular PhytoOracle data processing pipelines

enable the extraction of large, time-series phenotypic trait data in an

automated and reproducible manner, key factors required to

process projected data volumes. The resulting traits extracted by

PO from both FS and DR platforms show high repeatability,

highlighting the usefulness of PO across phenotyping platforms.

The intermediate processed data, such as individual plant point

clouds, extracted by PO opens new opportunities to extract fine-

scale phenotypes at multiple resolutions (plot, plant, and organ

levels). Importantly, the PO pipelines can be refactored to process

phenomics data from other crops species, as discussed here with

sorghum phenomics data. In the future, these time-series datasets

may provide biological insight into morphological and

physiological responses to drought conditions at the individual

plant level across multiple crop species. This information could

enable new species-specific targets for genetic improvement based

on time-series, fine-scale phenotypic trait data.
Code availability statement

The Python scripts used to prepare RGB training data can be

accessed here: http://github.com/phytooracle/automation/blob/main/

ml/collect_rgb_data.py. The Python script used to prepare thermal

training data can be accessed here: http://github.com/phytooracle/

automation/blob/main/ml/collect_flir_data.py. The Python script

used to prepare 3D-derived images can be found here: http://

github.com/phytooracle/3d_heat_map/blob/main/3d_heat_map.py.

The code used to train object detection models can be found here:

http://github.com/phytooracle/ezobde. Examples of YAML files used

for data processing can be accessed here: http://github.com/

phytooracle/automation/tree/main/yaml_files. The automation

script and data processing repositories can be accessed at: http://

github.com/phytooracle. Each PhytoOracle container built from data

processing repositories can be accessed at: http://hub.docker.com/

orgs/phytooracle. For a detailed description of each data

processing3repository and associated container, refer to the

Supplementary Material.
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J., Rooney, D. K., et al. (2020). Phenomic selection and prediction of maize grain yield
from near-infrared reflectance spectroscopy of kernels. Plant Phenome J. 3(1), e20002.
doi: 10.1002/ppj2.20002

Li, B., Chen, L., Sun, W., Wu, D., Wang, M., Yu, Y., et al. (2020). Phenomics-based
GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant
Biotechnol. J. 18, 2533–2544. doi: 10.1111/pbi.13431

Lohmar, F. J. (1988). World geodetic system 1984 — geodetic reference system of GPS
orbits. GPS-Techniques Appl. to Geodesy Survey., 476–486. doi: 10.1007/BFB0011360

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 19, 281–297.

Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D., et al. (2016).
The iPlant collaborative: Cyberinfrastructure for enabling data to discovery for the life
sciences. PloS Biol. 14 (1), e1002342. doi: 10.1371/JOURNAL.PBIO.1002342

Parmley, K., Nagasubramanian, K., Sarkar, S., Ganapathysubramanian, B., and
Singh, A. K. (2019). Development of optimized phenomic predictors for efficient
plant breeding decisions using phenomic-assisted selection in soybean. Plant
Phenomics 2019, 1–15. doi: 10.34133/2019/5809404

Pauli, D., Chapman, S. C., Bart, R., Topp, C. N., Lawrence-Dill, C. J., Poland, J., et al.
(2016). The quest for understanding phenotypic variation via integrated approaches in
the field environment. Plant Physiol. 172, 622–634. doi: 10.1104/PP.16.00592

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
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