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Advances in breeding efforts to increase the rate of genetic gains and enhance

crop resilience to climate change have been limited by the procedure and costs

of phenotyping methods. The recent rapid development of sensors, image-

processing technology, and data-analysis has provided opportunities for multiple

scales phenotyping methods and systems, including satellite imagery. Among

these platforms, satellite imagery may represent one of the ultimate approaches

to remotely monitor trials and nurseries planted in multiple locations while

standardizing protocols and reducing costs. However, the deployment of

satellite-based phenotyping in breeding trials has largely been limited by low

spatial resolution of satellite images. The advent of a new generation of high-

resolution satellites may finally overcome these limitations. The SkySat

constellation started offering multispectral images at a 0.5 m resolution since

2020. In this communication we present a case study on the use of time series

SkySat images to estimate NDVI from wheat and maize breeding plots

encompassing different sizes and spacing. We evaluated the reliability of the

calculated NDVI and tested its capacity to detect seasonal changes and

genotypic differences. We discuss the advantages, limitations, and perspectives

of this approach for high-throughput phenotyping in breeding programs.

KEYWORDS

high-throughput phenotyping, satellite, wheat, maize, breeding, normalized difference
vegetation index, optimized soil adjusted vegetation index
1 Introduction

Climate change causes widespread changes in weather patterns and therefore poses

new challenges for plant breeders (Stamp and Visser, 2012; Xiong et al., 2022). To

strategically plan for future crop genetics, plant breeders must consider how to assess

germplasm performance in locations that better represent their future environments – i.e.

climate analogue sites – which are likely further from their research stations and possibly in

another country or continent, where frequent data collection may be challenged by the
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availability of trained personnel, travel, logistics and equipment. In

addition, multi-environment trials (METs) are needed to enable

prediction of genotype reaction-norms (van Eeuwijk et al., 2019;

Cooper and Messina, 2021). These prediction models tend to be

based on markers, big data and machine learning approaches, and

they strongly rely on a standardized, quality-controlled set of data

from many different environments. Since the contribution of a gene

to a trait can vary depending on environmental conditions, the

results of genomic selection, genome wide association studies

(GWAS) and other genomics-driven breeding and research

methods will be more precise and relevant if run using phenomic

data from numerous locations representing the diversity among

growing environments (Korte and Ashley, 2013; Jarquı ́n
et al., 2014).

Accurately linking genotypes to phenotypes requires large

populations of replicated genotypes, which can be costly to

evaluate, especially at multiple locations (Furbank and Tester,

2011). Furthermore, bias due to differences in specifications of

instruments or their handling, human error, as well as poor plot

quality due to irregular emergence and soil heterogeneity can render

big data analyses useless. These challenges limit the scalability of

current phenotyping techniques across diverse environments,

especially when linking the phenomic data to genomic data.

Genetics-based breeding technologies, such as genomic selection,

speed breeding and gene editing (CRISPR/CAS), offer ways to

accelerate breeding, but their value is limited by the quality and

relevance of phenotypic data. Consequently, standardized

phenotyping of experiments or nurseries grown at different

locations has remained a bottleneck for the use of phenomic data

in genomic analyses (Crossa et al., 2021).

High resolution satellites may contribute to address this

bottleneck, and have been recently tested for monitoring small

plots (Tattaris et al., 2016; Sankaran et al., 2020; Sankaran et al.,

2021). However, apart from being relatively costly, the resolution of

the multispectral bands used to be coarser than 1 m. This changed

with the launch of the Pleiades (Airbus, 2022) and SkySat (Planet,

2022a) constellations. The fleet of 21 high resolution (0.5 m) SkySat

satellites became fully operational in the fall of 2020. Daily

acquisitions attempts are now guaranteed, resulting in at least one

cloud free image every 7 to 10 days for most regions on Earth. This

opens up the opportunity to monitor and phenotype breeding plots

across diverse environments over an entire growing season with

identical measurement protocols.
2 Perspective: harnessing multi-
temporal high resolution satellite
images for monitoring breeding plots
in diverse environments

Many of the variables collected in crop phenotyping can

potentially be generated from satellite images. The SkySat sensors

have 4 spectral bands: blue, green, red and infrared. They can be

used to calculate the normalized difference vegetation index

(NDVI), which is a measure of the amount of vegetation and its
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greenness, and other bio-physical parameters, including plot

establishment, and various canopy traits, such as ground cover

(fCover), leaf area and chlorosis (Jin et al., 2021). Using a time series

of standardized images, date of emergence, end of leaf growth

(which is an approximation of heading or tasseling date), and

senescence or maturity can also be estimated (Jönsson and

Eklundh, 2004; Pérez-Valencia et al., 2022). From a series of

images covering the entire growing period, the performance of

selected lines can be evaluated under specific weather conditions

around the time that they occur, such as cold or dry spells and heat

waves. In this context, satellite-generated phenotypic data from

METs can be easily complemented with information on the

dynamics of the environments retrieved from weather station

networks or the global ECMWF Reanalysis products AgERA5

(Boogaard et al., 2020) and ERA5 (Hersbach et al., 2018). These

products provide daily or hourly weather data at a resolution of

either 10 or 30 km in close to real time, allowing better enviromics

for the optimization of prediction models within the framework of

the modern plant breeding triangle (Crossa et al., 2021; Resende

et al., 2021).

Satellite images would enable breeders and researchers to

monitor their field-plots in a single time-point (for each image),

across a time-span (multiple images), and collect performance data

on germplasm throughout a season at locations around the globe. In

addition, since each satellite image covers an entire research field,

genotypes across a field trial can be effectively compared without the

potentially confounding effect of time (compared to physically

carrying a hand-held tool to each plot in the field while ambient

conditions are drifting). Plot level data collected by satellites can

also be used to compare plot quality and to perform statistical

correction for spatial heterogeneity in the field that can otherwise

confound the expression of yield and other traits. They also allow

for quality control and verification of reported data, such as date of

sowing and management of the plots according to protocol. The use

of satellite data will ultimately allow for the inclusion of larger

nurseries (more lines) and more locations. Biases due to differences

in instruments, human or other experimental errors will be reduced,

resulting in standardized, multi-temporal data sets that allow for

comparisons among sites in close to real time.

However, nursery plots for wheat and maize, as well as for other

crops, tend to be relatively small. Plots tend to measure 2 or more

meters in length, but plot width might be a bottleneck for the use of

satellite images. For maize, breeders plant 1 or 2 rows, whereas for

wheat, plots usually consist of 2 to 6 rows. This results in plots that

tend to be between 0.7 m (one row of maize) to 1.2 to 1.6 m wide,

which may pose some challenges for the use of 0.5 m satellite data to

capture pure vegetation pixels and avoid mixed pixels affected by

the signal from soil surfaces or neighboring plots. The native

resolution, or ground sampling distance (GSD) of SkySat images

depends on the view angle of the satellite among others. The

resolution of the multispectral bands at nadir is 0.81 m for

SkySat-3 to 15 and 0.72 m for SkySat-16 to 21 (Planet, 2022b).

To align the satellite images with each other, they need to be

orthorectified (Leprince et al., 2007). During the orthorectification

process, the images are being resampled to a standard resolution of

0.5 m. Thus, a SkySat, or any other pixel of a satellite image, is not
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an exact representation of the area it covers on the ground (Saunier

et al., 2022). Other technical factors such as radiometric calibration,

atmospheric correction and the point spread function of the sensor

can also affect the quality of the data, being especially relevant when

using time series and multi-environment comparisons. To assess

the potential and limitations of the use of SkySat images for

phenotyping, we conducted separate field campaigns in Mexico

and Zimbabwe.
3 Case study

We used time series of SkySat imagery to estimate the NDVI

(NDVISAT) from wheat breeding plots. The NDVISAT values were

evaluated in terms of their reliability—i.e. capacity to detect

genotypic differences, and how observed seasonal changes were

related to crop phenology—and how they are affected by the plot

size and spacing; all this while comparing NDVISAT to NDVI

calculated from a UAV (NDVIUAV) at different moments during

the growing cycle in wheat and maize, respectively.

A dedicated wheat experiment for assessing the effect of plot

size and spacing in NDVISAT was planted at CIMMYT

headquarters, Texcoco, Mexico (19.5338° N, 98.8428° W, 2,278

masl), under optimal growing conditions. A spring wheat panel

comprising 10 genotypes from the Roots Anatomy panel was

planted in six treatments resulting from the combination of two

plot widths of 0.8 and 1.6 m (referred as small and big plots) and

three spacings between plots of 0.5, 0.75 and 1.5 m in all directions

(Figures 1A, B). The small and big plots had two and six rows of

plants, respectively, and the same plot length of 2.5 m. Each

treatment had an a-lattice design with two replicates, resulting in

twenty plots per treatment. This experimental design is commonly

used in breeding trials. The experiment was sown on 27 May and

harvested on 5 October 2021. Aerial high-resolution multispectral

images (GSD ~ 0.017 m) were collected at 25 m altitude using a

RedEdge (Micasense, USA) multispectral camera mounted on a

UAV (Matrice 100, DJI, China). The images were georeferenced

using ground control points distributed along the field, and the

spectral reflectance was calculated using a calibration target

(Micasense, USA). A commercial software (Pix4D, Switzerland)

was used to mosaic the images from which NDVIUAV was extracted

for each plot. The UAV images were collected across the cycle as

close as possible to the satellite acquisitions (Supplementary

Table S1).

Time series of SkySat multispectral images were collected over

the wheat experiments starting from canopy closure. The

acquisitions targeted a revisit frequency of 7 to 10 days. In order

to limit BRDF effects (Royer et al., 1985) and distortion in GSD,

maximum view angle was restricted to 16°. NDVISAT was calculated

using the RED and NIR bands from the SkySat surface reflectance

product (Planet, 2022b). Additionally, the Optimized Soil Adjusted

Vegetation Index (OSAVI, Rondeaux et al., 1996) was calculated to

mitigate the potential impact that soil brightness can have on

NDVI, especially with larger plot spacing. A total of six satellite

acquisitions were obtained during the cycle (Supplementary Table

S1). For the extraction of NDVI and OSAVI, we first manually drew
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the plot boundaries based on an accurately geo-referenced UAV

image. Using ArcGIS georeferencing tool, we then shifted the

satellite images so that they would align with the plot boundaries.

For this we employed sharp edges in the scenery as references, such

as road corners and trial boundaries. After applying a 15 cm in-side

buffer to the plot boundaries, we extracted the NDVI values with the

R-library raster v3.6.3 using the normalizeWeights option, which

accounts for the proportion of each pixel that falls in a polygon. The

best linear unbiased estimators (BLUEs; Bernal-Vasquez et al.,

2016) of the remote sensing data were calculated for each

genotype using the R-package “asreml-R” version 4.1.0.160.

We also collected satellite images over maize breeding nurseries

located in Muzarabani, Zimbabwe (16.3972° S, 31.0160° E, 498 masl).

Three images were collected over the cycle starting frommid vegetative

stage. However, UAV measurements were not available on site and

satellite data could only be compared toNDVI readingsmeasuredwith

a hand-held optical sensor with adjustable arm (GreenSeeker, Trimble,

USA). Therefore, details on the maize experiment and results are

presented as supplementary material (Supplementary Figure S1).

A visual assessment of satellite images indicates that

individualization of plots represents one of the challenges for

extracting quality phenotypic data. Wheat plot boundaries were

visually evident only for plots with a spacing of 0.75 m and 1.5 m

(Figure 1B). In general, the increase of plot size and plot spacing

resulted in higher and more significant correlations between

sate l l i te and UAV data , poss ibly due to better plot

individualization (Figures 1C, D). In maize, plots were sown

without spacing in between, hindering the visualization of plot

boundaries. But the ranges as well as the edges of the experiment

were clearly visible (Supplementary Figure S1B).

Given the satellite resolution and plot size, NDVISAT is expected

to be affected by mixed pixels. The values of NDVISAT were much

lower and showed a larger range between treatments in comparison

to NDVIUAV in all the dates (Figure 1C). While NDVIUAV showed

values close to saturation after canopy closure, NDVISAT ranged

between 0.45 and 0.65, suggesting a degradation of the signal due to

contamination from the neighboring bare soil. The OSAVISAT also

showed lower values than OSAVIUAV, except for the treatments

with 0.5 inter-plot spacing where values were within the same range

(Figure 1D). When plot spacing was increased, OSAVISAT
decreased considerably to values much lower than those

calculated from the UAV. A small inter-plot spacing facilitates

the pollution of pixels by neighboring plots in the satellite data,

which could explain the higher NDVISAT and OSAVISAT in plots

with 0.5 m distance compared to wider plot spacing. In contrast,

adding space between plots may imply a larger mixing of vegetation

and bare soil spectra, decreasing the NDVISAT and OSAVISAT.

Conversely, the higher resolution of the UAV imagery can help

avoid the effect of mixed pixels. However, increasing the plot

spacing also decreased the values of both NDVIUAV and

OSAVIUAV (although to a lesser extent than for NDVISAT and

OSAVISAT, respectively; Figures 1C, D). This suggests that mixed

pixels may not be the only factor affecting the spectral signature

when increasing the distance between plots. One possibility is that

the larger spacing changes the illumination conditions within the

plot due to more lateral light penetration.
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Mixed pixels may also limit the capability of NDVI and other

spectral indices to detect phenotypic variability from satellite

imagery. In the small plots, the reduction of plot spacing resulted

in lower average heritability values for NDVISAT and OSAVISAT
(Table 1). In larger plots, the heritability values were higher than in

small plots but there was not an evident effect of the plot spacing.

This suggests that genotypic variability detected in larger plots may

be affected by other factors such as heterogeneity within the plots,

and that differences in heritability between treatments may be more

related to weather and field conditions during data collection. In the

UAV data, the heritability values were much higher than those from

satellite data. However, the plot size and distance did not show a

clear effect across dates. Instead, differences in UAV-based

heritability between treatments and dates may be better

explained by changes in environmental and operating conditions.
Frontiers in Plant Science 04
Slight variations in factors such as illumination conditions,

wind or view angle, among others, can affect the accuracy of

the spectral measurements causing great impact in the

calculated heritability.

The time series of satellite images collected over the wheat

experiment also depicted the influence of phenological stage on

NDVISAT and its variability within each treatment. The phenotypic

variability of NDVI and OSAVI from both platforms, and the

correlations between them, were lower or not significant during the

first two measuring dates (Figure 1C), coinciding with a time of

highest biomass development during stem elongation. The

correlations and variability increased later, from booting and

during the grain filling, when decreases in green biomass and the

onset of senescence may have maximized the differences in the

spectral signature between genotypes. These phenological changes
B

C

D

A

FIGURE 1

Assessment of SkySat images for the estimation of NDVI in wheat breeding plots with different size and spacing. (A) High-resolution RGB
orthomosaic of the plot size and spacing experiment in wheat obtained from a UAV and boundaries of the different treatments. (B) RGB composite
obtained from a SkySat image with a GSD of 0.5 m. (C) Correlations between NDVISAT and NDVIUAV measured at different dates over the different
treatments. (D) Correlations between OSAVISAT and OSAVIUAV measured at different dates over the different treatments. NDVI and OSAVI values
represent the best linear unbiased estimator (BLUE) computed individually at each measuring date for a given treatment based on a a-lattice design.
Treatment description in the legend: “plot width/plot spacing”. The corresponding growth stage for each measuring date is indicated on top of
Figure 1C.
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were more contrasting when plot spacing was larger, with the bigger

plots always showing the highest heritability and the best

correlations between both platforms on all dates.
4 Discussion

The consolidation of satellite platforms as tools for high-

throughput phenotyping in breeding trials relies on many factors,

among which the spatial resolution plays an important role. As

expected, for plots with widths close to the sensor GSD low

accuracies were observed. However, the results indicate that high

resolution satellites hold promise for phenotyping plots commonly

used in wheat (1.2 m) and maize (1.5 m) breeding.

In addition to the spatial resolution, other sensor specifications

can have great impact in the usability of this data for plot

phenotyping, and should be considered carefully for interpretation.

Saunier et al. (2022) performed a deep analysis on the performance of

the SkySat constellation, revealing a high signal-to-noise ratio, high
Frontiers in Plant Science 05
geometric accuracy, and confirming that the spectral and spatial

resolutions were compliant with the specification of Planet.

Nevertheless, the same study detected some sources of

uncertainties, such as variations in the quality of the data coming

from different sensors and changes in the spectral signature due to

resampling. This has implications for the interpretation and

comparison of time series data or data collected from different

locations, especially for small plots, as images may be collected from

different satellites and from a different view angle (i.e. differences in

native spatial resolution). In this sense, the implementation of plot-

level models to characterize trait changes over time, such as the ones

suggested by Roth et al. (2021) and Pérez-Valencia et al. (2022), can

be used to smooth time series of data, helping to reduce noise

coming for systematic or random errors while improving the

genotypic variability at key phenological stages. The atmospheric

correction of SkySat imagery also presents limitations that can affect

the quality of the data (Planet, 2022b; Saunier et al., 2022).

Modifying the plot spacing helped us realize the extent to which

neighboring surfaces affect the plot spectral signature. We
TABLE 1 Changes in broad sense heritability related to plot size, spacing, and measuring date in days after emergence (DAE) for NDVI and OSAVI
calculated from satellite (SAT) and UAV imagery.

DAE 39 DAE 47 DAE 60 DAE 66 DAE 71 DAE 102 Average

NDVI

NDVISAT

0.8 m / 0.5 m 0.00 0.04 0.00 0.00 0.00 0.00 0.01

0.8 m / 0.75 m 0.23 0.00 0.00 0.52 0.44 0.56 0.29

0.8 m / 1.5 m 0.33 0.33 0.48 0.86 0.63 0.50 0.52

1.6 m / 0.5 m 0.00 0.00 0.25 0.75 0.75 0.90 0.44

1.6 m / 0.75 m 0.25 0.31 0.38 0.00 0.15 0.82 0.32

1.6 m / 1.5 m 0.52 0.00 0.00 0.63 0.41 0.81 0.40

NDVIUAV

0.8 m / 0.5 m 0.87 0.81 0.95 0.97 0.82 0.89 0.88

0.8 m / 0.75 m 0.79 0.73 0.83 0.84 0.81 0.82 0.81

0.8 m / 1.5 m 0.93 0.83 0.95 0.91 0.87 0.82 0.88

1.6 m / 0.5 m 0.91 0.85 0.96 0.98 0.97 0.96 0.94

1.6 m / 0.75 m 0.58 0.15 0.72 0.86 0.47 0.76 0.59

1.6 m / 1.5 m 0.65 0.50 0.92 0.87 0.84 0.93 0.79

OSAVI

OSAVISAT

0.8 m / 0.5 m 0.12 0.41 0.00 0.43 0.00 0.00 0.16

0.8 m / 0.75 m 0.28 0.00 0.00 0.59 0.51 0.62 0.33

0.8 m / 1.5 m 0.31 0.24 0.52 0.00 0.64 0.47 0.36

1.6 m / 0.5 m 0.00 0.00 0.29 0.77 0.84 0.86 0.46

1.6 m / 0.75 m 0.37 0.36 0.53 0.00 0.14 0.86 0.37

1.6 m / 1.5 m 0.57 0.00 0.00 0.72 0.60 0.89 0.46

OSAVIUAV

0.8 m / 0.5 m 0.62 0.82 0.94 0.85 0.77 0.72 0.79

0.8 m / 0.75 m 0.73 0.84 0.81 0.77 0.92 0.87 0.83

0.8 m / 1.5 m 0.91 0.87 0.96 0.89 0.75 0.61 0.83

1.6 m / 0.5 m 0.84 0.89 0.97 0.90 0.92 0.93 0.91

1.6 m / 0.75 m 0.63 0.42 0.71 0.62 0.58 0.67 0.60

1.6 m / 1.5 m 0.69 0.84 0.88 0.82 0.85 0.87 0.82
fro
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demonstrated that increasing plot spacing helps with the identification

of individual plots and improves apparent heritability. Similarly,

working with larger plots improved the accuracies. However, these

solutions are not suitable for breeding programs, which tend to

comprise several hundred plots. Pleiades Neo (Airbus, 2022), as well

as the upcoming Pelican fleet of satellites (Planet, 2022a) will offer

multispectral data acquired at a resolution close to 0.3 m. Hence,

limitations set by the resolution are likely to become less of an issue. A

remaining challenge will be the accurate delineation of the plot

boundaries. This can be achieved with high-resolution UAV

imagery, although a UAV may not always be available, especially in

under-resourced programs or in remote regions. An accurate

geometric layout of the plots, possibly with the help of an RTK GPS,

together with placing fixed ground control points that can be identified

in the satellite images, will facilitate the image-to-image registration

and lining up with the plot boundaries. Nursery trials are generally

sown in flat areas; hence a perfect alignment can be achieved by a

simple shifting of the images, a process that can be automated.

The SkySat images were able to capture spatial heterogeneity in the

small areas covered by our trials. Similarly, the temporal changes in the

spectra agreed with the phenology of the crops. This, together with the

possibility of capturing images on demand, opens the possibility of

using the satellite information to characterize the field level spatial

variability in models for prediction of genetic value (Araus and Cairns,

2014; Smith et al., 2021), and to remotely monitor the development

and management of the trials for quality control at a low cost.

The successful collection of six satellite images during the rainy

season in Central Mexico, while monitoring in parallel a maize trial

in Zimbabwe, amply demonstrate the flexibility of this tool. With

the imminent improvement of the spatial resolution, a remaining

challenge will be the development and fine-tuning of operational

procedures that ensure high quality, standardized data that will

enable us to harness the benefits of the modern breeding triangle.
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