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UAV imagery data and machine
learning: A driving merger for
predictive analysis of qualitative
yield in sugarcane

Marcelo Rodrigues Barbosa Júnior1,2*†,
Bruno Rafael de Almeida Moreira1†, Romário Porto de Oliveira1,
Luciano Shozo Shiratsuchi2 and Rouverson Pereira da Silva1

1Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinarian
Sciences, São Paulo State University (Unesp), São Paulo, Brazil, 2AgCenter, School of Plant,
Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States
Predicting sugarcane yield by quality allows stakeholders from research centers to

industries to decide on the precise time and place to harvest a product on the field;

hence, it can streamline workflow while leveling up the cost-effectiveness of full-

scale production. °Brix and Purity can offer significant and reliable indicators of high-

quality raw material for industrial processing for food and fuel. However, their

analysis in a relevant laboratory can be costly, time-consuming, and not scalable.

We, therefore, analyzed whether merging multispectral images and machine

learning (ML) algorithms can develop a non-invasive, predictive framework to map

canopy reflectance to °Brix and Purity. We acquired multispectral images data of a

sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °

Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of

ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision

tree (DT), and support vector machine (SVM) for adequacy and complexity in

predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and

growing degree days (GDD). We obtained evidence for biophysical functions

accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to

the modeling. Therefore, our study represents progress in assessing and monitoring

sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to

develop prescriptive harvesting and resource-effective, high-performance

manufacturing lines for by-products.

KEYWORDS

remote sensing, brix, sucrose, ripening, Saccharum spp., smart harvest
Abbreviations: BGI, blue green pigment index; CIG, chlorophyll index – Green; CIRE, chlorophyll index –

RedEdge; CIVE, color index of vegetation extraction; DT, decision tree; GB, gradient boosting; GDD, growing

degree days; GLI, green leaf index; GNDVI, green normalized difference vegetation index; LAI, leaf area index;

MAE, mean absolute error; ML, machine learning; MLR, multiple linear regression; MSEP, mean square error of

prediction; NDVI, normalized difference vegetation index; PSRI, plant senescence reflectance index; PVR,

photosynthetic vigor ratio; RF, random forest; RMSE, root mean square error; RVI, ratio vegetation index; SfM,

structure from motion; SRPI, simple ratio pigment index; SVM, support vector machine; TVI, triangular

vegetation index; UAV, unmanned aerial vehicle; VARI, visible atmospherically resistant index; VIs,

vegetation indices.
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1 Introduction

Sugarcane (Saccharum spp.) is a semi-perennial grassy crop. Such

a crop offers the global agriculture and bioeconomy sector

possibilities to fabricate food, fuel, and feed (Barbosa Júnior et al.,

2022a). It is a world-leading source of sugar for human consumption.

In addition, it represents one of the most relevant renewable resources

for bioenergy production, making it strategic for sustainable

development (Yang et al., 2021). Full-scale fields across sugarcane-

producing countries often yield 55 tons of stalk per hectare.

Approximately 10–20% of its proximate composition is sucrose,

while fiber contributes 10–15%, depending on technology and

management (Hithamani et al., 2018; Sreedevi et al., 2018; Yang

et al., 2019).

As sugarcane grows, it synthesizes and stores sugars throughout

its structure to maintain physiological functions and overcome

stresses (e.g., drought, salinity, and heat) under harsher conditions.

however, it can significantly accumulate photo-assimilates only at

maturity, which occurs between 10 and 18 months after planting,

depending on genotype-environment interactions (Hithamani et al.,

2018; Sreedevi et al., 2018; Yang et al., 2019). A mature plant can

reflect the maximum incident solar radiation through the canopy,

allowing its monitoring by a reflectance sensor. However, if it is over-

mature or at flowering, its respiration increases. As a result, net

photosynthesis and available sucrose in the stalk decrease, driving the

need to determine an optimal time to harvest cost-effective material

for industrial processing (Khan et al., 2022; Misra et al., 2022).

Chlorophylls are primary light-harvesting pigments. They can

provide reliable indicators of the physiological conditions of a crop,

such as sugarcane (Barbosa Júnior et al., 2022b). Therefore, evaluating

them for fluorescence or measuring canopy reflectance can offer

stakeholders possibilities to map and monitor the conversion of

radiant energy to sucrose during ripening (Khan et al., 2022; Misra

et al., 2022). In regular mechanical harvesting plans, staff estimates the

degree of maturity by measuring °Brix and Purity. Such an

intervention is effective; however, it can be costly, laborious, and

time-consuming. In addition, it can be invasive, as it requires

collecting stalks for juice extraction and technological analysis. An

alternative to conventional sampling would be remote sensing. The

technology can accurately and realistically capture spectral

information without subjectiveness and destruction (Barbosa Júnior

et al., 2022b).

By reviewing the literature on remotely sensing sugarcane, the

system-level study by Bégué et al. (2010) can provide valuable

information about the technical viability of forecasting sugarcane

yield and sugar content upon imagery data. The authors integrated

biometric measures and satellite time series into a framework. Then

they tested its ability to model the spatio-temporal variability of those

variables. Stages as late as maturation offered better phenological

conditions to acquire multispectral images on the field than sprouting

and tillering; hence, they allowed the most accurate forecasting of

biomass yield and sugar content upon normalized difference

vegetation index (NDVI). They developed other applicable

predictors than NDVI, such as R, G, B, NIR, and SWIR. More

importantly, they enhanced the performance of such single spectral

bands and (VIs) by combining them with the leaf area index (LAI),

supporting their hypothesis. However, their approach can require
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extensive radiometric inter-calibration to function. In addition, the

remote sensing platform they employed to acquire data depends on

the weather, driving the need to research a low-altitude crop-sensing

device with a higher revisiting capacity.

Chea et al. (2020) analyzed whether an unmanned aerial vehicle

(UAV) could acquire aerial remote sensing data to predict °Brix, Pol,

and fiber. The authors mounted a multispectral sensor (R, G, B, NIR,

and RedEdge) onboard equipment to develop a more detailed mission

and calculate a suit of VIs, such as green normalized difference

vegetation index (GNDVI), ratio vegetation index (RVI),

chlorophyll index–green (CIG), chlorophyll index–rededge (CIRE),

and simple ratio pigment index (SRPI), as alternatives to NDVI since

it is sensitive to environmental noises (e.g., background brightness).

Moreover, they added information about drought-tolerant and flood-

tolerant genotypes to the biophysical modeling to improve the

addressability of their approach. Models involving CIRE predicted °

Brix and Pol most accurately (0.7< R2< 0.85). They could work better

on processing data from a tolerant-drought field. However, they could

not predict °Brix and Pol upon imagery data on a flood-tolerant area

as accurately as those functions containing SRPI.

In a more recent publication, Chea et al. (2022) demonstrated the

significance of machine learning (ML) algorithms to improve

predicting °Brix on multiple-source data (i.e., agronomic, climatic,

and spectral). The authors brought further information about the

crop (i.e., size and age) and weather (i.e., precipitation) into the

biophysical modeling to advance their research. Gradient boosting

(GB) outperformed lasso, support vector machine (SVM), and

random forest (RF) in describing °Brix upon spectral modifications

in the canopy. It developed 70% accuracy and 3.3°Brix precision at

processing only VIs, such as CIRE, green leaf index (GLI), and

photosynthetic vigor ratio (PVR). However, combining these

spectral predictors with agronomic and climate data could optimize

its robustness (0.8< R2< 0.9; RMSE = 2.8°Brix). Therefore, UAV and

ML could be enablers in soluble solids (SS) as indicators of maturity in

sugarcane. However, Purity could offer a more reliable marker than °

Brix in mapping and monitoring saccharification. It describes the

proportion of sucrose the juice contains and is an indicator of raw

material degradation during the cut-to-crush time and industrial

processing efficiency.

Therefore, we analyzed whether ML algorithms could predict °

Brix and Purity upon multispectral UAV imagery data for precision

mechanical harvesting of material with higher quality.
2 Material and methods

2.1 Site description and field data collection

We carried out our study in a sugarcane field located near the city

of Jaboticabal, São Paulo, Brazil (Figure 1). The region has an Oxisol

type soil with low slope (0 - 8%). The climate of the region is of type

Aw with a summer dry season. Annually, rainfall reaches about

1460 mm and the average temperature is 22.6°C. We conducted

our study with the cultivar RB 97-5201 in sixth ratoon. We performed

8 samplings throughout the maturity stage of the crop (beginning

February 28 and ending May 8, 2022) with an interval between

samplings of 15 days. In each analysis, data were collected at 30
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sample points regularly distributed (9 x 9 m grid) and spaced 2 m

apart (Figure 1). On evaluation days we captured images with UAV

and randomly collected 4 stalks at each sample point. In total, our

dataset was composed of 240 samples (30 samples x 8 dates). The

images were processed and the stalks were sent to the laboratory for

analysis of °Brix and Purity contents. Additionally, we included

growing degree days (GDD) information to establish functional

relationships with crop phenology.
2.2 Flight campaign and spectral features
collection

Amultirotor UAV (DJI Phantom 4Multispectral RTK, Shenzhen,

China) was used as the remote sensing platform in this study. The

UAV is equipped with a multispectral camera that has five spectral

bands, namely Blue (450 nm ± 16 nm), Green (560 nm ± 16 nm), Red

(650 nm ± 16 nm), RedEdge (730 nm ± 16 nm), and NIR (840 nm ±

26 nm). The UAV has a sunlight sensor on top to compensate for

incident solar radiation during flight and ensure that spectral data are

consistent. In addition, it is equipped with a multi-frequency GNSS
Frontiers in Plant Science 03
receiver (DJI D-RTK2 base Station, Shenzhen, China) able to receiver

signals from constellation namely GPS, GLONASS, BeiDou, and

Galileo, ensuring centimeter positional accuracy, making it possible

to acquire temporal data from the same point. The flight missions

were performed automatically by application (DJI GS Pro, Shenzhen,

China). Flight settings and parameters are described in Table 1.

The images were stitched using Structure from Motion (SfM)

software (Agisoft Metashape Professional 1.5.5, Agisoft, St.

Petersburg, Russian) to generate 8 multispectral orthomosaics. To

extract the spectral information and calculate the vegetation indices

(Table 2) we used the open-source package “FIELDimageR” (Matias

et al., 2020); in the programming language R (version 4.1.0).
2.3 Laboratory analysis

After the collection of stalks in the field, they were properly

identified and taken to the laboratory to determine the quality

parameters °Brix and Purity. Initially, the stalks from each sample

point were processed individually in a hydraulic press for juice

extraction. We used the juice to measure the °Brix content by
TABLE 1 Flight guideline and specifications.

Date Time Ground Sample Distance - GSD (cm)

Start End

02/28/2022 02:25 PM 02:29 PM 3.14

03/15/2022 02:07 PM 02:11 PM 3.15

03/29/2022 01:53 PM 01:57 PM 3.16

04/12/2022 02:23 PM 02:27 PM 3.21

04/25/2022 11:29 AM 11:33 AM 3.22

05/10/2022 02:10 PM 02:14 PM 3.18

05/24/2022 11:26 AM 11:30 AM 3.20

06/08/2022 02:10 PM 02:14 PM 3.20
Flight height: 60 m, images overlap: 75%, speed: 5.2 m/s, and number of images: 500.
FIGURE 1

Brazil map highlighting the study region (left). UAV orthomosaic of the study field with sample plots for field and spectral data collection (right).
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digital refractometer (ABBE, Atago Pal-1, Tokyo, Japan) and

recorded the value corrected to a temperature of 20°C. To measure

Purity, we followed the methodology proposed by Consecana (2006).

We diluted 10g of clarifying substance based on aluminum chloride in

200 mL of juice. The solution was filtered and the measured value was

recorded using a polarimeter (Anton Paar, Bremen, Germany). To

determine purity we used Equations 1, 2, and 3.

LPb = 1:0078 · LAI + 0:0444 (1)

% Pol = LPb · (0:2605 − 0:0009882 · Brix) (2)

Purity   ( % ) =
% Pol
Brix

· 100 (3)

Where, LPb is the polarimetric reading equivalent to lead

subacetate, LAI is the polarimetric reading with aluminum chloride,

and %Pol is the apparent sucrose content.
2.4 Data analysis

2.4.1 Data curation
A total of 15 independent variables (including GDD, five spectral

bands and nine VIs) were used as input to the °Brix and Purity

prediction models. For the data to faithfully represent the field truth,

we applied the interquartile range method to remove outliers from the

dataset. Thus, the length of our dataset was reduced from 240 to 223.

Then the dataset was randomly divided into subsets with 70% (156)

and 30% (67) for train and test, respectively. Since we constructed our

dataset with 15 predictor variables for °Brix and Purity, we decided to

apply the best subsets regression function from the open-source

package “olsrr” (Neter et al., 1996), in the programming language R

(version 4.1.0), to select the best features for predicting °Brix and

Purity. The best subsets regression is a selection approach that consists

of testing all possible combinations of the predictor variables and then
Frontiers in Plant Science 04
selecting the best among them to constitute a future model. This

technique can effectively select the independent variables that

contribute significantly to the change in a dependent variable. The

features selection was done based on the coefficient of determination

(R²) and mean squared error of prediction (MSEP).

2.4.2 Machine learning algorithms
To model the contents of °Brix and Purity we chose 4 ML

regression algorithms, namely multiple linear regression (MLR),

random forest (RF), decision tree (DT) and support vector machine

(SVM). These algorithms are widely used because they produce high

accuracy results, solve problems on relatively small database sizes and

handle a large number of input features. All analyses were performed

in the programming language R (version 4.1.0) using the packages

“stats” (Wilkinson and Rogers, 1973), “randomForest” (Breiman,

2001), “rpart” (Breiman et al., 1984); and “e1071” (Rong-En et al.,

2005); for the algorithms described above, respectively.

Hyperparameters are described in Supplementary Table 1.

2.4.3 Model evaluation and validation
The fit of the models was evaluated according to the coefficient of

determination (R²), root mean square error (RMSE) and mean

absolute error (MAE) applied to the test dataset. The closer the R²

value is to 1, the more precise. In contrast, the closer the RMSE and

MAE values are to 0, the more accurate the model.
3 Results

3.1 Spatio-temporal evolution of °Brix
and Purity

We mapped the dynamic ripening on biometric data (Figures 2

and 3). As the crop ripened, it accumulated SS in the stalk; hence, the °

Brix (Figure 2) and Purity (Figure 3) of analytical juice increased
TABLE 2 Vegetation indices used in this study.

Index Nomenclature Equation Reference

BGI Blue Green Pigment Index Blue
Green

(Zarco-Tejada et al., 2005)

CIRE Chlorophyll Index – RedEdge NIR
RedEdge

(Gitelson et al., 2003)

CIVE Color Index of Vegetation Extraction 0.441·Red – 0.811·Green
+0.385·Blue + 18.79

(Kataoka et al., 2003)

GLI Green Leaf Index 2 · Green − Red − Blue
2 · Green + Red − Blue

(Louhaichi et al., 2001)

GNDVI Green Normalized Difference Vegetation Index NIR − Green
NIR + Green

(Gitelson et al., 1996)

NDVI Normalized Difference Vegetation Index NIR − Red
NIR + Red

(Rouse et al., 1974)

PSRI Plant Senescence Reflectance Index Red − Green
RedEdge

(Merzlyak et al., 1999)

TVI Triangular Vegetation Index 0.5·(120·(NIR – Green)
–200·(Red – Green))

(Broge and Leblanc, 2001)

VARI Visible Atmospherically Resistant Index Green − Red
Green + Red

(Gitelson et al., 2002)
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temporally and spatially. For instance, °Brix initially was 12.8 ± 2.5.

Such a measure of SS then rose to 14 ± 1.7 at the 2nd evaluation.

Additionally, we measured 14.4 ± 2.1°Brix from samples of the 3rd

collection, supporting a field at early maturity and still unsuitable for

cost-effective harvesting. As the elongation occurred, however, the °

Brix increased significantly. Therefore, its values for the 4th and 5th

survey-level evaluations were 16.9 ± 2.1 and 17.9 ± 1.6, respectively.

Summarily, sugarcane developed the highest °Brix of 19.7 ± 0.9 at the

7th evaluation.

We identified a similar trend to Purity. The crop produced 80–85%

pure juice until the 4th evaluation. Later, in the 7th evaluation, however, the

measure for this technological feature exceeded90%, supportinganoptimal

Pol/SS ratio for high-quality harvesting. More importantly, its distribution

throughout thefieldwashomogeneous, further supporting the suitability of

such a phenological stage for standard operation and precision crop

management. A decreasing proportion of the area with the highest °Brix

and Purity at the 8th evaluation could make the recovery of adequate raw

material (sucrose) for industrial processing difficult, driving the need to

determine the most reliable time to intervene in the field. Therefore, by

analyzing the spatio-temporal variability of such indicators of qualitative

yield, wemust plan to harvest the sugarcane at the 7th evaluation.However,

we could act earlier since 50–70% of the area produced a rawmaterial with

18–19°Brix and 85–90% purity at the 6th evaluation.
3.2 Selecting spectral predictors of °Brix
and Purity

We selected spectral features to predict °Brix and Purity by applying

regression analysis to remote sensingdata (Figure 4).A spectral bandorVI

capable of predicting °Brix could not provide an accurate predictor of

Purity and vice versa, supporting structural input-to-output dependencies

andparticularities of such indicators of qualitative yield. For instance,Blue,

Red, and NIR contributed to developing an adequate ten-input predictive

model for °Brix. However, they could not function as accurately as Green
Frontiers in Plant Science 05
and PSRI in predicting Purity through a topologically less complex

function consisting of seven predictors (Table 3). Such a single band and

VI contributed to bringing an R2 of 0.85 into the biophysical modeling for

Purity, while the adequacy for those above at predicting °Brix was 0.65,

making them less accurate.

By analyzing MSEP, however, we could recognize a lower

predictive error from such a brix-fitting model, making it more

precise. In addition, the more inputs, the higher the accuracy and

precision of a polynomial function (Figure 4); however, its complexity

can increase, potentially forcing an ML algorithm to misfit data

through either underfitting or overfitting a trend. A higher number

of inputs usually implies a higher degree of freedom; hence, a model

becomes more robust and probable to reject a false hypothesis and

produce significant output. However, further increasing the number

of predictors could not increase precision (Supplementary Table 2

and 3), supporting the occurrence of multicollinearity or correlation

between them (Supplementary Figure 1). Mutual relationships

commonly reduce predictive performance in statistical modeling,

driving the need to re-design or exclude part of them (Lindner

et al., 2022). However, if stakeholders understand the role of

independent variables, constraining them in an ML model to

reduce multicollinearity is unnecessary. In such a case, it can

neither determine exactness and generalization nor result in

misinterpretation and misinformation (Lindner et al., 2022).

Therefore, balancing adequacy and complexity is significant in

addressing the biophysical modeling of °Brix and Purity upon

imagery data without computational unfeasibility.
3.3 Performance of machine learning
models at predicting °Brix and Purity upon
imagery data

Machine-learning models effectively estimated °Brix (Figure 5)

and Purity (Figure 6) by processing biometric and remote sensing
FIGURE 2

Spatio-temporal mapping of °Brix from ground-level biometric data. The values upscale as the color changes from scarlet to emerald. In addition,
sublevel charts provide digital representations of sampling dates. (A) was the first data collection and (H) was the last data collection. The reference data
set was used to construct the maps by the ordinary kriging interpolation method (2 x 2 m) performed in the QGIS (version 3.22.5) using the “Smart-Map”
plugin (Pereira et al., 2022).
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data. They were as precise as accurate, allowing the selection of a non-

linear function to best describe qualitative yield, logically, irrespective

of the indicator. Random forest brought the highest R2 into the

biophysical modeling for °Brix; hence, it qualified as the most accurate

algorithm. In addition, SVM estimated such a measure of SS as

accurately and precisely as RF, outperforming both MLR and DT.

These approaches developed the least accuracy and precision as ten-

input regressors.

We obtained mathematical descriptions with higher precision for

Purity since estimatesofR²,MAE, andRMSEwere0.85–0.9, 4.3–5.1%, and

5.9–6.7%, respectively; the ranges of these metrics for ML models

predicting °Brix were 0.6–0.8, 1.1–1.4%, and 1.5–1.9%, respectively.

Therefore, compared to Purity, such an indicator of the technological

quality of juice added more systematic errors in the modeling, reducing

exactness; however, it could not necessarily decrease correctness, which is

another part of robustness. Random forest most accurately and precisely

predicted not only °Brix but also Purity, further supporting its

outperformance at learning on spatio-temporal data to map a series of

spectral inputs to an agronomic output. Its predictive metrics were 0.9 R²,

4.6% MAE, and 6% RMSE. Additionally, MLR and DT described the
Frontiers in Plant Science 06
Purity at an equal level of adequacy.However, DT outperformed theMLR

in supporting a seven-input model to predict Purity.
4 Discussion

4.1 Spatio-temporal evolution of °Brix and
Purity and its implications to precision
harvesting

As sugarcane ripens, it accumulates sugars in organs throughout its

structure, such as leaves, stalks, and roots. However, as it grows and

develops vegetatively and reproductively, it significantly consumes themto

sustain its physiological functions (Khan et al., 2022). In advanced

phenological stages, it transports photoassimilates from older (or

senescent) leaves to younger parts, such as the stalk in its parenchymal

cells and vacuoles (Misra et al., 2022). While these compartments act as

sucrose reservoirs in amature plant, theflowering canmanifest as a sink in

an over-mature plant, decreasing its content. We could reproduce and

visualize these dynamics onmaps of °Brix (Figure 2) andPurity (Figure 3).
FIGURE 4

Best Subsets Regression performance to predict °Brix and Purity (%).
FIGURE 3

Spatio-temporal mapping of Purity from ground-level biometric data. The values upscale as the color changes from scarlet to emerald. In addition,
sublevel charts provide digital representations of sampling dates. (A) was the first data collection and (H) was the last data collection. The reference data
set was used to construct the maps by the ordinary kriging interpolation method (2 x 2 m) performed in the QGIS (version 3.22.5) using the “Smart-Map”
plugin (Pereira et al., 2022).
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Wequantified thehighestquantityofSS fromsamplesof the7th evaluation;

hence, theyproduced thepurest juice.However, °BrixandPuritydecreased

as thefield startedfloweringat the8th evaluation. Inaddition, stalksbecame

more fibrous, supporting “isoporization” (Morais et al., 2015). Such a

phenomenon indicates a reduction in water and sugar, making harvesting

inefficient and costly (Poltroniere et al., 2021). Bymonitoring the field and

mapping °Brix and Purity, we can offer stakeholders possibilities to

optimize their on-farm management and agribusiness models.

Stakeholders usually rely on sugary substrates to recover

sugarcane from the field cost-effectively. °Brix provides a reliable

measure of SS in material, while Purity indicates the portion of sugar

it contains. Therefore, both are significant technological features for

farmers and sugar-energy plants to decide on activities and processes.

Raw material with high °Brix and Purity is desirable for

commercialization. However, if it excessively consists of minerals

and sugars other than sucrose, such as glucose and fructose, its Purity

becomes lower than usual, making harvesting and industrial

processing challenging. Relevant standardization bodies of the

sugar-energy sector in Brazil and abroad set °Brix and Purity to be

higher than 18 and 85%, respectively, for economically sustainable

mechanical harvesting. Sugarcane can develop such optimal values

before or at physiological maturity. However, as it is a semi-perennial

grass, it continues to vegetate during ripening; hence, these indicators

of qualitative yield decrease nonlinearly over time and spatially, as

evidenced by our prescriptive maps (Figures 2 and 3). Prospective

producers who search for precision farming support systems can
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ground their analytical (not empirical) decisions and actions in these

digital representations of an experimental field. Perhaps, they harvest

material for making food and fuel with higher accuracy and better

quality while optimizing workflow.
4.2 Relationships between spectral features
and indicators of qualitative yield

Spectral features offer stakeholders reliable markers to monitor

and map crops. They respond to modifications in nutritional

composition (Shendryk et al., 2020), accumulation of biomass

(Abebe et al., 2022), and physiological events of maturation (Chea

et al., 2020). Single bands and their mathematical combinations into

VIs allow for collecting significant imagery data on agroecosystems,

whether to make decisions on operations from implementation (e.g.,

seeding and planting) to harvesting. Researchers often exploit them in

remotely assessing the agronomic performance of sugarcane for

biomass (Wang et al., 2022), quantitative yield (Sumesh et al.,

2021), and standard biometric variables, such as leaf area and

height of an individual (Oliveira et al., 2022). However, they still

have not emphasized applying ML to UAV imagery data to predict °

Brix and Purity as we focus on. Therefore, our AI-intensive approach

is innovative. It can realistically monitor saccharification on canopy

reflectance during ripening, as photosynthetically active leaves

determine stalk sugar concentration (Khan et al., 2022). In
TABLE 3 Best predictors of °Brix and Purity upon imagery data.

Parameters of quality yield Predictors R2 MSEP

Brix Blue Red RedEdge NIR CIRE GNDVI NDVI GLI VARI GDD 0.65 561.09

Purity Green RedEdge CIRE GNDVI PSRI VARI GDD 0.85 6744.96
fronti
FIGURE 5

Biophysical modeling of °Brix by machine-learning regressors.
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addition, it can offer accurate and precise biophysical models to

establish functional relationships between spectral features and

indicators of technological quality (Table 3).

We obtained evidence for Red and NIR improving the robustness of

brix-predicting models. Wavelengths occurring in the electromagnetic

radiation spectrumaround680nmandabove visible red light between780

nm and 1 mm can manifest as exciters to chlorophylls, inducing them to

emit either photon (reflectance) in a specific spectral band or fluorescence

within a region (Jensen, 2009; Zhao et al., 2010; Stein et al., 2014; Silva

Junior et al., 2018; Rodrigues et al., 2020; Barbosa Júnior et al., 2022b).

Moreover, they can correlate with the concentration of nutrients (e.g.,

sugars and minerals) in parts of a plant, such as a stalk (Rodrigues et al.,

2022), supporting theabilityofourmodels topredict °BrixandPurityupon

imagery data. However, Red and NIR could not estimate Purity as

accurately and precisely as Green and RedEdge. As sugarcane grows, its

photosynthetic activity intensifies, triggering chemical modifications to

chloroplasts. The accumulation of sugars from leaves in the stalk further

contributes to physiological reactions in these membrane-bound

organelles, altering the balance of chlorophylls and the “greenness” of a

plant (Chea et al., 2022). hence, we can acquire significant spectral data

from a canopy to predict Purity, which provides a measure of available

sucrose in SS.
4.3 Machine learning models for predicting
°Brix and Purity upon imagery data

Predictive data analytics can develop knowledge for advancing

agriculture. However, conventional models can be statistically complex

and demand considerable computational processing, making their

implementation challenging. Even though fundamental approaches,

such as correlational or regression analysis (Chea et al., 2020; Todd et al.,
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2022), can determine functional relationships between spectral and

agronomic features, they could not be mathematically sufficient to

address problems with a high level of abstraction. Therefore, their

application in complex farming systems could not be cost-effective,

driving the need to develop an alternative to explain non-

linear interactions.

We can train anMLalgorithmon a heterogenous and “messy”dataset

to learn meaningful and non-duplicative patterns to solve a task

automatically, accurately, and unbiasedly. Some applications of ML for

sugarcane research and development available from earlier independent

studies include predicting or forecasting chlorophyll content (Narmilan

et al., 2022), standardmorphophysiological variables (Oliveira et al., 2022),

production of biomass (Wang et al., 2022), and classify cultivation (Nihar

et al., 2022).Wedevelopedanewpathwaybymapping spectral features to °

Brix and Purity; hence we can fulfill a gap in analyzing qualitative yield

while improving the addressability of a UAV for scalable aerial remote

sensing. Our models are accurate and precise, especially RF and SVM. RF

performs an independent prediction by processing data through multiple

decision trees (Breiman, 2001). Support vector machine maps inputs to

output as a classifier rather than as a regressor (Cristianini and Shawe-

Taylor, 2000). As RF provides more parameters and higher overfitting

preventioncapability forML, it canoutperformSVMinpredictive analysis

(Yuan et al., 2022), supporting our trends.

Decision tree andMLRcouldbeoptions forRFandSVMinpredicting

°Brix and Purity. However, they could develop a lower level of accuracy or

precision, driving the need for improvement. The DT consists of an

advanced problem-solving and computation-performing procedure. It

splits a dataset into multiple branches to establish relationships

hierarchically (Ghosh et al., 2022). However, such an algorithm has an

inherent flaw, causing it to be less effective. Therefore, implementing a

flawless filter could be necessary to increase its accuracy and precision in

processing data with significant fluctuations. Even though MLR is
FIGURE 6

Biophysical modeling of Purity by machine-learning regressors.
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topologically and operationally more basic than other ML algorithms, it

candevelopahighly accuratepredictivemodel forPurity. Sucha technique

canwork well on linear imagery data; hence, it can offer a reliable estimate

of quantitative variables, such as productivity, upon VIs (Todd and

Johnson, 2021; Krupavathi et al., 2022). However, it could not predict °

Brix as accurately as RF and SVM, supporting a non-linear dataset. By

introducing GDD into themodel, however, we can optimize its predictive

performance. Sugarcane’s GDD varies proportionally to its growth and

development, acting as a source of constant propagation to MLR.
4.4 Advantages, trade-offs, and implications

We demonstrated the technical viability of ML algorithms in

predicting °Brix and Purity upon UAV imagery data. Our approach is

still at an early stage of research anddevelopment.However, it is consistent

and can offer stakeholders possibilities to address precision harvesting for

cost-effective production. Such an operation is costly (Banchi et al., 2019)

and determines the quantity and quality of material for industrial

processing (Martins et al., 2021). Therefore, prospective stakeholders

across researcher centers and industries who search for decision-making

support systems can benefit from our AI-intensive biophysical models to

predict theoptimal time forharvesting.As sugarcane fulfills approximately

80% of global sugar production (FAOSTAT, 2020), recovering material

with the highest quality possible from thefield at theprecise timeandplace

canbe significant to develop a thriving and responsive sugar-energy sector.

Acquiring imagery data by a multispectral sensor onboard UAV

allows the development of accurate and precise biophysical modeling of

qualitative yield.Ourpredictive frameworks canbe technically comparable

with those functionsavailable in independent studiesbyBégué et al. (2010),

Chea et al. (2020); and Chea et al. (2022). However, they can offer farmers

further information tomonitor dynamic ripening andmap regions of high

°Brix and Purity for “smart” harvesting. In addition, our approach can

work by processing only remote sensing data, not depending on a

conventional ground-level survey to collect biometric measures.

Therefore, such an advantage can save farmland staff time and labor,

streamline workflow, and ultimately level up the cost-effectiveness of

production. Furthermore, while our approach can predict qualitative

yield, it can be part of a high-throughput phenotyping program to select

early-maturity genotypes. Stakeholders often rely on passive sensors to

monitor and assess breeding fields, opening the opportunity to investigate

active devices for this purpose.
5 Conclusion

We predicted °Brix and Purity by applying machine learning to

multispectral imagery data from a UAV. We optimized the biophysical

modeling by implementing a random forest algorithm. Themost accurate

spectral predictors of °Brix were Red andNIR, while those of PurityGreen

and RedEdge.We, therefore, developed anAI-intensive solution tomodel

qualitative yield, advancing the field of aerial remote sugarcane mapping

and monitoring. Our approach offers the global sugar-energy sector a

strategy to harvest high-quality feedstock for industrial processing while

streamlining fieldwork and addressing a pressing prescriptive and

analytical agriculture for sustainable development. Additionally, it

provides knowledge to develop a resource-effective, self-evolving
Frontiers in Plant Science 09
framework to select sugar-dense material objectively and non-invasively,

which is not an assumption of conventional phenotyping.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

MBJ: conceptualization, methodology, validation, formal analysis,

investigation, data curation, writing – original draft preparation,

writing – review and editing, and visualization. BM: methodology,

formal analysis, investigation, writing – original draft preparation,

writing – review and editing, and visualization. RO: investigation,

writing – review and editing, and visualization. LS: writing – review

and editing, visualization, and supervision. RS: conceptualization,

methodology, writing – review and editing, visualization, supervision,

and project administration. All authors contributed to the article and

approved the submitted version.
Acknowledgments

We would like to acknowledge the Coordination for the

Improvement of Higher Education Personnel (Capes), for the

scholarship (code 001) to the first author; the Laboratory of

Machinery and Agricultural Mechanization (LAMMA) of the

Department of Engineering and Mathematical Sciences for the

infrastructural support; The Industrial Process Laboratory of the

Faculty of Technology (Fatec Jaboticabal) for the laboratory

analysis of sugarcane.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1114852/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1114852/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1114852/full#supplementary-material
https://doi.org/10.3389/fpls.2023.1114852
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Barbosa Júnior et al. 10.3389/fpls.2023.1114852
References
Abebe, G., Tadesse, T., and Gessesse, B. (2022). Estimating leaf area index and biomass
of sugarcane based on Gaussian process regression using landsat 8 and sentinel 1A
observations. Int. J. Image Data Fusion, 1–31. doi: 10.1080/19479832.2022.2055157
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