
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Judy Ann Thies,
Agricultural Research Service (USDA),
United States

REVIEWED BY

Suresh Gawande,
Directorate of Onion and Garlic Research
(ICAR), India
Ravinder Kumar,
Central Potato Research Institute (ICAR),
India
Rachel Naegele,
Agricultural Research Service (USDA),
United States

*CORRESPONDENCE

Mohamed Rakha

mohamed.rakha@agr.kfs.edu.eg;

mdrakha@gmail.com

RECEIVED 04 December 2022

ACCEPTED 03 May 2023
PUBLISHED 09 June 2023

CITATION

Bindal S, Sheu Z-m, Kenyon L, Taher D and
Rakha M (2023) Novel sources of
resistance to fusarium wilt in Luffa species.
Front. Plant Sci. 14:1116006.
doi: 10.3389/fpls.2023.1116006

COPYRIGHT

© 2023 Bindal, Sheu, Kenyon, Taher and
Rakha. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 June 2023

DOI 10.3389/fpls.2023.1116006
Novel sources of resistance to
fusarium wilt in Luffa species

Sumant Bindal1,2, Zong-ming Sheu3, Lawrence Kenyon3,
Dalia Taher1,4 and Mohamed Rakha1,5*

1Breeding Unit, World Vegetable Center, Shanhua, Tainan, Taiwan, 2Research and Development
Department, R. K. Seed Farm Company, Azadpur, India, 3Plant Pathology Unit, World Vegetable
Center, Shanhua, Tainan, Taiwan, 4Vegetable Crops Research Department, Horticultural Research
Institute, Agriculture Research Center, Giza, Egypt, 5Horticulture Department, Faculty of Agriculture,
University of Kafr El-Sheikh, Kafr El-Sheikh, Egypt
Fusarium wilt is a serious disease of cucurbit crops including cultivated Luffa

species (Luffa aegyptiaca, Luffa acutangula) causing considerable amount of

reduction in yield and quality. Luffa is starting to be used as rootstocks for major

commercial cucurbit crops, but little is known of its resistance against soilborne

diseases. Here, 63 Luffa accessions from the World Vegetable Center genebank

were evaluated for resistance to an aggressive isolate of Fusarium oxysporum f.

FoCu-1 (Fsp-66). According to visual screening based on disease severity rating,

14 accessions exhibited a high level of resistance against Fsp-66. These

accessions were further evaluated for resistance against Fsp-66 and two more

isolates FoCu-1 (isolated from infected cucumber plants) and FoM-6 (isolated

from infected bitter gourd plants). Of the 14 accessions, 11 were confirmed

resistant against isolate Fsp-66. In addition, 13 accessions showed high

resistance against isolates FoCu-1 and FoM-6. This is the first report of

Fusarium wilt resistance in Luffa and these sources will be valuable for the

development of Luffa rootstocks/cultivars resistant to soil-borne pathogen to

manage this serious disease.
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1 Introduction

Fusarium wilt is a serious soil-borne fungal disease which causes serious losses in a wide

range of vegetable crops including horticultural crops around the globe (Okungbowa and

Shittu, 2012; Edel-Hermann and LeComte, 2019). Many Fusarium species are plant

pathogens, but F. oxysporum is the most ubiquitous and well-known species

(Okungbowa and Shittu, 2012). Fusarium oxysporum comprises several different formae

speciales which are similar in morphology but have different host preferences, for example

F. oxysporum f. sp. cucumerinum, F. oxysporum f. sp. luffae, and F. oxysporum f. sp.melonis,

some ofthe types responsible for causing vascular wilt diseases in the Cucurbitaceae family,

such as cucumber, watermelon, bitter gourd and muskmelon (Egel and Martyn, 2007).
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Although host specificity is exhibited by the different formae

speciales of F. oxysporum, some cross pathogenicity has also been

observed within the Cucurbitaceae, for example bitter gourd scions

grafted on luffa rootstocks recently have shown wilting in Taiwan

(Williams, 1996). Similarly, a cucumber isolate of F. oxysporum has

been identified causing root and stem rot on luffa and melon

(Chikh-Rouhou et al., 2010). The leaves of plants affected with

Fusarium, initially exhibit a dull gray green appearance followed by

yellowing, wilting and necrosis. A characteristic symptom of

Fusarium wilt is discoloration of the vascular system in the vine

or stem when viewed in longitudinal or cross section, and this will

ultimately lead to the death of the plant (Egel and Martyn, 2007).

Luffa spp. are native to Asia (primarily South and Southeast

Asia) and are widely cultivated in tropical and subtropical countries

(Kumari et al., 2019; Adeyanju et al., 2021). Nine species of Luffa

have been identified including: Luffa acutangula, L. cylindrica, L.

aegyptiaca, L. operculata, L. quinquefida, L. saccata, L. graveolens, L.

astorii and L. echinata (Prakash et al., 2013; Ani et al., 2020). Two

cultivated species, L. acutangula and L. aegyptiaca are widely grown

in Asia (Dhillon et al., 2020). Luffa fruit is commonly consumed as a

summer vegetable in Asia and Africa (Karmakar et al., 2019). Luffa

is a common vegetable in the diets of low-income consumers,

containing high content of vitamins, dietary minerals, antioxidant

and bioactive phenolic compounds (Dhillon et al., 2020). In most

luffa cultivation areas, its production is hampered by Fusarium wilt

disease, particularly during the warm seasons. Fusarium wilt has

caused significant losses in luffa fields in Taiwan for many years,

especially in the farmer selected cultivar ‘White Loofah’ where it

causes damage up to 95% under favorable conditions (Lin and Su,

2001). Fusarium wilt is very difficult to control, especially if the use

of chemical crop protection agents is not allowed under organic

farming. Several strategies have been evaluated for controlling

Fusarium wilt in vegetable crops including chemical, physical,

and biological methods (Martyn, 2014). Chemical control is often

costly and the excessive use of fungicides damages the environment

and may harms human health (Lopez Aranda et al., 2016).

Although several microbes, including Bacillus, Pseudomonas,

Trichoderma and Penicillium which have been reported to control

Fusarium wilt, do not provide adequate control of this disease under

field conditions (Raza et al., 2017; Zhao et al., 2021). Breeding for

resistance to Fusarium wilt is the most appropriate, economical, and

environmentally promising strategy for controlling this pathogen

(Jha et al., 2020). This offers the added advantage to farmers that

there is no residue left on the fruits, leading to healthier products

for consumers.

Grafting is a common practice in Taiwan for protecting against

soil-borne disease and improving fruit yield and quality in cucurbit

crops such as bitter gourd (Yetıs ̧ır et al., 2003). Watermelon grafted

on luffa and other cucurbit rootstocks were reported resistant to all

races of F. oxysporum f. sp. niveum (Li et al., 2016). Luffa rootstocks

also have been used for protecting grafted cucumber from heat and

drought stress, providing optimum root vitality and reducing

transpiration rate, photosynthetic inhibition and oxidative stress

(Wehner and Ellington, 1997; Liu et al., 2016). There are limited

studies on screening Luffa spp. germplasm for resistance to F.
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oxysporum f. sp. luffae. The objective of this study was to screen

the World Vegetable Center genebank (WorldVeg) luffa accessions

for resistance to highly aggressive isolates of Fusarium in Taiwan.
2 Materials and methods

Experiments were conducted in the Mycology laboratory and

greenhouse at WorldVeg HQ in Shanhua, Taiwan during the period

January to June, 2019. These comprised 1) inoculation studies and

pathogen identification through the use of morphological and

molecular markers, 2) screening of 63luffa germplasm accessions

and three commercial varieties against a highly aggressive

Taiwanese luffa isolate Fsp-66, and 3) re-evaluation of fourteen

luffa accessions identified from the screening trial as potentially

resistant against three aggressive Fusarium isolates collected from

luffa, cucumber and bitter gourd. These trials were conducted under

temperature-controlled conditions (25-28°C) inside a glass

greenhouse (under natural light conditions of approx. 11 hours

light and 13 hours dark period).
2.1 Pathogenicity test and
pathogen identification

Three susceptible commercial cucurbit cultivars: Shimmery

luffa, Fountain cucumber, and Moonlight bitter gourd (Known-

you Seed Company, Ltd. Taiwan) were included as susceptible

checks in the inoculation-pathogenicity tests. To improve seed

germination, the luffa seeds were soaked in distilled water for 16

hours at 25°C (Sauer and Burroughs, 1986), followed by ten minutes

soaking in 1% sodium hypochlorite solution for surface sterilization

(Saleem, 2013), and washed three times with distilled water. The

bitter gourd seeds were incubated in a water bath at 52°C for 15

minutes, followed by soaking in distilled water at room temperature

for four hours (White et al., 1990), and washed three times with

distilled water after soaking in sodium hypochlorite for 10 minutes

to prime for uniform germination.

Seven isolates of Fusarium were collected from different locations in

Taiwan (Table 1) and purified as single-spore cultures. Cultures were

grown on PDA (Thermoforma, USA) plates at 28°C for seven to eight

days in order to get uniform germination and growth and then used for

inoculation or transferred to silica gel for medium to long-term

preservation. The isolates were characterized morphologically after 7-8

days growth on PDA plates by measuring the size of 15-30 randomly

selected microcondia, macroconidia, conidiophores and assessing for the

presence or absence of chlamydospores under themicroscope (Olympus,

Japan) using T-capture software (Tucsen Photonics Co., Ltd.). Molecular

identification to species level was conducted by isolating DNA of each of

the isolates separately using FTA® cards (Whatman®) followed by PCR

amplification of the DNA using the primer pairs ITS-4 (5’-TCC TCC

GCT TAT TGA TAT GC-3’)/ITS-5 (5’-GGA AGT AAA AGT CGT

AAC AAG G-3’), and Elongation factor-1 (5’-ATG GGT AAG GAR

GAC AAG AC-3’)/Elongation factor-2 (5’-GGA RGT ACC AGT SAT

CAT GTT-3’) (Altschul et al., 1997). The PCR products were compared
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by gel electrophoresis (1.6% agarose, 1X TE Buffer at 110 volts for 60

minutes) using GeneDireX® (Taiwan) 100bp DNA ladder as a size

marker. The PCR products were also sequenced (Genomics, Taiwan)

and the sequences were compared using BLASTn (NCBI database)

(Geiser et al., 2004) and the Fusarium-id database (Lin et al., 1996) for

species confirmation. Sequences from key isolate Fsp-66 were deposited

in NCBI GenBank. Isolates were also confirmed as being Fusarium

oxysporum using the species specific primers FOF1/FOR1 (Mishra

et al., 2003).

For the initial inoculation/pathogenicity tests, 45 seedlings per

each susceptible cucurbit cultivar were arranged in three

replications in a randomized complete block design (RCBD) for

each Fusarium isolate. Seeds of three susceptible commercial

cucurbit cultivars were sown in 72 celled plastic trays (cell size 4.2

x 4.2 x 5 cm3) containing sterilized peat moss and the seedlings were

watered regularly including once per week with dilute nutrient

solution (NPK 2.5%-3.0%-3.0%). The 10 - 15 day-old seedlings were

root-prune-inoculated by uprooting them at the 2-3 true leaf stage

followed by trimming off one-third of the root tips as modified from

(Nash, 1962) and dipping the remaining roots in 150 ml of spore

suspension (1 x 106 conidia mL-1) for 3 minutes. Each inoculated

seedling was transplanted to a separate 3-inch pot containing

pasteurized substrate mixture of loamy soil-peat moss-perlite

6:3:1(v:v) and all of the seedlings were maintained under the

same conditions as above. Inoculated plants were assessed visually

at 7, 14 and 21 days after inoculation, using a 0-5 disease severity

rating (DSR) scale where 0 = no symptom; 1 = slight wilting and

dehydration on first true leaf; 2 = wilting with two or three leaves

yellowing or drying; 3 = stunted growth, significant leaf yellowing,

slight vine decay; 4 = severe vine decay and browning; 5 = entire

plant brown/dead with no green leaves (Figure 1).
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2.2 Screening all luffa accessions against
Fusarium isolate Fsp-66

Sixty-three luffa accessions originally collected from different

countries [Bangladesh (8), Lao People’s Democratic Republic (35),

Cambodia (1), Indonesia (5), USA (1), Philippines (4), Thailand (7)

and Vietnam (2)] were obtained from the WorldVeg genebank

(Supplementary Table 1). Three commercial cultivars (Shimmery,

Ajun and Cylinder No. 3) belonging to L. aegyptiaca were obtained

from the Known-you seed co., Ltd.,Taiwan. Commercial cultivar

Cylinder No. 3 was used as resistant check while Shimmery cultivar

was used as the susceptible check. These resistant and susceptible

checks are routinely used in Fusarium screening trials at WorldVeg.

Ajun variety was tested for Fusarium resistance in this trial at first

time. The WorldVeg genebank accessions and commercial cultivars

were evaluated for resistance to an aggressive Taiwanese Fusarium

isolate from luffa (Fsp-66) using the root pruning inoculation

method described above. Seedlings were arranged in a RCBD

with three replications and 15 plants per accession and check in

each replication.

To confirm infection with Fusarium, seven wilted plants per DSR

scale (2,3,4 and 5) were randomly selected for Fusarium isolation on

pentachloronitrobenzene (PCNB) media according to the modified

method of Plank (1963). Small sections from infected plants (bottom

and upper portion of stem) were washed with tap water, cut into discs

of about 1 mm in diameter, then dipped in 1% NaClO for 30 sec.,

followed by washing in distilled water for 30 sec. prior to culturing on

PCNB media. All the stem sections on PCNB medium were incubated

at 27°C with alternating 12 hours light/dark period (Saint Tein co., ltd.)

for uniform germination. Colony morphology was observed after 4-6

days for all the re-isolations.
TABLE 1 Morphological characteristics of the Fusarium isolatesa.

Isolate
code

Fusarium
species

Location
collected

Plant
species
source

Tissue
source

Microconidia
size and
number

Macroconidia
size and
number

Conidiophore
size and
number

Chlamydospores

Fsp-57
F.
proliferatum

Nanjhou,
Pingtung,

L.
aegyptiaca

Seedling 6-10 x 2-3 µ 0 13-20 x 2-3 µ 0

Fsp-58
F.
proliferatum

Nanjhou,
Pingtung,

L.
aegyptiaca

Seedling 7-9 x 2-4 µ 0 11-20 x 2-4 µ 0

Fsp-66
F. oxysporum
f. sp. luffae

Liouying,
Tainan,

L.
aegyptiaca

Stem 6-10 x 2-3 µ 25-42 x 3-4 µ 10-15 x 2-3 µ Present

Fsp-67
F. oxysporum
f. sp. luffae

Liouying,
Tainan,

L.
aegyptiaca

Stem 7-10 x 2-4 µ 27-37 x 3-4 µ 9-16 x 2-3 µ Present

Fsp-81
F. oxysporum
f. sp. luffae

Dongshan,
Tainan,

L.
aegyptiaca

Stem 7-10 x 2-3 µ 31-45 x 3-5 µ 9-15 x 2-3 µ Present

FoCu-1
F.oxysporum
f. sp.
cucumerinum

National Chung-
Hsing
University,
Taichung City,

Cucumis
sativus

Stem 8-12 x 3-5 µ 24-38 x 2-4 µ 0 Present

FoM-6
F.oxysporum
f. sp.
momordicae

Cishan,
Kaohsiun,

Momordica
charantia

Unknown 9-12 x 2-3 µ 23-36 x 3-5 µ 10-13 x 2-3 µ Present
aThese isolates were characterized morphologically after 7-8 days by measuring the size of 15-30 randomly selected microcondia, macroconidia, conidiophores and assessing for the presence or
absence of chlamydospores under the microscope.
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2.3 Re-evaluation trials

Based on the average of DSR scores and extent of segregation in

Fusarium resistance within accessions from the initial screening trials,

14 putatively resistant accessions (≤2 DSR) were selected and retested

against three isolates (F. oxysporum f. sp. luffae-66, F. oxysporum f. sp.

cucumerinum-1 and F. oxysporum f. sp. momordicae-6). Seeds were

sown alongside a commercial resistant check (Cylinder No. 3) and a

commercial susceptible check (Shimmery) as described above.

Seedlings were arranged in a RCBD with three replications and six

plants per entry in each replication (i.e., 18 plants per resistant accession

and check). 10-15 day-old-plants (2-3 true leaves) were tested as

indicated above. Fusarium was re-isolated from three randomly

selected with different DSR (2,3,4 and 5) to confirm the pathogen.
2.4 Statistical analysis

MeanDSRwas calculated based on the DSR rating on 21 days after

inoculation for each accession. Statistical analyses were conducted

using the statistical software SAS (version 9.1; SAS Institute, Cary,

NC). Data of DSR were subjected to one-way analysis of variance

(ANOVA), and mean separations were determined using the Tukey-

Kramer honestly significant difference (HSD) test (P = 0.05).

Percentage of resistant plants was calculated as follows: number of

resistant seedlings (DSR ≤ 2)/total number of seedlings for each

treatment. The accessions were categorized for resistance based on

mean DSR values as resistant (DSR ≤2), moderately susceptible (DSR

2.1 to 3), susceptible (DSR 3.1 to <4.9) and highly susceptible (DSR =5).
3 Results

3.1 Pathogen identification

Two isolates of Fusarium from luffa (Fsp-57 and Fsp-58) were

identified as being F. proliferatum species by the microscopy
Frontiers in Plant Science 04
morphological study and ITS sequencing, while the other three

luffa isolates, one cucumber and one bitter gourd isolate were

identified as F. oxysporum (Table 1). Sequences from key isolate

Fsp-66 were deposited in NCBI GenBank as accessions OQ381099

(ITS) and OQ407676 (EF). Some of the morphological features

(macro and microconidia, conidiophore and presence/absence of

chlamydospores) for the three isolates are presented in the

Supplementary Figure 1.
3.2 Pathogenicity test

The mean disease severity ratings (DSR) values for the seven

Fusarium isolates at 21 days after inoculation (dai) on commercial

susceptible luffa (Shimmery cv.), cucumber (Fountain cv.) and

bitter gourd (Moonlight cv.), are presented in Figure 2. The mean

DSR results 21 dai showed that the three luffa isolates Fsp-66, Fsp-

67 and Fsp-81 were caused high disease severity in the susceptible

luffa (Shimmery cv.) with DSR in the range of 4-5. This cultivar was

used as susceptible check in the screening and re-evaluation trials.

Two more isolates (Foc-1 and Fom-6) caused high disease severity

(3-5 DSR) in the cucumber and bitter gourd susceptible varieties.

However, the luffa isolates Fp-57 and Fp-58 caused low disease

severity in the luffa, cucumber and bitter gourd cultivars. Other

cucumber and bitter gourd isolates of Fusarium (Fc-1 and F.

oxysporum f. sp. momordicae-6) did not cause high disease

severity in the luffa cultivars.
3.3 Screening luffa accessions against
Fusarium isolate Fsp-66

There were highly significant differences (P<0.05) among luffa

accessions and checks for DSR. Results revealed that the mean DSR

value ranged from 0.53 for VI055596 to 5 for accession VI054859 in

63 genebank accessions (Table 2). Commercial resistant check

‘Cylinder No. 3’ displayed the lowest mean DSR 0.27 with 100%
FIGURE 1

The 0-5 point disease severity rating (DSR) scale used in evaluation trials, with 0 = no symptom; 1 = slight wilting with dehydration of the first true
leaf; 2 = wilting with 2-3 leaves yellowing or drying; 3 = stunted growth with significant leaf yellowing and slight vine decay; 4 = severe vine decay
with browning; 5 = entire plant brown/dead with no green leaves.
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resistance percentage. In contrast, commercial variety ‘Shimmery’

which was used as susceptible check showed a mean DSR of 4.07

and the resistance percentage of 26.67% as expected. Out of 63

genebank accessions, 25 accessions were categorized as resistant

with mean DSR value (≤2), 13 as moderately susceptible (2.1 to ≤3),

24 as susceptible (3.1 to <5) and one as highly susceptible (=5).

Three randomly selected wilted plants per accession and check with

different DSR (2, 3, 4 and 5) confirmed infection with Fusarium

when their tissues were isolated on PCNB media.
3.4 Re-evaluation trial

Fourteen genebank luffa accessions previously identified as

resistant (≤2 DSR) and exhibited no segregation in Fusarium

resistance within accessions in screening trials were tested against

three Fusarium isolates from luffa (Fsp-66), cucumber (FoCu-1),

and bitter gourd (FoM-6). The commercial resistant check cultivar,

Cylinder No. 3, and susceptible check cultivar, Shimmery, were also

included in the test. In screening with Fsp-66, eleven accessions and

the resistant check were confirmed as resistant based on their mean

DSR values (DSR ≤2), whereas three accessions were categorized as

moderately susceptible (DSR 2.1 to ≤3), and only the susceptible

check (Shimmery cv.) was confirmed as susceptible (DSR 3.1 to <5)

(Table 3). Fungal isolation from tissue of three randomly selected

wilted plants per accession and check on PCNB media confirmed

infection with Fusarium. Fusarium was rarely isolated from plants

showing a DSR of 2 or less.

Only 11 of the resistant luffa accessions from re-evaluation trial

had sufficiently high germination to be included in the screening

with FoC 1, and of these, ten accessions were categorized as resistant

(mean DSR ≤ 2), while one (VI055857) was moderately susceptible

(mean DSR 2.1 to ≤3) (Table 3). Both the Cylinder No. 3 (resistant

check) and Shimmery (susceptible check) were categorized as

resistant (mean DSR ≤2). When stem sections from three

randomly selected wilted plants of the moderately susceptible

accession (VI055857) with different DSRs (3 and 5) were plated

on PCNB media, Fusarium was re-isolated.
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As with FoC-1, only 11 of the luffa accessions were available for

the screening with FoM-6. Of these, 10 were categorized as resistant

(mean DSR ≤2) and one (VI055373-B) was moderately susceptible

(mean DSR 2 ≤ 3) (Table 3). The resistant check (Cylinder No. 3

cv.) exhibited resistance to isolate FoM-6 (mean DSR ≤2), while the

susceptible check (Shimmery cv.) was moderately susceptible (mean

DSR ≤3).
4 Discussion

Formae speciales of F. oxysporum typically have a narrow host

range, often restricted to a single plant species (Kawai et al., 1958;

Kistler et al., 1998; Van Dam et al., 2017). One of the Fusarium

isolates from luffa (Fsp. -66) was assessed to be aggressive based on

the high mean DSR attained when inoculated on the susceptible

luffa (Shimmery cv.). This is in agreement with previous work on

this isolate at WorldVeg, which also showed it to have a low level of

cross pathogenicity to other hosts confirming its host specific

nature. These findings were also supported by the work of other

groups (Lin and Su, 2001; Asma et al., 2018; Borah et al., 2018). The

Fusarium isolates from cucumber and bitter gourd also showed a

high level of host specificity and a low level of cross pathogenicity to

other hosts. Many plant-pathogenic fungi are highly host-specific

and interactions between them and their host evolved at the time of

speciation of the respective host plants (Chehri et al., 2011). The

isolates of F. proliferatum isolated from luffa caused only mild

disease on luffa, cucumber and bitter gourd and were regarded as

only weakly pathogenic on these hosts. From the pathogenicity test

and in agreement with other studies, formae speciales of F.

oxysporum were found to be the major cause of root and stem rot

(wilt) of cucurbit plants, with. F. proliferatum, F. equiseti, F.

semitectum and F. solani as only occasional or minor causes

(Barnett and Hunter, 1972).

All the isolates tested in this study had the morphological

features of pathogenic Fusarium species (Gilman, 1957; Booth,

1971; Namiki et al., 1994; Edel-Hermann and LeComte, 2019).

The molecular analysis using Internal Transcribed Spacer (ITS) and

Elongation factor (EF) sequences confirmed the isolates with

greatest pathogenicity were F. oxysporum (Chen et al., 2019),

while the two isolates with weaker pathogenicity on cucurbit

species were identified as F. proliferatum.

Most accessions identified as resistant to Fusarium wilt in the

initial screening trial showed a low segregation rate (91 to 100%

resistance) within themselves and will probably need minimal

breeding effort to purify and fix the resistance. On the other

hand, the genebank accessions categorized as moderately

susceptible showed more segregation (53 to 91% resistance)

within themselves, indicating that it may be possible to select and

fix higher levels of resistance from individual plants from these

accessions. These accessions might also have good horticultural

traits such as earliness; increase the percentage of pistillate flowers

and fruit quality which could be targeted by breeders. The

accessions found to be susceptible or highly susceptible to

Fusarium wilt are unsuitable for selection for resistance although
FIGURE 2

Mean disease severity ratings (DSR) values at 21 days after
inoculation for luffa (Shimmery cv.), cucumber (Fountain cv.) and
bitter gourd (Moonlight cv.) when challenged with Fusarium isolates
from luffa (Fsp-57, Fsp -58, Fsp-66, Fsp-67 and Fsp-81), from
cucumber (FoC-1), and from bitter gourd (Fom-6).
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TABLE 2 Evaluation of luffa accessions against an aggressive isolate of Fusarium oxysporum f. sp. luffae (Fsp-66) 21 days after inoculation.

Luffa species WorldVeg accession code Mean DSR ± S.E. a Resistance %b Resistance category c

L. aegyptiaca Cylinder No. 3d 0.27 ± 0.18 a1 100.00 R

L. aegyptiaca VI056199 0.53 ± 0.07 za1 100.00 R

Luffa sp. VI057235 0.53 ± 0.07 za1 100.00 R

L. aegyptiaca VI055596 0.53 ± 0.18 za1 100.00 R

L. acutangula VI055376 0.87 ± 0.13 y-a1 100.00 R

L. acutangula VI055375 0.91 ± 0.07 x-a1 100.00 R

L. aegyptiaca VI055950-C 0.93 ± 0.07 w-a1 100.00 R

L. acutangula VI055373-B 0.93 ± 0.07 w-a1 100.00 R

L. aegyptiaca VI055857 0.93 ± 0.18 w-a1 100.00 R

L. aegyptiaca VI055950-A 1.00 ± 0.00 v-a1 100.00 R

L. aegyptiaca Ajun 1.00 ± 0.00 v-a1 100.00 R

L. aegyptiaca VI055950-B 1.00 ± 0.07 v-a1 100.00 R

L. acutangula VI055943 1.11 ± 0.10 v-a1 100.00 R

L. aegyptiaca VI038112 1.10 ± 0.07 u-a1 100.00 R

L. acutangula VI055749 1.27 ± 0.18 u-z 100.00 R

L. aegyptiaca VI055955-A 1.33 ± 0.33 y-z 93.33 R

L. aegyptiaca VI055716 1.40 ± 0.42 y-z 85.71 R

L. aegyptiaca VI055688 1.47 ± 0.24 t-z 86.67 R

L. aegyptiaca VI047391 1.53 ± 0.23 s-z 100.00 R

L. aegyptiaca VI055652 1.60 ± 0.58 r-y 80.00 R

L. acutangula VI055374 1.67 ± 0.31 r-y 86.67 R

L. aegyptiaca VI055955-C 1.67 ± 0.24 q-y 86.67 R

L. aegyptiaca VI055949 1.80 ± 0.46 q-y 80.00 R

L. acutangula VI039833 1.87 ± 0.13 p-y 100.00 R

L. acutangula VI055372 1.87 ± 0.47 p-y 91.67 R

L. aegyptiaca VI055705 1.93 ± 0.57 o-x 73.33 R

L. aegyptiaca VI055802 2.00 ± 0.61 n-w 69.23 R

L. acutangula VI055373-A 2.03 ± 0.39 n-v 91.67 MS

Luffa sp. VI043135 2.20 ± 0.46 n-u 80.00 MS

L. acutangula VI055377 2.27 ± 0.18 n-u 73.33 MS

L. aegyptiaca VI055979 2.27 ± 0.37 n-u 69.23 MS

L. acutangula VI038108 2.47 ± 0.24 m-t 73.33 MS

L. aegyptiaca VI055837 2.53 ± 0.85 m-s 60.00 MS

L. acutangula VI039803 2.60 ± 0.59 l-s 75.00 MS

Luffa sp. VI043136 2.60 ± 0.12 l-r 73.33 MS

L. acutangula VI038107 2.70 ± 0.10 k-q 75.00 MS

Luffa sp. VI043137 2.87 ± 0.55 j-p 60.00 MS

L. aegyptiaca VI055955-B 2.87 ± 0.71 j-p 53.33 MS

Luffa sp. VI047405 2.93 ± 0.47 i-o 60.00 MS

(Continued)
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they may have other desired horticultural characteristics (Jeger and

Viljanen-Rollinson, 2001).

Accessions identified as resistant in the initial screening trial

with segregation (69 - 86% resistance) will be selfed and selected to

fix the resistance. Although the commercial luffa resistant check

(Cylinder No. 3 cv.) was more resistant than the genebank

accessions, the accessions may carry different resistance genes that

are suitable for breeding and possibly combining with that in

Cylinder No. 3, to provide effective and durable resistance to

manage this serious disease. The commercial susceptible check

(Shimmery cv.) showed the expected reaction to Fusarium and
Frontiers in Plant Science 07
was recommended for use as susceptible control for Luffa Fusarium

strains in future WorldVeg experiments. The higher final (21 dai)

DSR observed in some accessions may be explained by a slower

initial rate of disease development (Duncan andWaller, 1969 Shetty

and Wehner, 2002).

Only the accessions categorized as resistant and showing low

levels of segregation (91-100%) were selected for re-evaluation

trials. Resistance was confirmed in all 11 accessions the re-

evaluation trials.

In re-evaluation screening, the Fusarium isolates from

cucumber and bitter gourd showed a low level of cross
TABLE 2 Continued

Luffa species WorldVeg accession code Mean DSR ± S.E. a Resistance %b Resistance category c

L. acutangula VI040045 3.00 ± 0.35 h-n 53.33 MS

Luffa sp. VI043139 3.33 ± 0.24 g-m 53.33 S

L. acutangula VI039813 3.33 ± 0.24 g-m 46.67 S

L. aegyptiaca VI038104 3.40 ± 0.21 g-m 45.45 S

L. acutangula VI040961 3.47 ± 0.47 f-m 40.00 S

L. acutangula VI038105 3.60 ± 0.35 f-l 40.00 S

L. aegyptiaca VI055686 3.67 ± 0.44 e-k 33.33 S

L. aegyptiaca VI055978 3.67 ± 0.71 e-k 33.33 S

L. aegyptiaca VI034708 3.77 ± 0.62 d-j 33.33 S

L. aegyptiaca VI055967 3.80 ± 0.20 d-j 33.33 S

L. aegyptiaca VI055726 3.80 ± 0.61 d-j 26.67 S

L. aegyptiaca VI054856 3.87 ± 0.30 c-j 30.00 S

L. aegyptiaca VI055691 3.93 ± 0.71 b-i 26.67 S

L. aegyptiaca VI055930 4.00 ± 0.31 a-h 26.67 S

Luffa sp. VI043138 4.06 ± 0.13 a-g 26.67 S

L. aegyptiaca Shimmeryd 4.06 ± 0.48 a-g 26.67 S

L. acutangula VI046065 4.13 ± 0.43 a-g 22.22 S

L. aegyptiaca VI055829 4.20 ± 0.46 a-g 20.00 S

L. aegyptiaca VI055831 4.27 ± 0.47 a-g 20.00 S

L. aegyptiaca VI055869 4.47 ± 0.29 a-f 13.33 S

L. aegyptiaca VI055865 4.47 ± 0.44 a-f 6.67 S

L. aegyptiaca VI047205 4.67 ± 0.33 a-e 8.33 S

L. aegyptiaca VI055994 4.73 ± 0.27 a-d 6.67 S

L. aegyptiaca VI055867 4.80 ± 0.20 a-d 6.67 S

L. aegyptiaca VI055658 4.87 ± 0.13 abc 0.00 S

L. aegyptiaca VI055693 4.93 ± 0.07 ab 0.00 S

L. aegyptiaca VI054859 5.00 ± 0.00 a 0.00 HS
aMeans ± SE (n = 45) followed by different letters are significantly different according to Tukey-Kramer honestly significant difference (HSD) test (P<0.05). Data were statistically analyzed using
one-way analysis of variance (ANOVA).
bPercentage resistant plants = number of resistant seedlings (DSR ≤ 2)/total number of seedlings for each treatment.
cHS, Highly susceptible; S, Susceptible; MS, Moderately susceptible; R, Resistant.
dCylinder No. 3 and Shimmery were used as resistant and susceptible checks, respectively.
Accessions are arranged in ascending order of their mean disease severity ratings (DSR).
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TABLE 3 Evaluation of selected luffa accessions against three Fusarium oxysporum isolates (F. oxysporum f. sp. luffae-66, F. oxysporum f. sp.
cucumerinum-1 and F. oxysporum f. sp. momordicae-6) 21 days after inoculation.

Luffa species WorldVeg accession code Mean DSR ± S.E. a Resistance % b Resistance category c

F. oxysporum f. sp. luffae-66

L. aegyptiaca Cylinder No. 3d 0.84 ± 0.17 f 100.00 R

L. acutangula VI055373-B 1.00 ± 0.00 ef 100.00 R

L. aegyptiaca VI038112 1.06 ± 0.06 ef 100.00 R

L. aegyptiaca VI047391 1.11 ± 0.06 def 94.44 R

L. acutangula VI055375 1.13 ± 0.07 def 100.00 R

L. acutangula VI055372 1.23 ± 0.15 def 93.75 R

Luffa sp. VI057235 1.30 ± 0.07 def 82.35 R

L. aegyptiaca VI055596 1.42 ± 0.42 c-f 83.33 R

L. acutangula VI055376 1.58 ± 0.30 c-f 83.33 R

L. aegyptiaca VI056199 1.71 ± 0.20 cde 70.59 R

L. aegyptiaca VI055950-B 1.77 ± 0.15 cde 76.47 R

L. acutangula VI039833 1.89 ± 0.24 bcd 77.78 R

L. aegyptiaca VI055950-A 2.22 ± 0.62 bc 61.11 MS

L. aegyptiaca VI055950-C 2.22 ± 0.62 bc 50.00 MS

L. aegyptiaca VI055857 2.67 ± 0.19 b 55.56 MS

L. aegyptiaca Shimmeryd 4.78 ± 0.22 a 5.56 S

F. oxysporum f. sp. cucumerinum-1

L. aegyptiaca Cylinder No. 3d 0.67 ± 0.10 c 100.00 R

L. aegyptiaca VI056199 1.05 ± 0.15 bc 94.44 R

L. acutangula VI055373-B 1.05 ± 0.15 bc 94.44 R

Luffa sp. VI057235 1.05 ± 0.15 bc 94.44 R

L. acutangula VI039833 1.17 ± 0.17 bc 90.00 R

L. acutangula VI055376 1.39 ± 0.24 bc 88.89 R

L. aegyptiaca VI055950-B 1.56 ± 0.40 ab 72.22 R

L. aegyptiaca VI047391 1.61 ± 0.39 ab 72.22 R

L. aegyptiaca VI055596 1.67 ± 0.19 ab 66.67 R

L. aegyptiaca VI055950-C 1.67 ± 0.26 ab 66.67 R

L. aegyptiaca VI055950-A 1.67 ± 0.35 ab 77.78 R

L. aegyptiaca Shimmeryd 1.72 ± 0.50 ab 66.67 R

L. aegyptiaca VI055857 2.33 ± 0.19 a 33.33 MS

F. oxysporum f. sp. momordicae-6

L. aegyptiaca VI056199 0.95 ± 0.15 f 94.44 R

L. aegyptiaca Cylinder No. 3d 1.00 ± 0.25 ef 88.89 R

L. aegyptiaca VI047391 1.06 ± 0.11 def 100.00 R

L. aegyptiaca VI055950-C 1.06 ± 0.20 def 88.89 R

L. acutangula VI055376 1.30 ± 0.15 c-f 84.62 R

L. aegyptiaca VI055950-B 1.43 ± 0.11 b-f 77.78 R

(Continued)
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pathogenicity to most of the luffa accessions, and only two

accessions showed moderate susceptibility to these isolates.

Resistant luffa accessions identified in the present study were also

resistant to Fusarium isolates of cucumber and bitter gourd,

indicating their usefulness for using as rootstocks to these crops

to manage this pathogen. These results were similar to those of

Williams (1996).

The root-trimming plus dipping in spore suspension was a

reliable method for screening cucurbit accessions for reaction to

different Fusarium isolates. Fusarium oxysporum formae speciales

isolates from other cucurbit species were only weakly cross-

pathogenic to luffa, with susceptible check Shimmery exhibiting a

moderately susceptible reactions (mean DSR 2-3). Based on the

results, the aggressive isolate, Fsp-66 was identified as highly

suitable for screening luffa accessions for resistance to Fusarium

wilt. The accessions that showed resistance to Fsp-66 are potentially

useful both for incorporation into a luffa breeding program, and

also for use as Fusarium wilt resistant rootstock for grafting with

other cucurbit varieties as scions. However, these accessions first

have to be re-tested, including in open field to known to be

uniformly infested with high levels of pathogenic isolates

Fusarium oxysporum f. spp.and in different geographic locations

and agro-environments, and if necessary, fix the resistance through

selfing and selection. At that point it would be necessary to

determine if the resistances in the different accessions are allelic

and how the resistance functions. Since root knot nematodes

(RKN, Meloidogyne spp.) are another soil-borne root disease of

cucurbits including luffa (Ayala-Donas et al., 2020), it would also be

useful to determine if any of the Fusarium wilt resistant luffa

accessions are also resistant to common RKN species or strains,

or if it will be necessary to combine RKN and Fusarium wilt

resistances from different sources. A potential interaction between

nematode and Fusarium was reported in cucurbits under

greenhouse condition. Sumner and Johnson (1973) found that

incidence of Fusarium wilt increased significantly in soils infested

with root knot nematode than in soils not infested or soils with

very low infestation. However, no differences in incidence of
Frontiers in Plant Science 09
Fusarium wilt were observed when watermelon or interspecific

hybrid squash was inoculated with Fusarium and nematode (Seo

and Kim, 2017; Keinath and Agudelo, 2018). Luffa rootstock that is

resistant to both Fusarium wilt and nematode would offer greater

benefits to farmers through minimizing the use of chemicals and

improve yield and fruit quality of cucurbit varieties sensitive to soil-

borne diseases.
5 Conclusions

Cucurbits are an important class of vegetables which are

cultivated around the globe, but Fusarium wilt is a major disease

in cucurbits and accounts for high production and economic losses

worldwide. However, it may not be as susceptible to such a range of

formae speciales or strains of Fusarium as most other cucurbit

species and so may have the potential to be used as rootstocks for

other cucurbits. In this context, this study was conducted in

systematically arranged experiments with the objectives of 1)

identifying the most aggressive Fusarium isolate available from

luffa, 2) confirming its species identification by morphological and

molecular means, 3) using that isolate in screening to identify

potentially resistant luffa accessions and 4) confirming the

resistance in those accessions by screening with the aggressive

isolate and two other Fusarium isolates from other cucurbit

species. The most aggressive isolate was identified as Fusarium

oxysporum f.sp. luffae, evaluation of 63 luffa accessions against this

isolate, and 14 of 63 luffa accessions from the WorldVeg gene bank

were identified as highly resistant to Fusarium wilt. Three of the 14

resistant accessions were moderately susceptible to the aggressive

isolate on rescreening, and similarly although most were resistant

when screened with F. oxysporum f.sp cucumerinum from

cucumber and F. oxysporum f.sp. momordicae from bitter gourd,

there were two moderately susceptible to these other isolates. This is

the first report of Fusarium wilt resistance in Luffa and these sources

will be valuable for Luffa breeding for development of Fusarium-

resistant varieties/rootstocks.
TABLE 3 Continued

Luffa species WorldVeg accession code Mean DSR ± S.E. a Resistance % b Resistance category c

L. aegyptiaca VI055596 1.50 ± 0.10 b-f 77.78 R

L. acutangula VI039833 1.69 ± 0.39 b-e 70.00 R

Luffa sp. VI057235 1.72 ± 0.15 a-d 72.22 R

L. aegyptiaca VI055857 1.78 ± 0.40 abc 61.11 R

L. aegyptiaca VI055950-A 1.79 ± 0.40 abc 64.71 R

L. aegyptiaca Shimmeryd 2.11 ± 0.29 ab 44.44 MS

L. acutangula VI055373-B 2.42 ± 0.09 a 41.18 MS
aMeans ± SE (n = 18) followed by different letters are significantly different according to Tukey-Kramer honestly significant difference (HSD) test (P<0.05). Data were statistically analyzed using
one-way analysis of variance (ANOVA).
bPercentage resistant plants = number of resistant seedlings (DSR ≤ 2)/total number of seedlings for each treatment.
cHS, Highly susceptible; S, Susceptible; MS, Moderately susceptible; R, Resistant.
dCylinder No. 3 and Shimmery were used as resistant and susceptible checks, respectively.
Accessions are arranged in ascending order of their mean disease severity ratings (DSR).
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