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Plant pathogens pose a persistent threat to grape production, causing significant

economic losses if disease management strategies are not carefully planned and

implemented. Simulation models are one approach to address this challenge

because they provide short-term and field-scale disease prediction by

incorporating the biological mechanisms of the disease process and the

different phenological stages of the vines. In this study, we developed a

Bayesian model to predict the probability of Plasmopara viticola infection in

grapevines, considering various disease management approaches. To aid

decision-making, we introduced a multi-attribute utility function that

incorporated a sustainability index for each strategy. The data used in this

study were derived from trials conducted during the production years 2018-

2020, involving the application of five disease management strategies:

conventional Integrated Pest Management (IPM), conventional organic, IPM

with substantial fungicide reduction combined with host-defense inducing

biostimulants, organic management with biostimulants, and the use of

biostimulants only. Two scenarios were considered, one with medium

pathogen pressure (Average) and another with high pathogen pressure

(Severe). The results indicated that when sustainability indexes were not

considered, the conventional IPM strategy provided the most effective disease

management in the Average scenario. However, when sustainability indexes

were included, the utility values of conventional strategies approached those of

reduced fungicide strategies due to their lower environmental impact. In the

Severe scenario, the application of biostimulants alone emerged as the most

effective strategy. These results suggest that in situations of high disease

pressure, the use of conventional strategies effectively combats the disease

but at the expense of a greater environmental impact. In contrast to

mechanistic-deterministic approaches recently published in the literature, the
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proposed Bayesian model takes into account the main sources of heterogeneity

through the two group-level effects, providing accurate predictions, although

precise estimates of random effects may require larger samples than usual.

Moreover, the proposed Bayesian model assists the agronomist in selecting

the most effective crop protection strategy while accounting for induced

environmental side effects through customizable utility functions.
KEYWORDS

disease modeling, pesticides reduction, downy mildew, Bayesian modeling, utility
function, sustainability
1 Introduction

Plasmopara viticola is a heterothallic oomycete that is the causal

agent of downy mildew (DM), one of the most severe diseases of

grapevines in many viticultural areas of the world (Wong et al.,

2001). Its life cycle starts in autumn when oospores enter their

overwintering stage in infected leaves on the ground. At the

beginning of spring, zoospores, released by macrosporangia

produced by oospore germination, are distributed by rain and

wind on new leaves, shoots and later, clusters of the vine. New

zoospores are produced by asexual reproduction, and this occurs

throughout the growing season infecting new tissues, often leading

to heavy economic losses (Gessler et al., 2011). To prevent DM

infections, fungicide applications are usually required, many

applications of fungicides are usually necessary to prevent DM

infections, but some of those applied in agriculture can have a

significant impact on the environment (Shunthirasingham et al.,

2010) and human health (Kab et al., 2017). There is a heavy impact

of fungicide strategies also in organic viticulture (ORG), where

mainly copper-based products are applied (Dagostin et al., 2011), as

copper can accumulate in the soil and damage the microflora and

microfauna (Cavani et al., 2016). That is why, based on Regulation

(EU) 2018/1981 of 13 December 2018, the use of copper is strictly

limited. The EU is making many efforts to reduce the impact of

fungicides on the environment. One of the strategies proposed in

the literature enhances the resilience capacity of the grapevine to

reduce the use of fungicides with a potential environmental impact.

Perria et al. (2022) promoted the use of “GreenGrapes”

strategies, including integration or substitution of products based

on plant, seaweed or yeast extracts that guarantee greater

environmental sustainability in viticulture, with a good or

acceptable protection level compared to conventional pesticides,

both in ORG and IPM management. The latter context sees the

integration of defense induction activity alongside the more

frequently used direct antifungal activity, and the application of

an efficient Vite.net system (a Decision Support System [DSS]

developed by Horta s.r.l., providing daily information updates to

aid careful scheduling of antifungal treatments). This system

predicts the probability of infection events, leading to optimal

scheduling of the strategies, enabling a move toward more

environmental sustainability in viticulture.
02
Many simulation models to provide short-term and field-scale

DM predictions have been developed in recent years, one of the

most recent ones being proposed by Bove et al. (2020a). These

authors developed the model considering all of the biological

mechanisms of the disease process and the different phenological

stages of the vines. They simulated the infection that occurred on

healthy foliage, which generated a sporulation site producing the

secondary infections. Also, the infection on clusters is simulated as a

rate, the function of a specific transmission coefficient. This model

reproduces the disease kinetic (number of diseased sites) based on

tuning parameters, but as the authors declare, many simplifications

were made, especially on cluster infections, due to the lack of

information in the literature and the inherent complexity. Also,

they considered a steady-state system, where plant structure and

microclimatic conditions were stable. Brischetto et al. (2021)

extended this simulation model using findings from previous

studies [(Caffi et al., 2016), (Magarey et al., 2005), (Bove et al.,

2020b), (Lalancette, 1988)] to develop a proper DSS, so that

scouting of the vineyard and monitoring the environmental

conditions could give information about the expected sporangia

development, sporangia availability, and the relative severity of

lesions, and thus determine secondary infection cycles. Other

authors (Chen et al., 2020) compared statistical models and

machine learning algorithms to predict infection by DM in terms

of incidence and severity, using field scouting and climate variables

as inputs. The results were used by the authors to evaluate the

potential reduction in the number of fungicide applications.

In this work, we present a novel approach to address the

challenge of predicting Plasmopara viticola incidence under

different agronomic treatment strategies using Bayesian models

and utility functions. This research aims to bridge a significant

gap in the current literature, because the use of Bayesian models and

utility functions is still not widespread in the agronomic field,

especially in Plasmopara viticola studies. Our proposal assimilates

expert knowledge at three levels: the first deals with the structure of

the statistical model, and the second with the elicitation of prior

distributions for model parameters. In the third level, the

development of utility functions makes it possible to consider the

preferences and priorities of decision-makers in a quantitative way,

while evaluating treatment strategies. This novel aspect of our

research empowers stakeholders to make more informed
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decisions about strategies by incorporating their subjective

preferences, treatment efficiency and environmental implications

at the same time.
2 Materials and methods

2.1 Experiment description

All the details about the original experiment, such as vine age,

vine spacing, pruning and training system, and also on products

used, spraying schedule and dates, spraying equipment and volume

per ha are reported in the paper by Perria et al. (2022), which aimed

to evaluate five disease management strategies. These were:

Integrated Pest Management (IPM) (“Strategy 1”), the IPM

management modified by a reduction in fungicides and use of

plant defense supporting biostimulants (IPM-GG) (“Strategy 2”),

organic management (ORG) (“Strategy 3”), organic management

with reduced copper application, and plant defense supporting

biostimulants (ORG-GG) (“Strategy 4”) and only biostimulants

application (“Strategy 5”). Strategy 5 was considered in this

analysis as the experimental control because it did not include

fungicides. These crop protection strategies were applied over three

years from 2018 to 2020, in a cultivar Sangiovese vineyard located in

the Chianti Classico wine district (Perria et al., 2022). The trial was

applied to an area of 50,000m2 which was divided into 5 blocks each

10,000 m2. These blocks were environmentally and pedologically

homogeneous. For each strategy, four sub-plots with the size of

eight vines were randomly selected at the beginning of the

experiment, for a survey of disease symptoms on leaf and bunch.

The survey was conducted in each sub-plot, where 100 leaves

and 100 bunches (if sufficient numbers were present) were sampled

at different dates to measure the disease incidence and severity

(EPPO guidelines). The survey was conducted from May to the end

of July each year, but the analysis carried out in the present study

considered only disease parameters obtained at the last time point

in each year at the phenological phase BBCH 85-89.
2.2 Model specification

A Bernoulli random variable describes the presence, Y = 1, or

absence, Y = 0, of disease, i.e. if the observational unit i ∈
f1, 2,…, ng is infected under strategy k ∈ f0, 1, 2,…,K − 1g at

the end of year t ∈ f1, 2,…,Tg, thus Yi ∼ Bern(pi). Following
Gelman and Hill notation (2007, chap. 14), a logistic regression

model has been defined as:

Pr(Yi = 1) = logit−1(at½i� + gk½i�,t½i� + bk½i�) (1)

where betas are (fixed) effects due to the strategy applied and their

initial distribution is defined by marginally independent uniform

distributions bk ∝ U(−∞,+∞) (see Gelman et al., 2006); the notation

bk½i� refers to an element in the vector of betas whose index k½i�
depends on statistical unit i; the random fluctuation due to year t is

described by at½i�; alphas are normal and marginally independent in

the initial distribution with at ∼ N(0,sa )  and  sa ∼ Half −
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t(3, 0, 2:5), which is (half of) a Student-t distribution defined on

positive reals, with 3 degree of freedom, location 0 and scale 2.5;

gammas are random variables describing year-specific fluctuations of

strategies around the average represented by betas (Gelman and Hill,

2007), and the initial distribution is defined by marginally

independent components gk,t ∼ N(0,sgk )  with  sgk ∼ Half − t(

3, 0, 2:5), k = 0,…, 4. The prior distributions for the standard

deviation and its hyperparameters were weakly informative, so that

data dominate on expert prior belief in the posterior distribution.

The above model features were discussed with the experts and it

was recognized how the disease may start with different pressures

every year due to the dependence on environmental conditions.

Furthermore, leaves also change every year, thus important features

of the statistical unit, the plant, represent a source of variability in

the response to be taken into account. Similarly, each strategy may

have slightly different effects across years, as described by the

considered parameters gammas. The baseline (model intercept) is

b0, i.e. Strategy 5 in the original study, whose components are only

plant-defense-supporting biostimulants. The outputs of the model

are the Odds ratios (ORs), which are the result of exponentiating the

parameters in a logistic regression model. The latter represents the

log odds of an event occurring (in this case, the disease event)

compared to the probability of the event not occurring in a specific

category (e.g., Strategies). ORs are actually the probability of an

event occurring between two different categories (Strategy 1 vs

Strategy 2). If the value is greater than 1, it means that the

probability of the event is higher in the category at the numerator

of the ratio, while if the value is less than 1, it indicates that the

probability of the event is higher in the category at the denominator

of the ratio.

The final distribution (also called a-posteriori distribution) of

model parameters after learning from field data has been

approximated by Markov Chain Monte Carlo simulation (Van de

Schoot et al., 2021), see results. Four strategies (Strategies 1-4) were

compared to the reference strategy (Strategy 5) and expected values

and credible intervals of these effects were calculated. Nevertheless,

side effects specific to each strategy may reduce/increase the appeal

of strategies, for example, because of the magnitude of secondary

effects induced in the soil. For this reason, a utility function U() has

been defined in order to support the choice of strategy in

future fieldwork.
2.3 Utility function

A utility function U() was defined to find the optimal

phytosanitary strategy for crop protection in a hypothetical next

year by joint evaluation of the probability of infection for one leaf

and the sustainability of the selected strategy. A number of

attributes were selected to describe the future consequences of a

selected strategy and the uncertainty on the value taken by the

attributes in the following year was described by predictive and

prior-predictive distributions. The Simple Multi-Attribute Rating

Technique (SMART) (Edwards, 1977) is the multi-attribute

framework adopted here to define a utility function U() that

compares alternative crop protection strategies by rating
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attributes a1,…, aj,…, am on a natural scale. The value of each sub-

utility function uj(aj,k) dealing with attribute aj under crop

protection strategy k was multiplied by weight wj, where weights

are subject to ojwj = 1. The importance of an attribute aj is

reflected in a high value of its weight wj. The utility value U(k) of

the crop protection strategy k is calculated by a linear additive

model of all sub-utility functions and normalized to range from 0 to

1:

U(k) =o
m

j=1
wj uj(aj,k), k = 1, 2… K

where 0 is the worst and 1 is the best value of U(k).

The first attribute (a1) is the probability of infection of one leaf

in the next year. Subsequent attributes (j = 2,…, 8) describe the

sustainability in terms of environmental impact and toxicological

effects, in particular they are:
Fron
• ɑ2: the Human Tox score that defines the impact of toxic

substances on human health;

• ɑ3: the Treatment Frequency Index, determined by the

absolute frequency of fungicide applications;

• ɑ4: the Carbon Footprint, based on the amount of

greenhouse gases produced;

• ɑ5: the Carbon sequestration index, which is the amount of

carbon seized by plant tissues;

• ɑ6: the Ecological Footprint, which quantifies the

biologically productive land and aquatic surface needed to

provide resources and absorb emissions for the production

of a certain good or service;

• ɑ7: the Eco Tox Score, to evaluate the eco-toxicological risk

on the health of the aquatic and terrestrial ecosystems, due

to synthetic chemicals used in the field;

• ɑ8: the Water Footprint, which is based on the water

consumption of the production process;
Details on the above attributes are contained in Perria

et al. (2022).

The sample space of each environmental index (listed above)

was divided into four classes from 0 to 3, where the best class is

labeled as 0 and the worst as 3. The sub-utility function u1 depends

on ~fk, which is the probability of infection for one leaf next year

under strategy k

as described by the Bayesian predictive distribution conditioned

to observed data. The sub-utility function u1 has been elicited as a

negative exponential function:

u1(k) = (1 − ~fk)
d  I½0,0:1�(~f)

where d is a positive tuning parameter chosen by the expert. The

value of d modifies the rate at which the utility decreases with

increasing probability of infection (~f); if d > 1 it implies a faster

decrease while if d < 1 it implies a slower decrease in utility value.

More conservative experts tend to set d values greater than 1 to

prioritize strategies with high protection. In this case, we set d=0.4,
which was deemed a suitable value for this analysis. A threshold of

0.1 was established such that when the percentage of infected leaves
tiers in Plant Science 04
exceeds 10% (based on a sample of 100 leaves), the utility of the

attribute representing the probability of infection is set to zero. This

threshold was determined based on input from our expertise, who

believed that strategies under consideration would not enable

recovery of the vineyard if the infected leaf percentage exceeded

this threshold. This threshold is subjective and can be adjusted by

agronomists depending on the disease’s potential for spread and on

personal evaluation of risk. In order to achieve this threshold,

indicating function was defined (I½0,0:1�), which becomes zero

when the probability of infection exceeds the threshold, and

otherwise becomes 1. The elicitation of additional sub-utility

functions was not performed in the same manner as the primary

utility function, as a simple rescaling of their values to a range from

0 to 1 was judged flexible enough by the expert:

uj(k) =
a*j − aj,k

a*j − a0j
   with j = 2, 3,…, 8

where a*j is the maximum and a0j the minimum for attribute aj on

the original scale.

The weights wj,  j = 1, 2,…, 8 were defined as follows: w1 = 8=14

and wj = 6=98 for each attribute after the first.

In order to rank the five considered strategies in terms of utility,

expected values E½U(k)jD� were calculated for each strategy given

the collected data D, and the best strategy in a given scenario was

found as the value k determining the expected utility maximum:

k* = arg  max  
k

E½U(k)jD� (2)

where the expectation of U(k) is calculated with respect to the

distribution of the attributes a1,k,…, a8,k describing the

consequences of the adopted strategy in the future:

p(~fkjD) ·
Y8
j=2

p(~ajjaj, k)

where p(~ajjaj, k) is the elicited prior-predictive distribution of the

future score ~aj for attribute j under strategy k: these are members of

the Multinomial-Dirichlet family of distributions with parameter

vector aj (see below); p(~fkjD) is the predictive distribution for the

future probability of infection of one leaf under strategy k given the

experimental data. Equivalently, equation (2) may be expanded as

follows:

k* = arg  max
k

w1

Z
(1 − ~fk)

d  p(~fkjD) · d~fk +o
m

j=2

wj

Z
vj(~aj,k) p(~ajjaj , k) daj,k

( )

thus k* is the strategy that the decision-maker (in this case the

agronomist) should apply in the following year of grapevine

production Smith, 2010).
2.4 Computing and model diagnostic

Markov Chain Monte Carlo simulation was performed using

rstan and brms packages (Bürkner, 2017b; Carpenter et al., 2017) in

order to fit a Bayesian Linear Mixed Model (GLMM) using a No-U-

Turn sampler, which is an adaptive version of Hamiltonian Monte
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Carlo sampling (HMC) (Bürkner, 2017a). The predictive

probability of infection for each year and strategy was estimated

using kernel density curves, which were used to perform a

predictive check. The graphs depict the comparison between the

predicted probability of infection by the model and the observed

average. This comparison is performed to assess the compatibility of

the predicted mean of the new observations with the observed one,

and to examine the distribution of the new observations. The

highest density interval (HDI) was also computed, which

indicates the range of values that are most plausible for a given

parameter based on the posterior distribution. In this case, the HDI

represents the range with 80% of the posterior density. Model

quality and fit were evaluated using trace plots, which were among

the output diagnostic tools used. Continuous residuals were

obtained by calculating residuals using the DHARMa R package

which uses the inverse of the cumulative distribution function of the

standard normal to evaluate the residuals in the generalized mixed

linear model (Gelman et al., 1995; Dunn and Smyth, 1996).

Traceplot is a graphical diagnostic tool applied to each parameter

of the posterior sample generated in Bayesian statistical analysis,

and is commonly used to check the validity and reliability of the

posterior estimates generated by the MCMC algorithm. The main

use of traceplot is to assess the convergence and mixing properties

of the MCMC algorithm. If the MCMC algorithm has converged,

the traceplot should show a stable pattern over time, with little

variability in the posterior samples. Additionally, traceplot can

also help to identify any potential issues with the MCMC 8

algorithm, such as poor mixing, which can affect the accuracy of

the posterior estimates (Van de Schoot et al., 2021). A

complete list of all packages used in this work is available in the

Supplementary Material.
2.5 Scenario-building

The proposed Bayesian model can be exploited to predict the

probability of infection at the end of the season each year for one

randomly sampled leaf, given a selected strategy among those

investigated. As a relevant amount of variability depends on

features specific to each year, several scenarios may be defined. In

particular, two main scenarios were selected: in the first one, average

environmental fluctuations to represent an average disease pressure

for DM development were considered, while in the second scenario,

the best environmental fluctuations for DM development to

represent a high pressure were selected, which corresponds to the

worst situation for the farmer. Through the estimation of the group-

level parameters, it was possible to predict infection probability

under each strategy. Each scenario refers to a value of parameter a ,
where a ∼ N(0,sa ) for average pressure, and in particular ahp =

+2 · sa for high disease pressure. The average pressure scenario

could have been associated to aap = 0 but, given the limited number

of considered years, we preferred to set aap to the value estimated in

the year 2020, which is the closest value to zero among the three

available years.
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3 Results

3.1 Descriptive statistics

Descriptive statistics were calculated to summarize the

distributions of DM over the years of observation. In Figure 1, a

bar plot of counts of infected and non-infected leaves by strategy is

shown, from 2018 to 2020.

The number of infected leaves varies across years. 2018 Strategy

4 and Strategy 2 had a similar number of infected and non-infected

leaves, as was the case for Strategy 1 and Strategy 3. Strategy 5 had

the highest number of infected leaves. In 2019, there were few

infected leaves for all the strategies. Strategy 5 had the highest

number of infected leaves. In 2020, Strategy 1 had the lowest

number of infected leaves, Strategy 2 and Strategy 3 had a

similar number of infected leaves and Strategy 4 had more

infected leaves than non-infected leaves. Strategy 5, as expected,

had the highest number of infected leaves. The numbers of infected

and non-infected leaves are reported quantitatively in Table 1.

These numbers highlight that Strategy 1 showed the lowest

number of infected leaves.
3.2 A-posteriori distributions and
parameter estimates

The a-posteriori parameter values are reported in Table 2, where

betas with indexes from 1 to 4 are reported as odds ratios (OR) and

the baseline was Strategy 5, while b0 represents the odds between

the probability of being infected or not for Strategy 5.

The parameter sg is the standard deviation of the random

parameter that describes a group effect that evaluates how the

strategy effect changes every year, while the parameter sa is the

standard deviation of the random parameter that describes a group

effect that evaluates the year effect changes in the study. For each

parameter the mean, quantile at q = 0:025, quantile at q = 0:975, the

median and the highest Maximum A Posteriori (MAP) probability

estimate are reported.

The comparison between the OR of b1, which represents

Strategy 1, against the OR of b2, which represents Strategy 2,

gives 0.30, indicating the decreased occurrence of disease presence

using Strategy 1. The comparison between the OR of b3, which
represents Strategy 3, against the OR of b4, which represents

Strategy 4, gives 0.31, indicating the decreased occurrence of

disease presence using Strategy 3. The comparison between the

OR of b1 against the OR of b3, gives 0.46, indicating the decreased
occurrence of disease presence using Strategy 1. The comparison

between the OR of b1 against the OR of b4, gives 0.14, indicating the
decreased occurrence of disease presence using Strategy 1. The

comparison between the OR of b2 against the OR of b3, gives 1.54,
indicating the increased occurrence of disease presence using

Strategy 2. The comparison between the OR of b2 against the OR

of b4, gives 0.47, indicating the decreased occurrence of disease

presence using Strategy 2. The 95% intervals range from 0.0003 to
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1.76 for b1, from 0.003 to 2.32 for b2, from 0.002 to 1.45 for b3 and
from 0.005 to 5.27 for b4. In Figure 2 the boxplot of the a-posteriori

distributions of logodds of each parameter are reported. The density

distributions were symmetric—indeed, the median and mean had

similar values. The standard deviation of a , reported as sat
, had an

expected value of 2.25 and its interval ranges from 0.80 to 5.37 and

represents the heterogeneity of the year effect. The heterogeneity of

each strategy effect is expressed through the parameters sgk , which

are reported in Table 2. Strategy 1 had the highest heterogeneity—

the expected value of its standard deviation was 2.32, followed by

Strategy 5 with an the expected value of 2.08, Strategy 4 with an

expected value of 1.32, Strategy 2 with an expected value of 1.06 and

then Strategy 3 with an expected value of 1.02. The density

distributions of standard deviations are reported in Figure 2,

where it is possible to see that the values are positively skewed.

MAP for strategy effect was similar to their expected values, while

the MAP of group effect variances was smaller than their expected

values, except for the group effect variance of Strategy 5 (control).

Summary statistics about group effects and their density

distributions are reported as Supplementary Material.

b1 to b4 represent the fixed effects of the disease management

strategies (the Strategy 1-4), b0 is the baseline and corresponds to

the Strategy5, sa is the standard deviation of random effect a
Frontiers in Plant Science 06
describing the random fluctuation due to year, and sg is the

standard deviation of random effect g describing year-specific

fluctuations of strategies around the average.
3.3 Forecasting of future infection

The predictions were obtained for each considered strategy.

Below, figures of the estimated predicted probability density

functions are shown together with the Highest posterior Density

Interval (HDI) at 80%. In Figure 3, the median and the HDI of the

predictions for all strategies, and infection probabilities for the

Average scenario (green line) and the Severe scenario (red line), are

reported. Under the conditions of Strategy 1, infection probability

for the Average scenario (green line) ranges from about 0 to about

0.24 (HDI at 80%) with a mean of 0.15. The Severe scenario (red

line) infection probability ranges from about 0.35 to about 1 (HDI

at 80%) with a mean of 0.68. With Strategy 2, in the Average

scenario (green line), infection probability ranges from about 0.002

to about 0.41 (HDI at 80%) with a mean of 0.26. Infection

probability for the Severe scenario (red line) ranges from about

0.72 to about 1 (HDI at 80%) with a mean of 0.84. With Strategy 3,

in the Average scenario (green line) infection probability ranges
FIGURE 1

Number of infected leaves out of 400 monitored in the final field survey on Strategy 5 (control), and on other 4 strategies in the 3 years of study. 0,
symptom absent; 1, symptom present.
TABLE 1 Absolute frequency of infected (inf) and non-infected (non-inf) leaves observed in each year and strategy.

Year Status Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

2018 inf. 78 175 82 182 386

2018 non-inf. 322 225 318 218 14

2019 inf. 12 10 8 14 34

2019 non-inf. 388 390 392 386 366

2020 inf. 7 91 99 248 318

2020 non-inf 393 309 301 152 82
frontiersin.org

https://doi.org/10.3389/fpls.2023.1117498
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Valleggi et al. 10.3389/fpls.2023.1117498
from about 0.003 to about 0.3 (HDI at 80%) with a mean of 0.20.

The Severe scenario (red line) infection probability ranges from

about 0.6 to about 1 (HDI at 80%) with a mean of 0.8. With Strategy

4, in the Average scenario (green line) infection probability ranges

from about 0.0007 to about 0.63 (HDI at 80%) with a mean of 0.40.

The Severe scenario (red line) infection probability ranges from

about 0.82 to about 1 (HDI at 80%) with a mean of 0.90.
3.4 Extended evaluation of the Crop
protection strategies

The goal of the utility function U(k) was to identify the crop

protection strategy k* against DM infection that achieved the

maximum of the expected value with respect to a multi-attribute

description of consequences due to the strategy. In Tables 3 and 4

the expected values of U(k) for each considered strategy k and

scenario are reported.

Results suggest that Strategy 1 was the most effective against

DM infection for both scenarios. In the Average scenario, Strategy 3

was more effective than Strategy 2, and the least effective strategy
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against DM infection was Strategy 4. In the Severe scenario, Strategy

2 was more effective than Strategy 3, and the least effective strategy

against DM infection was Strategy 4.

Strategy 1 was still the most effective in the Average scenario,

followed by Strategy 3. In the Severe scenario, among those

considered here, the biostimulants strategy was the most effective

in terms of expected utility. It is important to emphasize that the

optimal decision depends heavily on the expert-specific definition

of the utility function. Indeed, by changing its parameters different

results can be achieved. In this case it seems that after reaching a

specified threshold, the best decision to take is simply to support

plant vigor.

But the results change fully after the introduction of the

environmental component utility values, which showed that the

strategies were closer to each other. Indeed, utilities of Strategy 1

and Strategy 3 were 0.461 vs 0.455 instead of 0.576 vs 0.380 and

utilities of Strategy 2 and Strategy 4 were 0.311 vs 0.281 instead of

0.380 vs 0.138. It would seem that the environmental components

gave a boost in terms of utility to strategies that had a lower

environmental impact. Indeed Strategy 1 utility decreased (0.576

to 0.461) and Strategy 3 utility increased (0.380 to 0.455).
TABLE 2 Summary of marginal a-posteriori distributions for each model parameter are shown: mean, quantile 0.025, quantile 0.975, median and
highest Maximum A Posteriori (MAP) density estimate.

Parameter Mean 2.5% 50% 97.5% MAP

b0 3.11 0.091 3.11 123.36 3.16

b1 0.0237 0.0003 0.025 1.76 0.022

b2 0.080 0.003 0.082 2.32 0.082

b3 0.052 0.002 0.055 1.45 0.053

b4 0.170 0.005 0.17 5.27 0.166

sa 2.25 0.80 1.96 5.37 1.55

sg1 2.32 0.68 1.97 6.01 1.48

sg2 1.06 0.05 0.78 3.72 0.58

sg3 1.02 0.03 0.74 3.67 0.44

sg4 1.32 0.1 1.03 4.12 0.73

sg5 2.08 0.6 1.76 5.43 1.31
FIGURE 2

Boxplot of the a-posteriori marginal distributions of model parameters.
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3.5 Model diagnostics

Graphical diagnostics were calculated in order to assess model

performances—posterior predictive probability and their HDI are

shown in Figure 4. The curves represent the probability of infection

drawn from the model; the red line in each panel represents the

observed mean of infection; while blue lines and blue areas

represent the HDI.

Considering 2018 (Figures 4A–E) observed mean matches the

mean of draws, except for Strategy 3 where a bimodal trend in

kernel density is observed. In 2019 (Figures 4F–J), kernel densities

are shifted to the left to respect the observed mean. In 2020

(Figures 4K–O), the observed mean matches the mean of draws.

Considering the HDI for Strategy 1, in 2018 (Figure 4A) the interval

ranges from about 0.16 to 0.24; in 2019 (Figure 4F) the interval

ranges from about 0.015 to 0.04; and in 2020 (Figure 4K) the

interval ranges from about 0.01 to 0.025. Considering the HDI for

Strategy 2, in 2018 (Figure 4B) the interval ranges from about 0.38

to 0.48; in 2019 (Figure 4G) the interval ranges from about 0.015 to

0.04; and in 2020 (Figure 4L) the interval ranges from about 0.18 to 0.26.

Considering the HDI for Strategy 3, in 2018 (Figure 4C) the interval

ranges from about 0.16 to 0.24; in 2019 (Figure 4H) the interval ranges

from about 0.01 to 0.03; and in 2020 (Figure 4M) the interval ranges

from about 0.20 to 0.28. Considering the HDI for Strategy 4, in

2018 (Figure 4D) the interval ranges from about 0.41 to 0.50; in 2019

(Figure 4I) the interval ranges from about 0.02 to 0.05; and in 2020

(Figure 4N) the interval ranges from about 0.57 to 0.60. Considering the

HDI for Strategy 5 in 2018 (Figure 4E), the interval ranges from about

0.95 to 0.98; in 2019 (Figure 4J) the interval ranges from about 0.06 to

0.11; and in 2020 (Figure 4O) the interval ranges from about 0.75 to 0.84.

The residuals are reported in Figure 5. In the left panel, the QQ

plot of the residual was reported, and no problems were highlighted

since residuals follow the red line, meaning that there was no

relevant difference between observed and expected values. In the

right panel, standardized residuals were plotted vs model

predictions, but no trend was observed since regression lines

(black line) were almost parallel. Traceplots of the HMC sampler

are reported in Figure 6. All traceplots showed the same behavior, so

there is little reason to call into question the performance of the

algorithm. Therefore only two traceplots are reported here.
4 Discussion

In our analysis, we applied a Bayesian model developed for the

vineyard under study, or any other vineyard with similar
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environmental characteristics. The model is suited to comparing

different protection protocol strategies against Plasmopara viticola,

and to predicting the probability of infection after strategy,

providing key information for selecting the best crop strategy

among the following: IPM, IPM-GG, ORG, ORG-GG or

application of biostimulant products alone. The latter was used as

the control strategy of this study, not only because a full negative

control (no intervention of any type) was absent due to the large size

of each plot, but also because the application of biostimulants is

intended to stimulate plant immune systems to become more

effective against pathogens, and therefore by definition they do

not have a direct effect on pathogen growth itself [(Shahrajabian

et al., 2021, Bertrand et al., 2021 and La Spada et al., 2021)]

The Bayesian model was applied while taking into account the

main sources of heterogeneity of the phenomenon. Indeed, in the

model specification, two group-level effects were considered. As

described in Model specification, at was specified to take into

account the different disease pressure on plants each year. This

can be observed also in Figure 1 and Table 1 in Strategy 5 bars and

columns—indeed, in 2018 the proportion of infected leaves was

96.5%, in 2019 this figure was 8.5%, and in 2020 it was 79.5%.

Considering that sporangia are a typical component of the airborne

microflora, these differences in the infection percentage could be

due to meteorological conditions (Brischetto et al., 2020). Indeed,

weather data from Perria et al. (2022) showed that 2018 was

particularly positive for DM development—more than in 2019—

due to the fewer leaf wetness hours, which is very important for DM

development. Since the model did not include data from

meteorological conditions, the estimation of at and its standard

deviation (sa = 2.25) could provide for the variability of disease

pressure due to favorable or unfavorable meteorological conditions,

acting as a proxy variable which describes the disease pressure. For

the same reason, we specified a parameter gk,t to take into account

the variability of the protocols affect every year. Considering the

assignment of strategies to plots, we were constrained by the

experimental design originally defined for an already performed

experiment. Our reanalysis is in any case suited to the quite large

area considered because local experts clearly stated that this specific

vineyard is reasonably homogeneous, with the same type of soil, the

same slope, and the same exposure. We obviously agree that

randomization is to be preferred in general, but we maintain that

is not crucial point here. No data about microclimate or soil

analyses were collected, thus we considered a model with subplots

as random effects in order to estimate the standard deviation. In the

analysis, such a model was considered, but estimated standard

deviations of random effects for each strategy in each subplot
TABLE 3 Utility of the crop protection strategies.

Scenario Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Average year 0.576 0.250 0.380 0.138 0.031

Severe year 0.038 0.006 0.005 0.004 0.003
Integrated Pest Management (IPM) (“Strategy 1”), the IPMmanagement modified by reduction in fungicides and use of plant defense supporting biostimulants (IPM-GG) (“Strategy 2”), organic
management (ORG) (“Strategy 3”), organic management with reduced copper application, and plant defense supporting biostimulants (ORG-GG) (“Strategy 4”) and only biostimulants
application (“Strategy 5”).
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were quite low (see Table S2 for results). The leave-one-out (LOO)

cross-validation (Vehtari et al., 2017), was used to compare the

considered models, and it confirmed that introducing subplots did

not improve the predictive performance of the model, which is why

subplots have been removed from the final model. Therefore,

following the LOO, as well as the degree of belief of our expert,

we peacefully stated that our vineyard is quite homogeneous. In any

case, our statement should not be interpreted as a (bad) suggestion

of avoiding randomization or even neglecting heterogeneity at all in

general. The comparisons in terms of LOO between the model with

and without the subplots as predictors are reported in Table S3. As

reported in Forecasting of future infection, Strategy 1, which

corresponds to IPM, gave the best prediction in both scenarios.

Indeed, its predictive probability mass was concentrated around

15% in the Average scenario and 68% in the Severe scenario.

Figure 3 highlights that probability distributions had a high

dispersion, especially in the Severe scenario, in which high

uncertainty of prediction is inherent. This could be due to the
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behavior of the disease in the 3-year study. Indeed as reported in

Descriptive statistics, in 2019 a very low amount of disease was

observed (8.5%). Moreover, high dispersion could be due to the

absence of meteorological variables in the model specification. This

could be confirmed by Chen et al. (2020) who used GLM (with a

frequentist approach) to predict DM on leaves. Their results suggest

that data about rainfall, especially recorded in March and April,

were important to predict occurrence of the disease on leaves. The

oospore germination process leading to macrosporangia production,

which is the disease inoculum responsible for primary infections, is

strongly inhibited where dry springs occur. Despite the relevant

importance of the meteorological variable, in the discussion section,

the authors recommend the usage of GLM where only the dates of

disease onset detected by monitoring were used as an explanatory

variable. In the case of Chen et al. (2020), meteorological variables

were not available before June but despite this, their absence in the

model specification did not compromise model performances. So,

even if the disease is a function of meteorological data, the
TABLE 4 Utility of the crop protection strategies after considering the environmental indexes.

Scenario Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Average year 0.461 0.311 0.455 0.281 0.308

Severe year 0.117 0.125 0.189 0.218 0.236
Integrated Pest Management (IPM) (“Strategy 1”), the IPMmanagement modified by reduction in fungicides and use of plant defense supporting biostimulants (IPM-GG) (“Strategy 2”), organic
management (ORG) (“Strategy 3”), organic management with reduced copper application, and plant defence supporting biostimulants (ORG-GG) (“Strategy 4”) and only biostimulants
application (“Strategy 5”).
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FIGURE 4

Posterior predictive checks. The black curve line represents the kernel density of predicted probabilities of infection for each year and strategy; blue
vertical lines and purple area are the Highest density interval (HDI) at 80%; and the red vertical line is the infection probability observed. (A) 2018 &
Strategy 1. (B) 2018 & Strategy 2. (C) 2018 & Strategy 3. (D) 2018 & Strategy 4. (E) 2018 & Strategy 5. (F) 2019 & Strategy 1. (G) 2019 & Strategy 2.
(H) 2019 & Strategy 3. (I) 2019 & Strategy 4. (J) 2019 & Strategy 5. (K) 2020 & Strategy 1. (L) 2020 & Strategy 2. (M) 2020 & Strategy 3. (N) 2020 &
Strategy 4. (O) 2020 & Strategy 5.
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observation of its actual development in the field is enough to

overcome the missing climatic information. This conjecture

supports our approach based on group-level parameters as proxy

variables that quantify differences in disease pressure and therefore

explain the variability of the disease pressure due to favorable-

unfavorable meteorological conditions discussed above.

Despite the fact that the predictive probability of infection is a

key value in selecting the best strategies, nowadays it is more and

more important to take a decision after also considering the

environmental impact of the strategy and further possible side

effects. In the last part of this work, a multi-attribute approach
Frontiers in Plant Science 10
has been proposed, where variables that describe the environmental

impact and the potential of causing human diseases jointly

contribute to the optimal decision, namely the selection of the

best crop protection strategy. It is important to note that the

probability of infection for one future leaf has been calculated

using a Bayesian predictive distribution conditional on collected

data, while the future environmental impact and side effects were

accounted for by a prior-predictive distribution (Multinomial-

Dirichlet) mostly dependent on accumulated expert knowledge

instead of on extensive data. In the prior-predictive approach, the

mean of the only two observed scores per year was considered as
FIGURE 5

Analysis of DHARMa residuals.
FIGURE 6

Traceplot of Markov Chain Monte Carlo simulations.
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the future modal value of the score, and indeed the vector a led to

the concentration of probability mass on that observed value. The

selected classes belong to the year 2020, because it was considered

our average year (Average scenario) compared to the others.

The utility function elicited for presence of the disease depends

on a parameter, d, that was set to 0.4, but that value can be changed

according to how fast the utility is increased by increasing the

probability of a healthy leaf, i.e. by expert judgment: if the d is less

than 1 then the resulting value decreases quickly while if the d is

greater than 1 the result decreases slowly, as flexibility is required to

adapt to expert-specific evaluations and differences in vineyards. In

this work, the numerical weights assigned to the various attributes

were determined based on their relevance for utility, which can vary

depending on the purpose of the study and the preferences of the

decision-makers. Indeed, Lavik et al. (2020) applied the SMART

approach in an agronomic context and studied many scenarios with a

different set of numerical weights, showing that changing weights can

strongly change the outcome. In this work, results from expected

utility show that the inclusion of the environmental attributes had an

impact on the outcome: indeed when they were excluded, the IPM

strategy dominated all other strategies in the average scenario. On the

other hand, when they were included, utility values between IPM and

IPM-GG became closer because of the low environmental impact of

the “Green Grapes” version, especially for the Eco Tox score. Since

both ORG and ORG-GG increased their utility values after including

environmental attributes, the distance in terms of utility was the

same, meaning that there were no differences in terms of

sustainability, but only in terms of predictive disease detection. The

observation of individual attributes highlighted that there were

actually some differences. Indeed ORG-GG had a higher utility

value for Carbon footprint and Carbon sequestration (data not

shown), but a lower value for the Human tox score compared to

ORG. However, the overall utility for the environmental components

was the same. In the Severe scenario, a biostimulants-only approach

(Strategy 5) was the best strategy—a result suggesting that when

disease pressure is very high due to favorable climatological

conditions then the use of the other strategies is not enough to

counter the disease, without a high environmental impact. The latter

result is strictly dependent on the elicitation of the sub-utility

functions. Indeed, changing the tuning parameters, for instance by

increasing the threshold of the sub-utility function describing future

infections, might decrease the dominance of Strategy 5 in the

Severe scenario. Therefore, since there is no unique-natural utility

function, different agronomists can customize the sub-utility

functions according to their attitude to risk, their evaluation of

environmental side effects, as well as current regulatory

dispositions, and thus leading to different optimal decisions.

Despite IPM and ORG being the best strategies in the Average

scenario, their utilities were not dominant, therefore an agronomist

could change weights further to reward the “GreenGrapes” strategy

that guarantees greater environmental sustainability of viticulture.

These results can contribute greatly to a more targeted approach in

disease control management, by selecting products with lower

environmental impact based on risk assessment, aligning with

current European guidelines for plant protection. Instead of

synthetic products that have a high environmental impact, the use
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of substances that induce plant defense, basic compounds, and plant

strengtheners with low environmental impact is recommended.

However, the application of these alternatives, especially under a

lower disease pressure, benefits considerably from the support of

models in interpreting risk and guiding the selection of these less

potent yet environmentally friendly products.

In contrast to mechanistic-deterministic approaches recently

published in the literature which are based on differential equations,

we have proposed a statistical approach grounded in accumulated real-

world expertise and probabilistic evaluation of uncertainty. This key

feature, besides enabling more flexibility in the analysis, also entails

certain limitations. First, the quality of predictions strongly depends on

sample size and on the extent of the natural variability in collected data.

In a full Bayesian approach, variability is almost never neglected, thus

bold overconfident statements are typically not a risk, but at the same

time large samples are needed to reduce uncertainty to a practically

useful degree. Second, in our work we exploited expert knowledge

while defining assumptions for our model, but we did not use highly

informative prior distributions for model parameters. Nevertheless, an

analysis in which an experienced expert defines highly informative

prior distributions remains a possibility for future work, given that in

our case we have chosen to let data “speak aloud”. Third, uncertainty in

prediction was not always small, a feature that we tend to prefer

compared to the alternative of artificial overprecision and risky

decisions. Fourth, our model did not consider the mechanistic

features of the underlying causal data-generating process. We

conjecture that the proposed statistical model could almost surely be

improved by combining mechanistic and statistical approaches into a

unified framework: deterministic models could play the role of anchors

while defining structural causal models task that is likely to require

specifically planned studies, as we have stated previously in our recent

work Stefanini and Valleggi (2022).
5 Conclusion

Plasmopara viticola is the causal agent of downy mildew, one of

the most damaging diseases of grapevines. A model able to select the

best strategy against downy mildew could be a suitable tool in order

to choose the optimal strategy based on the local characteristics of

the vineyard, in terms of disease pressure and spread. In this work, a

Bayesian decisional approach was used in order to combine

different sources of information and select the best strategy for

the next year of grapevine production, considering at the same time

the efficiency of the strategy and its environmental impact. Thanks

to the proposed utility function, the agronomist may consider

several attributes on a very easily interpretable scale. Furthermore,

it is also possible to change the emphasis of the analysis choosing

weights to obtain the best balance between environmental attributes

and strategy efficiency as a result of risk attitude and interest in

sustainability that characterizes the decision maker.

In order to improve this tool, more than three years of study are

required due to the presence of high seasonal variability. For

example, in 2019 very low numbers of infected leaves were

observed due to unfavorable meteorological conditions for the

pathogen. The natural next step of this framework would be an
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extension of the proposed utility function where more attributes are

considered, in particular by introducing attributes describing the

quality and the disease incidence of grapes, the economic aspect of

each strategy, and also considering the joint assessment of utility

value over attributes, e.g. considering utility dependence within

some subsets of attributes.
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