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Estimating the rice
nitrogen nutrition index
based on hyperspectral
transform technology

Fenghua Yu, Juchi Bai, Zhongyu Jin, Honggang Zhang,
Jiaxin Yang and Tongyu Xu*

School of Information and Electrical Engineering,Shenyang Agricultural University, Shenyang, China
Background and objective: The rapid diagnosis of rice nitrogen nutrition is of great

significance to rice field management and precision fertilization. The nitrogen

nutrition index (NNI) based on the standard nitrogen concentration curve is a

common parameter for the quantitative diagnosis of rice nitrogen nutrition.

However, the current NNI estimation methods based on hyperspectral techniques

mainly focus on finding a better estimation model while ignoring the relationship

between the critical nitrogen concentration curve and rice hyperspectral reflectance.

Methods: This study obtained canopy spectral data using unmanned aerial vehicle

(UAV) hyperspectral remote sensing and determined the rice critical nitrogen

concentration curve and NNI. Taking the spectrum at critical nitrogen

concentration as the standard spectrum, the original spectral reflectance and

logarithmic spectral reflectance data were transformed by the difference method,

and the features of the spectral data were extracted by a Autoencoder. Finally, the

NNI inversion models of rice based on Extreme Learning Machine (ELM) and Bald

Eagle Search-Extreme Learning Machine (BES-ELM) were constructed by taking the

feature bands of four spectral extractions as input variables.

Results: 1) from the feature extraction results of the self-encoder, simple

logarithmic or difference transformation had little effect on NNI estimation,

and logarithmic difference transformation effectively improved the NNI

estimation results; 2) the estimation model based on the logarithmic difference

spectrum and BES-ELM had the highest estimation accuracy, and the coefficient

of determination (R2) values of the training set and verification set were 0.839

and 0.837, and the root mean square error (RMSE) values were 0.075 and 0.073,

respectively; 3) according to the NNI, the samples were divided into a nitrogen-

rich group (NNI ≥ 1) and nitrogen-deficient group (NNI < 1).

Conclusion: The logarithmic difference transformation of the spectrum can

effectively improve the estimation accuracy of the NNI estimation model,

providing a new approach for improving NNI estimation methods based on

hyperspectral technology.
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1 Introduction

Rice is one of the most important food crops in Asia. Nitrogen

is an important element affecting the growth, development, and

yield of rice. A change in nitrogen content will affect the

photosynthesis, protein production, and carbon and nitrogen

metabolism of crops (Jiaying et al., 2022). Nitrogen can inhibit

the growth of the aboveground parts and roots of crops, limit the

formation and development of the reproductive organs, and

significantly affect the yield and quality of crops (Hu et al., 2023).

Therefore, diagnosing the nitrogen demand in rice fields quickly,

accurately, and in a large area is an essential means to realize

accurate management and fertilization in rice fields and ensure

adequate yield (Lemaire et al., 2008).

Currently, research has mainly focused on obtaining nitrogen

content data from rice. However, it remains difficult to provide

quantitative guidance on nitrogen abundance and deficiency simply

based on the nitrogen content of rice. The critical nitrogen

concentration curve theory is the leading standard for rice

nitrogen nutrition (Song et al., 2020). Greenwood et al. first

proposed the essential concept of nitrogen concentration; that is,

the minimum nitrogen concentration required by crops to reach

maximum biomass (Greenwood et al., 1991). Then Lemaire

constructed the nitrogen nutrition index (NNI) (Lemaire et al.,

1996) by calculating the ratio of the actual nitrogen content of

plants to the corresponding critical nitrogen concentration to make

better use of the necessary nitrogen concentration curve in nitrogen

nutrition diagnosis (Lemaire et al., 1996). As an essential index of

crop nitrogen nutrition diagnosis, the NNI can quantitatively

describe the nitrogen nutrition abundance and deficiency of

crops, provide an adequate crop nitrogen nutrition diagnosis,

and provide quantitative guidance for subsequent fertilization

decision-making. Bo used the critical nitrogen concentration

curve of indica rice that had been planted and cultivated using

mechanized agricultural practice to determine its NNI and

cumulative nitrogen deficit, and then evaluated its nitrogen

nutrition status, which was used as a guide for fertilization

(Bo et al., 2021).

However, the traditional calculation of the NNI requires

nitrogen content and biomass data obtained through field

sampling, which is high in cost, has a long measurement period,

and delayed results (Liu et al., 2019), and cannot be applied to actual

crop production. By using a hyperspectral camera on an Unmanned

Aerial Vehicle (UAV) platform to obtain ground spectral

information, rice spectral data from a large area can be obtained

in a short time (Hiroyuki et al., 2010; Yuanyuan et al., 2021).

In recent years, with the development of airborne hyperspectral

technology, the use of UAV hyperspectral remote sensing

technology to obtain physical and chemical information on

rice has been an important development in the field of

precision agriculture (Chanseok et al., 2011). Hyperspectral

remote sensing technology can obtain the growth information

of crops by analyzing their spectral data and has the advantages

of being fast, accurate, and with only a slight loss of information

(Yongguang et al., 2021). One study used eight vegetation
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indexes from a rice canopy spectrum in a cold region as input

and compared the inversion effects of different machine-learning

algorithms, and found that the support vector regression based on

the binary particle swarm optimization algorithm (BPSO-SVR)

algorithm had the best inversion effect, with coefficient of

determination (R2) values of 0.913–0.949 and root mean square

error (RMSE) values of 0.055–0.127 (Kezhu et al., 2018). Shi et al.

estimated the dry weight, leaf area index, and nitrogen

accumulation of a rice canopy by obtaining RGB images, and

found that the regression model based on the random forest

algorithm had the best accuracy and generalization ability (Peihua

et al., 2021).

Therefore, the combination of UAV hyperspectral remote

sensing technology and critical nitrogen concentration curve

theory, and the method of retrieving the NNI from hyperspectral

remote sensing data to diagnose rice nitrogen nutrition, is currently

an important research hotspot (Ata-Ul-Karim et al., 2017; Yu et al.,

2021). Haynie et al. obtained rice canopy spectral data through

uncrewed aerial vehicle remote sensing, constructed a variety of

vegetation indexes, and combined them with a machine learning

algorithm to model the inversion of rice aboveground biomass,

nitrogen uptake, and NNI. The results showed that the random

forest algorithm significantly improved the inversion accuracy of

the NNI (Hainie et al., 2020). Qiu et al. extracted RGB spectral

information from rice and constructed a vegetation index.

Comparison of the accuracy of the retrieved NNIs of rice by

various machine learning methods indicated that the random

forest algorithm performed best in each growth period

(Zhengchao et al., 2021).

The current method of NNI estimation by remote sensing is

similar to that of N content estimation, mainly by combining

spectral feature extraction and machine learning technology to

improve the accuracy of NNI estimation, while the relationship

between NNI and N content of rice is not purely positive, and the

NNI and N content of different fertility periods cannot correspond

to each other, and even the same sampling period may fluctuate

according to the development of individual rice, therefore, the

estimation of NNI by canopy spectra requires targeted processing

of rice canopy spectra of different fertility periods to highlight the

characteristics of rice canopy spectra under different

NNI.Therefore, the current study used the hyperspectral data of

rice fields obtained by uncrewed aerial vehicles and NNI as the

research objects and took the canopy spectrum of NNI ≈ 1 in

different periods as the standard spectrum. The difference between

the original hyperspectral data and logarithmic spectral data

of rice was then amplified by difference transformation, and a

self-encoder algorithm was used to process the initial spectral

curve and transform the spectra, extract the transform spectral

features, and establish rice NNI estimation models based

on Extreme Learning Machine (ELM) and Bald Eagle Search-

Extreme Learning Machine (BES-ELM). Finally, the estimation

accuracy of the models was compared, and the best estimation

method of rice NNI based on hyperspectral data was

determined to provide a new research approach for rapidly

obtaining rice NNI.
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2 Materials and methods

2.1 Experimental design

The experiment was conducted from June to September, 2021 at

the Precision Agriculture Aviation Research Base of Shenyang

Agricultural University (40 58’ north latitude and 122 43’ east

longitude) in Gengzhuang Town, Haicheng City, Anshan City,

Liaoning Province. To avoid remote sensing data collection error

caused by rainy and cloudy weather, data collection proceeded only

on fine days. The collection was postponed if the cloud cover

exceeded 20% or if the weather was unfavorable for remote

sensing data collection. The rice variety used was ‘Beijing 1705’.

The experimental field was divided into two large areas. In

Experiment 1, five nitrogen gradients were set up, and the

nitrogen application rates were N0 = 0 kg.hm-2, N1 = 75 kg.hm-2,

N2 = 150 kg.hm-2, N3 = 225 kg.hm-2, and N4 = 300 kg.hm-2. In

Experiment 2, five nitrogen gradients were designed, and the

nitrogen application rates were N0 = 0 kg.hm-2, N1 = 50 kg.hm-2,

N2 = 100 kg.hm-2, N3 = 150 kg.hm-2, and N4 = 200 kg.hm-2. The

area of each plot in Experiment 1 was 5*8=40m2, and that in

Experiment 2 was 660 m2. Except for the gradient of nitrogen

fertilizer, the field management of the two experimental areas was

consistent. The application rate of phosphorus and potassium

fertilizer was the local standard, in which the standard application

rate of phosphorus fertilizer was 144 kg.hm-2, the standard

application rate of potassium fertilizer was 192 kg.hm-2, and the

ratio of base to topdressing was 1: 1. The other field management

practices were the same as for conventional high-yield

management. Field sampling was conducted from the tillering

stage to the heading stage, and the sampling interval was nine

days. Each sampling in each experimental plot selected in each

experimental plot randomly selected a 1 m × 1 m plot, and a plastic

frame was used for subsequent ROI identification. Three

representative holes were used to obtain nitrogen concentration

and aboveground Biomass(AGB), and the average value was used to

determine the nitrogen concentration and AGB in the plot. In
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Experiment 1, 120 groups of cell data were collected, and in

Experiment 2, 88 groups of cell data were collected, totaling 208

groups of samples.
2.2 Data acquisition

2.2.1 Acquisition of spectral parameters in rice
The UAV hyperspectral platform adopted the M600 PRO six-

rotor UAV of Shenzhen DJI Innovation Company, and the

hyperspectral imager used the GaiaSky-mini built-in push-sweep

airborne hyperspectral imaging system of Sichuan Shuangli Hepu

Company. The hyperspectral band range was 400–1,000 nm, the

resolution was 3 nm, and the number of influential bands was 253.

The hyperspectral imaging system is shown in Figure 1. The data

collection time of the UAV hyperspectral remote sensing platform

was from 11:00 am to 12:00 am for each test, and the time when the

sunlight intensity is relatively stable was selected. The flying height

of the UAV was 100 m. Using the ENVI5.6 + IDL tool software, the

hyperspectral data of the obtained hyperspectral remote sensing

images were extracted. The spectral angle mapping method was

used to remove the influence of interference with the spectrum of

ground objects, and average spectra were calculated for the region of

interest of each cell, and then the average spectra were resampled

with MATLAB software to resample the spectral resolution to 1 nm.

Finally, the resampled spectra were denoised by a Gaussian filter,

and the results were used as hyperspectral information for each

experimental cell.
2.2.2 Acquisition of the agronomic
parameters of rice

When measuring the nitrogen concentration of the samples and

the AGB, the rice in each plot was sampled destructively at first. The

pieces were brought to the laboratory and placed into an oven to

deactivate the enzymes at 105°C for 30 min and then dried to

constant weight at 80°C. The AGB of the dried sample was then

measured and converted into theAGB part according to the
FIGURE 1

Plot distribution of experimental field 2.
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planting density. Finally, the dried samples were ground, and the

plant nitrogen concentration was measured using the Kjeldahl

nitrogen determination method (Nelson and Sommers, 1962).

The calculation formula was as follows:

Nc =
V � 0:05� 0:014

M
� 100 (1)

Nc is the sample nitrogen concentration (%), V is the volume of

hydrochloric acid solution (mL), and M is the sample mass.
2.3 Data processing

2.3.1 Critical nitrogen concentration curve and
NNI calculation method

Critical nitrogen concentration is the minimum nitrogen

concentration needed by crops to reach maximum biomass, and

so the nitrogen deficiency equation can be constructed based on the

critical nitrogen concentration to determine the nitrogen deficiency

of rice. According to the critical nitrogen concentration curve

method proposed by Justes et al. (1994), the critical nitrogen

concentration curve was constructed based on the measured

nitrogen concentration and AGB. The specific methods were as

follows: (1) comparing the measured nitrogen concentration and

AGB under different nitrogen fertilizer gradients, the samples were

divided into a nitrogen-restricted group and non-restricted group

by variance analysis. This was followed by (2) linear fitting of AGB

and nitrogen concentration for the nitrogen-restricted group. (3)

For the group not restricted by nitrogen nutrition, the average value

of the AGB in the same period represented the maximum AGB in

that period. (4) The theoretical, critical nitrogen concentration

point in each period was taken as the cut-off point of the position

of the fitting curve in the maximum AGB. Finally, (5) the critical

nitrogen concentration points of each period were fitted by a power

function, and the critical nitrogen concentration curve of the crops

was constructed:

Nc = a*DM
−b (2)

In the equation, Nc is the critical nitrogen concentration (%) of rice,

DM is the AGB (t/hm2), and a and b are both curve parameters.

The N nutrition index is the ratio of the actual nitrogen

concentration to the critical nitrogen concentration in rice, and

the formula was as follows:

NNI = Nnc=Nc (3)

In the formula, Nnc represents the actual nitrogen content (%) of the

plant under different nitrogen application rates, and Nc is the

critical nitrogen concentration (%) corresponding to the

plant biomass.

2.3.2 Hyperspectral data processing
As the aboveground nitrogen nutrition status and canopy leaf

structure of crops reach the best state under the critical nitrogen

concentration, these are the direct factors affecting the spectral

reflectance of the rice canopy (Lemaire et al., 2008; Lemaire et al.,
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2019). Therefore, compared with crops under non-critical nitrogen

concentration, crops under critical nitrogen concentration have

specific differences in spectral level and nitrogen nutrition status.

To highlight the difference between rice crops under a critical

nitrogen concentration and those under a non-critical nitrogen

concentration at the spectral level, the spectral reflectance

corresponding to samples with 0.99<NNI<1.01 was selected as the

standard spectrum in this study. If there were multiple samples, the

average value of reflectance of all samples was removed, and

the difference transformation was done with the original spectra

of the remaining samples in the same period. Meanwhile,

considering the fact that due to the large difference in the

reflectance scale of the rice canopy spectra in different bands,

the simple difference transformation may lead to the blurring of

the spectral features and increase the difficulty of the subsequent

NNI-related feature extraction, this study adopts the logarithmic

transformation to preprocess the original rice spectra and perform

the difference transformation at the same time, which is calculated

as follows:

Rln = lnRc (4)

RD = Rc − Rnc (5)

RlnD = lnRc − lnRnc (6)

In the equation, Rln, RD, RlnD represent the log spectral

reflectance, difference spectral reflectance, and log difference

spectral reflectance, respectively; Rnc represents the spectral

reflectance of the sample under the critical nitrogen concentration

state; and Rc represents the remaining spectral reflectance of the

same period.

Due to the high similarity of data in adjacent bands of the full-

band spectrum and a large amount of redundant information

unrelated to the variables sought, modelling based on the full-

band range often has some shortcomings, such as a slow running

speed, high model error, and low inversion accuracy (Zhang et al.,

2019; Jingcheng et al., 2020; Shaomin et al., 2020). To reduce the

number of inputs, decrease data redundancy, and improve

modelling speed and accuracy, this study used Autoencoder (AE)

to extract features from spectral reflectivity data. AE is a typical

unsupervised learning algorithm that automatically learns the

essential features of data by compressing and reconstructing a

large amount of unlabeled data. AE consists of an encoder and a

decoder. The encoder compresses the input data into a low-

dimensional hidden space representation, and this efficient

representation of the input data is called encoding. The decoder

then reduces the encoded hidden-space representation to the

original sample, and trains the network by comparing the

difference between the original data and the reconstructed data

being reduced, passing the error between the two backwards so that

the representation on the low-dimensional space can characterize

the original input data. Thus, through continuous iteration, the AE

can learn the internal features of the spectral data and decode the

features into a high-dimensional feature vector to achieve feature

extraction of the spectral data. At the same time, considering that
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the AE as an unsupervised algorithm lacks NNI as a label-assisted

algorithm operation, the feature extraction results may have some

information unrelated to the nitrogen deficit, this study adopts

multiple linear regression modeling of the AE feature extraction

results and the corresponding nitrogen deficit data, and the best

feature extraction results are selected according to the RMSE of the

regression results by eliminating the feature matrices with poor

feature extraction combination for subsequent modeling.

2.3.3 Inversion modelling of nitrogen deficit
In this study, two algorithms, namely ELM and BES-ELM, were

selected for modelling. The ELM model was mainly used to test the

optimization effect of BES. ELM is a new feed-forward type of

neural network proposed by Huang et al. (2006). ELM has

improved upon the problems of a slow learning speed and low

generalization ability of traditional back propagation (BP) neural

networks. The ELM network structure has a strong network

learning ability, and compared with other traditional neural

networks using the gradient descent method, the network training

time of the ELM network structure is significantly shortened, while

the accuracy of the running results is higher. ELM training only

needs to calculate the connection weights between the hidden layer

and the output layer, while other weights and biases are randomly

generated at the time of network establishment and are not

changed. Since the ELM algorithm has the advantages of a fast

learning speed, simple structure, easy implementation, and high

learning accuracy, it has a faster running speed and higher learning

accuracy in dealing with more complex nonlinear problems.

However, since the connection weights between the input layer

and the hidden layer and the thresholds of the neurons in the

hidden layer are randomly generated in each run of the extreme

learning machine, it has shortcomings in training stability and can

easily fall into local optimal solutions. Therefore, this study used the

BES optimization algorithm to optimize the initial weights of the

implicit layer of the limit learning machine and found the optimal

implicit layer weights by selecting the RMSE of the ELM model

constructed by the weights to be optimized for the NNI estimation

results as the fitness function. This reduced the problems of the low

training accuracy and poor stability of the model caused by the

random generation of the weights, thus improving the convergence

speed and estimation ability of the model.

By imitating the hunting strategy or intelligent social behavior

of vultures when searching for fish, the BES algorithm simplifies the

process of searching for the optimal solution into three stages:

selecting an area, searching for prey, and diving and hunting. In the

first stage, eagles choose the space with the most significant game. In

the second stage, the eagle moves to the selected area in search of

prey. In the third stage, the eagle swings from the best position

located in the second stage and determines the best hunting spot.

The main flow of the Condor optimization algorithm is as

follows: initialize population P, randomly generate the position

information of each solution, and set the initial iteration number t

to 0. After that, the following steps are performed for each key in the

population P: evaluating new regions using formula (7), and

searching and selecting parts using spiral movement. The new

dive position is then assessed using Formula (8). Finally, the new
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work is used to dive into the prey, and formula (9) is used to

evaluate the new solution. The iteration counter k is increased by

two, and the previous step is repeated until the final solution in P is

the best solution for solving the problem when the maximum

number of iterations is reached.

Pnew,i = Pbest + a � r � (Pmean − Pi) (7)

Pnew,i = Pi + y(i)� (Pi − Pi+1) + x(i)� (Pi − Pmean) (8)

Pnew,i = rand� Pbest + x1(i)� (Pi − C1� Pmean) + y1(i)� (Pi

− C2� Pbest) (9)

In the main work, the parameters in the above equations of the

BES algorithm are defined and explained. The complete flow chart

of BES algorithm optimization is shown in Figure 2.

2.3.4 Model results evaluation
To determine the estimation ability of the model for NNI, this

study evaluated the estimation accuracy and robustness of the

model by the coefficient of determination R2 and the root mean

square error (RMSE) of the model’s prediction results for the

training and test sets. The calculation procedure was as follows:

R2 = o
n
i=1(byi − �y)2

on
i=1(byi − yi)

2 ;

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(byi − yi)

2

r
;

FIGURE 2

Flow Chart of BES Algorithm.
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where ŷi,  �y,   and   yi are the measured, mean, and estimated values

of rice NNI, respectively, and n is the number of samples.
3 Result and analysis

3.1 Calculation of plant N nutrient index

3.1.1 Statistical analysis of plant nitrogen
concentration and AGB

The basic information on plant nitrogen concentration and

AGB during the whole growth period of rice is shown in Table 1.

According to the construction method of the critical N

concentration curve proposed in 2.3.1, this study fitted the

regression of N concentration and AGB obtained from eight

sampling days in Experiments 1 and 2 to calculate the critical N

concentration value of rice for each sampling day. The critical N

concentration curve according to each critical N concentration

value of Experiment 1 and the corresponding AGB was then

constructed, (as shown in Figure 3), in which the AGB and N

concentration of Experiment Area 1 (as shown in Table 2) and the

critical N concentration values of Experiment 2 were applied as

validation. The calculated curve equations were as follows.

Nc = 2:03DM−0:46

In Experiment 1, the determination coefficient R2 was 0.87, and

the RMSE was 0.38. In Experiment 2, the R2 was 0.85, and the

RMSE was 0.43, which were close to each other. Curves a and b were

2.03 and −0.46, respectively.
3.2 Spectral data processing

In this study, first, according to the NNI, the sample spectrum

with an NNI equal to approximately 1 on each sampling day was

selected as the standard spectrum. According to the method

proposed in 2.3. 2, the difference transformation between the

original spectrum and logarithmic spectrum of rice was carried

out. The transformed spectrum is shown in Figure 4. The results

showed that the original spectrum and logarithmic spectrum had a

similar change trend, but the slope was higher near the blue band of
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480–550 nm, and the absorption peak of the blue band was more

obvious. After the difference transformation between the two

spectra, the absorption peak of the red edge disappeared, and the

spectrum of 400–700 nm changed into multiple segments, which is

different from the original spectrum, and the spectrum trend of

700–1000 nm was unchanged.

According to the method proposed in 2.3. 3, the original

spectrum, logarithmic spectrum, difference spectrum, and

logarithmic difference spectrum were taken as input variables,

and the spectral features were extracted by AE. The linear

relationship between the feature extraction results of the AE and

NNI was analyzed by MLR, and the model parameters with the best

fitting degree were selected. According to the extracted results of R2

and RMSE in the MLR model, the final original spectrum,

logarithmic spectrum, and the difference spectrum, the desired

average activation of the hidden units was 0.1, the weight decay

parameter was 0.001, the weight of the diversity penalty term was 3,

and the number of features was 45, 37, 40, and 30, respectively. The

estimated results of MLR are shown in Table 3.
3.3 Nitrogen nutrient index estimation
model construction

In this study, the original spectra obtained in 3.2 and the feature

extraction results of the difference-transformed spectra were used as

input variables to construct ELM and BES-ELM-based models for

estimating the NNI of rice, respectively. The influence of the

difference transformation on the spectral estimation results was

assessed according to the model estimation results.

3.3.1 Estimation model of the rice NNI based on
raw spectra

The two sets of raw spectral features were used as input

variables to construct the ELM and BES-ELM based NNI

estimation models, respectively, with the mapping function of

Sigmoid and the fitness function of the BES-ELM model as the

validation set RMSE. The training results are shown in Figure 5, 6.

The BES-ELM model based on logarithmic spectra had the

best estimation results, with R2 values of 0.695 and 0.660, and

RMSE values of 0.088 and 0.077, respectively, followed by the
TABLE 1 Plant N concentration and AGB statistics.

Indices Maximum values "center"Minimum values "center"Mean Standard deviation

Plant nitrogen
Concentration of Experiment 1

/%

5.18 1.00 2.55 1.05

Above-ground biomass of Experiment 1
/(×t·hm-2)

2.35 0.10 0.73 0.55

Plant nitrogen
Concentration of Experiment 2

/%

"center"5.86 1.60 3.82 0.96

Above-ground biomass of Experiment 2
/(×t·hm-2)

1.38 0.04 0.29 0.27
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original spectrum-based BES-ELM model with R2 values of

0.603 and 0.611 and RMSEs of 0.097 and 0.091, respectively, and

the log-spectrum-based ELM model with R2 values of 0.557

and 0.520 and RMSEs of 0.106 and 0.092. The ELM model based

on the original spectrum had the worst estimation results with R2

values of 0.529 and 0.511, and RMSE values of 0.106 and 0.108,

respectively. It can be seen that the estimation effect of the BES-

ELM model was significantly better than that of the ELM

model, and the model optimization effect was good. The

estimation effect of NNI was also improved after the spectra were

logarithmically transformed.

3.3.2 A model for estimating the NNI based on
the difference spectra of rice

Two sets of difference spectral features were used as input

variables to construct the ELM and BES-ELM based NNI estimation

models. The results are shown in Figure 7, 8. The BES-ELM model

based on log difference spectra had the highest accuracy, with R2

values of 0.839 and 0.837 and RMSE values of 0.075 and 0.073 for
Frontiers in Plant Science 07
the training and validation sets, respectively. This was followed by

the BES-ELM model based on difference spectra, with R2 values of

0.670 and 0.655 and RMSEs of 0.110 and 0.115, respectively, and

then the ELM model based on the logarithmic difference spectrum,

with R2 values of 0.628 and 0.666 and RMSE values of 0.114 and

0.099 for the training and test sets, respectively. The ELM model

based on the difference spectrum had the worst estimation effect,

with R2 values of 0.554 and 0.568 and RMSE values of 0.128 and

0.111, respectively.

After the comparison of the model results, it can be seen that the

estimation accuracy of the BES-ELM model based on log difference

spectra was significantly better than the rest of the models, and in

terms of the estimation models, the accuracy of the BES-ELM-based

estimation models was better than that of the ELM-based models.

In terms of the input spectra, the estimation results of both the

original spectra and the log spectra were improved after the

difference transformation, and the improvement of the log spectra

was significantly better than that of the original spectra. The

estimation results of the logarithmic difference model were also

better than those of the remaining spectra.
3.4 Analysis of model estimation ability in
different NNI intervals

To explore the ability of the spectral transformation method to

estimate the NNI of rice under different nitrogen nutrition statuses,

the data were divided into a nitrogen deficit group (NNI< 1) and

nitrogen-rich group (NNI ≥ 1) according to the NNI of the training

set and test set, and the estimation results of the rice NNI model

based on logarithmic difference spectrum and BES-ELM model in

two groups were analyzed, respectively. The results are shown in

Figure 9, in which the sample sizes of the nitrogen deficit group and

nitrogen-rich group were 157 and 51, respectively. The R2 and

RMSE values of the overall estimation results were 0.851 and 0.074,

respectively; the R2 and RMSE values of the nitrogen deficit group

were 0.735 and 0.073, respectively; and the R2 and RMSE of the

nitrogen-rich group were 0.545 and 0.080, respectively.

Comparative analysis showed that the ability to estimate the NNI

of rice in the nitrogen deficit group was better than that in the

nitrogen-rich group.
TABLE 2 AGB and N values for each period and each gradient of Experiment 1.

Indices AGB of N0
/(×t·hm-2)

N of N0
/%

AGB of N1
/(×t·hm-2)

N of N1
/%

AGB of N2
/(×t·hm-2)

N of N2
/%

AGB of N3
/(×t·hm-2)

N of N3
/%

AGB of N4
/(×t·hm-2)

N of N4
/%

Day1 1.730 3.841 1.807 3.983 1.891 4.106 1.932 4.560 1.954 4.749

Day2 2.361 2.400 2.652 2.744 2.872 2.922 3.040 3.342 3.100 3.501

Day3 3.418 2.082 2.785 2.872 3.210 3.274 3.586 3.325 3.691 3.572

Day4 3.185 1.836 5.151 1.998 6.133 2.174 6.258 2.302 6.363 2.431

Day5 6.052 1.555 7.369 1.803 7.720 1.897 8.083 2.056 8.287 2.234

Day6 6.752 1.603 7.669 1.781 8.965 1.885 10.159 1.986 10.583 2.104

Day7 7.694 1.177 9.350 1.450 10.942 1.507 12.964 1.751 13.526 1.854

Day8 7.152 1.283 10.962 1.536 12.364 1.667 14.695 1.845 15.345 1.970
fro
FIGURE 3

Fitting results of the critical nitrogen concentration curve. Eight
points in the figure indicate the critical nitrogen concentration value
corresponding to each sampling day in Experiment 1, and eight
asterisks indicate the critical nitrogen concentration value
corresponding to each sampling day in Experiment 2.
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FIGURE 5

NNI estimation results based on the original spectra. (A is the ELM model estimation result, B is the BES-ELM model estimation result).
TABLE 3 NNI estimation from encoder feature extraction results to MLR.

Transformation spectrum R2of Training set RMSE of Training set R2of Test set RMSE of Test set

Original spectrum 0.490 0.110 0.394 0.124

Logarithmic Spectrum 0.471 0.116 0.477 0.095

Difference Spectrum 0.532 0.131 0.428 0.121

Log difference spectra 0.612 0.116 0.620 0.104
F
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FIGURE 4

Spectral reflectance of raw, logarithmic, difference, and log-difference spectra [(A–D) respectively].
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4 Discussion

4.1 Mechanism of estimating the NNI

To construct the diagnostic criteria of rice nitrogen nutrition at

the field scale, this study selected the critical nitrogen concentration

curve crop rice nitrogen nutrition status evaluation criteria according

to the studies of Yuan et al. (2020) and Li et al. (2022). Since the

critical nitrogen concentration curve was proposed (Justes et al.,

1994), and following an in-depth study by relevant scholars (Lemaire

et al., 2008), it has been proven to be an adequate diagnostic standard

for nitrogen nutrition for many crops, including rice (Tremblay et al.,

2011; Wang et al., 2020). Presently, field sampling and spectral

inversion are mainly used to obtain NNI information on rice.

Although field sampling has high diagnostic accuracy, it is

challenging to meet the needs of precision agriculture in terms of

acquisition cost and acquisition range. Rice hyperspectral data are

low in cost and can be acquired at large scale. However, the NNI

mainly describes the ratio between the actual nitrogen concentration

and critical nitrogen concentration of rice and is used to evaluate the

nitrogen absorption capacity of rice based on the nitrogen dilution
Frontiers in Plant Science 09
effect and canopy growth status of rice. Additionally, this index has

no physical meaning on its own, and its effect on canopy structure

and canopy spectral reflectance is complex; therefore, it is more

challenging to estimate NNI using only hyperspectral data than using

the traditional method. The aboveground nitrogen nutrition status

and canopy leaf structure of rice reach the best state under the critical

nitrogen concentration, and thus these are direct factors that affect

the spectral reflectance of the rice canopy. At the same time,

compared with crops under non-critical nitrogen concentration,

crops under critical nitrogen concentration exhibit specific

differences in spectral level and nitrogen nutrition status level.

Therefore, by comprehensively analyzing the construction principle

of the NNI and the standard processing methods of hyperspectral

data, we first transformed the hyperspectral data logarithmically to

reduce the influence caused by the dimensional difference of spectral

reflectance in different bands. Concurrently, to highlight the rice

spectral changes based on the critical nitrogen concentration, the rice

spectra under the critical nitrogen concentration in the same period

(that is, rice spectra with NNI ≈ 1) were taken as the standard spectra,

and the difference between the typical spectra and other spectra was

amplified to improve the correlation between the transformed spectra
FIGURE 7

NNI estimation results based on difference spectra [A for ELM model estimation result, (B) for BES-ELM model estimation result].
FIGURE 6

NNI estimation results based on logarithmic spectra [(A) is the ELM model estimation result, (B) is the BES-ELM model estimation result].
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and the NNI. The original spectrum, logarithmic spectrum, and

corresponding difference transform spectrum were paired. After

logarithmic transformation, the dimensional gap between various

spectral bands was narrowed. Compared with the original spectrum,

the value of the logarithmic spectrum in the 700–1000-nm band was

no longer prominent after difference transformation, which is

because logarithmic transformation narrows the dimensional gap

between 400–700-nm and 700–1000-nm spectra. The slope of the

curve around 700–780 nm is particularly reduced, which may be an

essential reason for improving the accuracy of the estimation model.

In the feature extraction method, this study used a self-encoder

to extract the features of the transformed spectrum. The self-

encoder can learn the spectral data and control the output

dimension freely, which is a standard algorithm for feature

extraction at present. At the same time, the self-encoder, as an

unsupervised feature extraction method, can extract too many

redundant features, which may affect the estimation of the NNI.

In this study, MLR was used to analyze the linear relationship

between the feature extraction results of the self-encoder and NNI.

The extraction results with the best fitting degree were selected as

the model input, which avoids the problem of unclear unsupervised

learning objectives to a certain extent.
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4.2 Analysis of the modeling results

To improve the accuracy of the NNI estimation, two machine

learning algorithms, ELM and BES-ELM, were selected to deal with

four input spectra, and the combination with the highest estimation

accuracy was chosen to construct the NNI estimation model. It can

be seen from the results that in terms of spectral transformation, the

estimation accuracy of the model based on the logarithmic

difference spectrum was better than that of the other transform

spectra. However, the difference transformation and logarithmic

transformation alone had a slight improvement on the accuracy of

the model, which may be because a single logarithmic

transformation only narrows the relative differences in spectra of

various bands, while the simple difference transformation amplifies

the characteristic difference between the transformed spectrum and

the critical nitrogen concentration spectrum. The dimensional

differences of rice spectral reflectance in different bands are not

considered, which blurs the spectral difference characteristics of

different bands due to different dimensions, therefore making the

actual characteristics difficult to see. The logarithmic spectrum

makes the spectral characteristics of different spectra more

prominent by reducing the dimensional differences between
FIGURE 9

Different N nutrient index intervals [(A) for the N-deficient group, (B) for the N-rich group].
FIGURE 8

NNI estimation results based on log difference spectra [(A) is the ELM model estimation result, (B) is the BES-ELM model estimation result].
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different bands, thus improving the estimation accuracy of the

model. In the estimation model, BES-ELM based on the

estimation model accuracy was significantly better than ELM

based on the estimation model. This may be because the BES

algorithm has the advantages of global solid search ability and

fast convergence speed compared with traditional optimization

algorithms. In this study, the RMSE of the test set was used as the

fitness function of the BES algorithm. By optimizing the initial

parameters of the hidden layer of ELM, the convergence speed and

prediction accuracy of the algorithm were improved. The inversion

effect of BES-ELM was then optimized.

At the same time, considering that based on the nitrogen

dilution effect, the developmental status of rice canopy in the

nitrogen-rich state does not change significantly with the elevated

nitrogen nutrient status, these phenomena may lead to the

reduction of correlation between spectral features and NNI and

enhance the difficulty of NNI estimation, which does not occur in

the rice canopy spectra in the nitrogen-deficient state. To test this

conjecture and explore the analysis of model predictive ability in

different NNI intervals, this study divided the data into the N deficit

group (NNI< 1) and the N enrichment group (NNI ≥ 1) based on

the NNI of the training and test sets, and analyzed the estimation

ability of the best estimation results within the 2 groups. The results

showed that the estimation ability of the N deficiency group was

significantly better than that of the N enrichment group, with the R2

of 0.735 and 0.545, respectively, which indicated that the model was

able to estimate the NNI of rice better for rice with less N fertilizer

application, while the model was less able to estimate the NNI of

rice with sufficient or excessive N fertilizer application. Considering

that the current N nutrition diagnostic method is mainly used for

precise fertilization operations for rice in N deficit state rather than

N rich state, this result has less impact on actual field N fertilization

management. From the research point of view, a more detailed

study of rice spectra in N deficit and N enriched states could be

considered in the follow-up study to investigate the response

principles with canopy spectra.
4.3 Challenges and prospects

Several aspects of the present study can be further optimized.

The first is the selection of the standard spectra. Due to the complex

relationship between rice growth and development and canopy

spectra, even crops with the same NNI may exhibit differences in

spectra, which may also cause some interference in the selection of

the standard spectra. Second, this study took the sample set size and

the stability of the machine learning algorithm into account, and

chose to mix the fertility samples together for model construction.

Although this process satisfies the sample set requirements for

subsequent modeling, the differences in canopy structure between

rice at different fertility stages can cause some interference in the

estimation of NNI by the model. These uncertainties also directly or

indirectly reduce the accuracy and stability of the model results.

Future research should combine the relationship between NNI and

rice canopy structure with the existing research methods to further

evaluate the principle of log-difference spectroscopy to improve the
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estimation results of the NNI and explore the influence of different

fertility periods on the log-difference spectra of rice. A more

generalized spectral transformation method should be sought to

enhance the practical value of model N nutrition diagnosis.
5 Conclusions

In this study, rice canopy spectra were obtained by unmanned

aerial remote sensing technology to estimate the NNI of rice. We

determined the NNI by constructing the critical nitrogen

concentration curve of rice, and performed log, difference, and

log-difference transformations on the canopy spectra based on the

critical nitrogen concentration spectra, and then used ELM and

BES-ELM algorithms for modeling after-feature extraction by a self-

encoder. Comparison of the final results indicated that the

estimation model based on log-difference spectra and BES-ELM

algorithm worked best, with R2 values of 0.839 and 0.837 and

RMSEs of 0.075 and 0.073 for the training and validation sets,

respectively. This study provides a new feasible approach for

estimating the NNI spectra of rice.
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