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Heat stress is a major constraint for plant production, and evapotranspiration is

highly linked to plant production. However, the response mechanism of

evapotranspiration to heat stress remains unclear. Here, we investigated the

effects of heat stress during two main growth stages on transpiration and

evapotranspiration of gerbera. Two levels of day/night temperature were

adopted during the vegetative growth stage (VG) and the flowering bud

differentiation stage (FBD), namely control (CK; 28/18 °C) and heat stress (HS;

38/28°C) levels. The duration of HS was set as 5, 10, 15, and 20 days, respectively. At

the beginning of HS, hourly transpiration was mainly inhibited near noon. With

continuation of HS, the duration and extent of inhibition of hourly transpiration

increased. Daily transpiration rate was also markedly reduced by HS during the VG

(18.9%-31.8%) and FBD (12.1%-20.3%) stages compared to CK. The decrease in the

daily transpiration rate was greater for longer duration of heat stress. This reduction

of transpiration was the main contributor to stomatal limitation at the beginning of

HS, while additional inhibition of root activity, leaf area, and root biomass occurred

under long-term HS. The daily transpiration rate could not recover after the end of

HS (so-called recovery phase), except when HS lasted 5 days during the VG stage.

Interestingly, daily evapotranspiration during HS was substantially increased during

the VG (12.6%-24.5%) and FBD (8.4%-17.6%) stages as a result of more increased

evaporation (100%-115%) than reduced transpiration. However, during the

recovery phase, the daily evapotranspiration was markedly decreased at the VG

(11.2%-22.7%) and FBD (11.1%-19.2%) stages. Hence, we suggest that

disproportionate variation of transpiration and evaporation during HS, especially

at the recovery phase, should be considered in various evapotranspiration models

and climate scenarios projections.
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1 Introduction

Evapotranspiration is the water transferred from the land surface

to the atmosphere, which involves a phase change of water converted

from liquid to water vapor (Wang et a l . , 2012) . The

evapotranspiration is not only an important component in the

water and energy balance sectors, but is also highly linked to plant

growth, production of biomass and yield, and quality (Bastug et al.,

2006; Katsoulas et al., 2006; Qiu et al., 2021; Qiu et al., 2022; Qin et al.,

2023; Qiu et al., 2023). It also plays a critical role in land–atmosphere

interactions in the earth system (Wang and Dickinson, 2012). The

magnitude of evapotranspiration is affected by many factors,

including meteorological conditions, soil and crop factors, and

management and environmental conditions, such as water, salinity,

and heat stresses (Allen et al., 1998). Many factors including water

and salinity stresses affecting evapotranspiration have been well

described in numerous studies (Allen et al., 1998; Qiu et al., 2017;

Minhas et al., 2020; Yang et al., 2020). However, effect of heat stress

on evapotranspiration deserves more attention as a result of global

warming. More frequent and intense heat stress caused by global

warming continues to draw research attention due to the great

impacts on plant production. For a future 2.0°C warming level in a

climate without human effect, the intensity of heat stress will increase

2.7°C and frequency will occur 13.9 times higher than 1850-1900

(IPCC, 2021). Heat stress is defined as a temperature rise above the

threshold level, usually 10-15°C above the typical ambient

temperature, which occurs on different time scales with different

intensities and duration levels (Wollenweber et al., 2003; Teskey et al.,

2015; Ishimaru et al., 2016). Heat stress can affect organisms directly

or indirectly by changing the surrounding environmental

components. Since plants cannot move to a more favorable

environment, heat stress may severely affect plant growth and

development, as well as evapotranspiration (Lobell and Asner, 2003;

Lobell and Field, 2007).

The negative effects of heat stress on plant growth and production

have been well described. Transient or persistent heat stress can

induce morphological, physiological, and phenological responses in

plants (Tubiello et al., 2007; Ahuja et al., 2010; Mittler and Blumwald,

2010; Hasanuzzaman et al., 2013). For instance, the effect of heat

stress on plant morphology generally includes sunburn of stems,

leaves and branches, premature senescence and abscission of leaves,

inhibition of shoot and root growth, and discoloration and damage of

fruits (Wahid et al., 2007; Lipiec et al., 2013; Hatfield and Prueger,

2015). Heat stress also reduces cell division and restricts cell

elongation, resulting in retardation of plant growth (Ashraf and

Harris, 2004; Camejo et al., 2005; Daly et al., 2004). In addition,

heat stress can damage chloroplast and decrease photosystem II

(PSII) activity and the number of photosynthetic pigments, and

thus also negatively affect gas exchange and photosynthesis

(Salvucci and Crafts-Brandner, 2004; Allakhverdiev et al., 2008).

Moreover, heat stress can alter leaf water status and stomatal

conductance, promote water transport, and reduce transpiration by

reducing cell size, increasing xylem vessel diameter, and stomatal

density (Guiguitant et al., 2017; Devi and Reddy, 2018).

However, the response mechanism of evapotranspiration to heat

stress remains unclear. We hypothesize that heat stress has negative

effects on transpiration because of adverse effects of heat stress on
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plant growth and production, while it has positive effects on

evaporation as a result of increased vapor pressure deficit. This

opposite influence of heat stress on transpiration and evaporation

leads to an uncertain effect of it on evapotranspiration. In addition,

the duration and the occurrence stage of heat stress may have different

effects on transpiration and thereby evapotranspiration. Moreover, it

is also unclear whether the transpiration and evapotranspiration

could be recovered after the end of varying duration of heat stress

(recovery phase). Hence, gerbera, an important commercial flower

worldwide mainly cultivating in the protected agriculture (Wani et al.,

2018; Darras, 2021), was used as an example crop in this study, which

frequently suffer from heat stress. Our objectives were (1) to

investigate the response of transpiration and evapotranspiration

to varied duration of heat stress under the two main growth stages,

(2) to explore the mechanism for heat stress induced variation of

transpiration and evapotranspiration, and (3) to reveal the regulation

of transpiration and evapotranspiration during recovery phase.
2 Materials and methods

2.1 Experimental details and plant materials

The experiment was conducted at the Agro-Meteorology

Research Station of Nanjing University of Information Science and

Technology, located at Nanjing, Jiangsu Province, China (32°13′ N,
118°41′ E, altitude 14.4 m) during December 2021 to March 2022.

The top and bottom diameters of each pot were 21.0 and 16.5 cm,

respectively, and the height was 21.0 cm. The soil substrate was a

mixture (2:1) of peat and perlite, which is commonly used to cultivate

gerbera in protected agriculture. The soil substrate was a mixture (2:1)

of peat and perlite, which is commonly used to cultivate gerbera in

protected agriculture. The diameter of fiber granules in the soil

substrate ranges from 0 to 25 mm. The PH of this soil is 6.0. The

soils contain fertilizers, including nitrogen (140 mg N L-1),

phosphorus (100 mg P2O5 L-1), potassium (180 mg K2O L-1),

magnesium (100 mg Mg L-1), and micronutrient (480 mg L-1). The

water-retaining property of this soil is 75-80%. Before transplanting,

the soil was saturated with fresh water and freely drain for 12h

(covering with plastic mulch) to determine the water holding capacity

of the pot (Wmax = 0.35 kg). Gerbera plants (Chrysanthemum

Morifolium, cultivar Rionegro) were transplanted to the pots when

they formed five to six functional leaves. The transplanted plants were

initially grown in a greenhouse to keep suitable growth condition, and

then moved to artificial climate chambers (Convion BDW40,

Canada). The artificial climate chamber had 3.05 m length, 1.78 m

width, and 2.90 m height. The heat stress manipulation was imposed

after 7 days of acclimation for the gerbera plants to the environment

of the artificial climate chamber for both vegetative growth stage and

flowering bud differentiation stage.
2.2 Experimental design

In this study, heat stress experiments were carried out for two

growth stages, i.e. the vegetative growth stage and the flowering bud

differentiation stage. Two levels of day/night temperature
frontiersin.org
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wereadopted: control level (CK; 28/18 °C) and heat stress level (HS;

38°C/28°C) (Kempkes and Van de Braak, 2000; Tsirogiannis et al.,

2010; Janka et al., 2013). The duration of heat stress was set as 5, 10,

15, and 20 days, respectively, resulting in 8 conditions for each growth

stage (Table 1). For each condition, there were 9 pots. After the end of

the heat stress period, the pots were moved to the artificial climate

chambers of CK for recovery (recovery phase). All the plants were

irrigated daily at 18:00 to reach 95% of Wmax. The day/night

temperature represents the highest and lowest temperature during

the day. The diurnal variation of air temperature in the artificial

climate chamber was set to be similar to that observed in Nanjing city,

with the minimum and maximum temperatures appearing at 5:00

and 14:00, as shown in Figure 1A. Overall, the actual values of air

temperature in the artificial climate chamber were slightly higher than

the setting values, especially near noon. The actual maximum and

minimum temperatures were 38.13 ± 0.55 and 28.30 ± 0.48°C for HS

treatment, and 28.56 ± 0.23 and 19.25 ± 0.07°C for CK treatment.

The light and relative humidity were the same for all the

treatments. The light was supplemented from 6:00 to 19:00 (day

time), with a maximum photosynthetic active radiation of 1000 mmol

m-2 s-1 (Figure 1A). The relative humidity (RH) was set at 40 ± 5%

and 60 ± 5%, respectively, for day and night. The hourly vapor

pressure deficit (VPD=es-ea) can be calculated based on measured air

temperature and RH, as (Allen et al., 1998):

es = 0:6108exp
17:27T

T + 237:3

� �
(1)

ea = es
RH
100

(2)

where es and ea are the saturation and actual vapor pressure (kPa),

respectively. There were great differences in the daytime VPD

between the heat stress and CK treatments, with a maximum value

of 2.31 kPa near noon (Figure 1B).
2.3 Measurements

2.3.1 Root activity
Root activities of three plants for each treatment were determined

by the triphenyl tetrazolium chloride (TTC) reduction method

(Onanuga and Adl, 2012). A spectrophotometer was used to

determine the absorbance values of different concentrations of TTC
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solutions at l = 485 nm to establish a standard curve, which was then

used to calculate the reduction intensity of TTC as (Onanuga and Adl,

2012):

TTC reduction intensity =
TTC reduction mass

fresh mass of  root � time
(3)
2.3.2 Root dry mass and leaf area
Three randomly selected plants for each treatment were used for

measuring root dry mass. The roots were washed with fresh water,

and excess water in the roots was absorbed by filter paper. Then the

fresh masses of roots were measured with a precision electronic scale

with an accuracy of 0.001g. After that, the dry masses of roots were

determined after oven-drying at 80°C.

The leaf area of three plants for each treatment was measured

with a LAI 3000 leaf area areometer (Li-Cor Inc., USA) every 5 days

after plants were transferred into the artificial climate chamber.

2.3.3 Leaf stomatal length, width, and density
Stomatal properties of leaves were determined by using the

imprinting method (Radoglou and Jarvis, 1990). Five functional

leaves of the plants were randomly sampled during 10:00-11:00.

After wiping off the dust from the leaf surface with a skimmed

cotton pad, nail polish was applied to the middle of the leaf between

the center of the veins and the leaf edge. The film with imprint was

then extracted after nail polish dried and used as samples.

The stomata of leaf epidermal cells for each leaf were then

observed by using a light microscope (Olympus CX-31, China) at

40x. With the use of a combined digital imaging system (Olympus dp-

20, China), the stomatal density could be determined after measuring

the average number of stomata in 15 visual fields. The stomatal length

and width of 10 visual fields were then calibrated by using a digital

ranging software (Motic Images Advanced 3.0, China), and then

mean values were used.

2.3.4 Leaf stomatal conductance and leaf
transpiration

Gas exchange, including leaf stomatal conductance and leaf

transpiration, were measured in three randomly selected plants by a

LI-6400XT photosynthesis system (LI-COR Inc., Lincoln, NE, USA)

during 9:00-11:00. The photosynthetic active radiation was fixed at

1000 mmol m-2 s-1, CO2 was fixed to 400 mmol mol-1, and flow rate

was 500 mmol s-1.
TABLE 1 Experimental design of heat stress under two growth stages. V and F indicate the vegetative growth stage and flowering bud differentiation stage.

Experiment 1: Vegetative growth stage Experiment 2: Flowering bud differentiation stage

Treatment Duration Treatment Duration

CK CK

HS-V-5 5 HS -F-5 5

HS-V-10 10 HS -F-10 10

HS-V-15 15 HS -F-15 15

HS-V-20 20 HS -F-20 20
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2.3.5 Transpiration and evapotranspiration
The transpiration and evapotranspiration were determined based

on water balance method after the plants were moved into the

artificial climate chambers. To measure the transpiration rate, the

soil surface of three pots for each treatment was covered with black

plastic film to avoid evaporation. The evaporation rate was

determined as the difference between evapotranspiration and

transpiration. In addition, the hourly transpiration and

evapotranspiration were determined every two hours by using the

water balance method (Qiu et al., 2015; Li et al., 2018).
2.4 Data analysis

A general linear model-univariate procedure was used to carried

out two-way analysis of variance (ANOVA) using SPSS software

(Version 23, IBM Corp., USA). ANOVA was used to determine the

effects of heat stress, growth stages, and their interactions on root

actively, root dry mass, leaf area, leaf stomatal characteristics, leaf

stomatal conductance, transpiration, and evapotranspiration. All the

treatment means were compared at a significance level of P ≤ 0.05.
3 Results

3.1 Effect of heat stress on root activity and
root dry mass

Figure 2 shows that the values of root activity of gerbera were

significantly decreased after a 10-day-long heat stress during the
Frontiers in Plant Science 04
vegetative growth stage and a 15-day-long heat stress during the

flowering bud differentiation stage. Compared to CK, the root activity

of gerbera was reduced by 51.9%, 54.8%, and 50.6%, respectively, for

the HS-V-10, HS-V-15, and HS-V-20 conditions, and by 19.3% and

26.8% for HS-F-15 and HS-F-20 conditions. ANONA analysis also

reveals that the reduction rate of root activity was greater during the

vegetative growth stage than during the flowering bud differentiation

stage (Table 2).

The response of root dry mass to heat stress was delayed than that

of the root activity. The heat stress-induced decline of root dry mass

appeared after lasting 15 days during the vegetative growth stage and

20 days during the flowering bud differentiation stage (Figure 2).

With respect to CK, the root dry mass was reduced by 26.9% and

27.9% for the HS-V-15 and HS-V-20 conditions but by 15.0% for the

HS-F-20 condition. The reduction of root dry mass was significantly

lower during the vegetative growth stage than during the flowering

bud differentiation stage (Table 2).
3.2 Response of leaf area to heat stress

Prolonged heat stress inhibited the leaf growth of gerbera

(Figure 3). The leaf area of gerbera was significantly decreased after

a 10-day-long heat stress. The leaf area of the HS-V-10, HS-V-15, and

HS-V-20 conditions was decreased by 3.1%-8.3%, 4.2%-18.0%, and

7.1%-24.4%, respectively with respect to CK. However, the leaf area of

the HS-F-10, HS-F-15, and HS-F-20 conditions was decreased by

0.5%-6.0%, 4.5%-6.3%, and 6.9%-10.6%, respectively compared to
A

B

FIGURE 1

The actual photosynthetic active radiation (PAR), air temperature (A), and vapor pressure deficit (VPD) (B) in CK and heat stress (HS) treatments in the
artificial climate chambers.
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TABLE 2 Summary of two-way analysis of variance (ANOVA) for heat stress (HS) and growth stage (S) on stomatal density, length and width, leaf stomatal
conductance (gs), leaf transpiration (E), root activity, and root dry mass (Data are presented in Figs. 2, 4, and 5), as well as on total daily transpiration (Tr)
and evapotranspiration (ET) during varied duration of heat stress (Tr_HS, ET_HS) and recovery phase (Tr_recovery, ET_recovery).

Duration
(d)

Factor Stomatal
density

Stomatal
length

Stomatal
width

gs E Root
activity

Root dry
mass

Total
Tr_HS

Total
Tr_recovery

Total
ET_HS

Total
ET_recovery

5

HS n.s. n.s. ** *** *** * n.s. *** n.s. *** **

S *** ** *** *** *** *** *** *** *** *** ***

HS × S n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. * n.s.

10

HS * ** * *** *** *** n.s. *** *** *** **

S ** *** ** ** *** *** *** *** *** *** ***

HS × S n.s. n.s. n.s. * * *** n.s. * * * *

15

HS * * * *** *** *** * *** *** *** **

S * *** *** * *** *** *** *** *** *** ***

HS × S n.s. n.s. n.s. * * *** * ** * * *

20

HS *** ** *** *** *** *** *** *** *** *** **

S *** *** *** ** *** *** *** *** *** *** ***

HS × S n.s. n.s. n.s. * * * * * ** * *
F
rontiers in Plan
t Science
 05
 f
n.s., *, **,*** indicate non-significance and significance at P ≤ 0.05, 0.01 or 0.001, respectively.
A B

DC

FIGURE 2

The root activity (A, B) and dry mass (C, D) of gerbera under different temperature treatments during the vegetative growth (A, C) and flowering bud
differentiation stages (B, D). CK is the control treatment, HS is the heat stress treatment. Values are the mean ± SD (n=3). *, **, and *** represent the
significant level at P<0.05, P<0.01, and P<0.001, respectively.
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CK. Although the leaf area was still restricted during the recovery

phase, the overall adverse effect of leaf area was low (Figure 3).
3.3 Effect of heat stress on leaf
stomatal characteristics

Figure 4 shows that the stomatal density and length significantly

changed after a 10-day-long heat stress. During the vegetative growth

stage, the stomata of leaves for the HS-V-10, HS-V-15, and HS-V-20

conditions was 24.3%, 23.1%, and 34.1% denser, respectively,

compared to CK. Similarly, the stomatal length in these conditions

was 21.3%, 15.6%, and 23.0% shorter, respectively. In addition, the

stomatal width was significantly smaller (17.6%–26.9%) in all the heat

stress conditions during the vegetative growth stage.

Similar to the vegetative growth stage, a significant increase in

stomatal density during bud differentiation stage was observed after a
Frontiers in Plant Science 06
10-day-long heat stress. It was 17.7%, 31.1%, and 34.7% greater in HS-

F-10, HS-F-15, and HS-F-20 conditions, respectively, compared to

CK. However, the significant reduction of stomatal length and width

was only observed for the HS-F-20 condition.
3.4 Response of leaf stomatal conductance
and leaf transpiration to heat stress

Figure 5 shows that the values of leaf stomatal conductance

significantly decreased for all heat stress treatments during two

growth stages. Compared to CK, leaf stomatal conductance was

significantly smaller for all heat stress treatments during the

vegetative growth stage (42.2%-65.4%) and flowering bud

differentiation stage (28.5%-54.4%). Similarly, leaf transpiration was

significantly reduced by 13.7%, 29.1%, 38.4%, and 50.7%, respectively,

for the HS-V-5, HS-V-10, HS-V-15, and HS-V-20 conditions, and by
A

B

D

E

F

G

H

C

FIGURE 3

Dynamics of leaf area under different temperature treatments during the vegetative growth (A–D) and flowering bud differentiation stages (E–H). CK is
the control treatment, HS is the heat stress treatment. Values are the mean ± SD (n=3). *indicates the significant level at P<0.05.
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24.5%, 23.7%, and 45.3%, respectively, for the HS-F-10, HS-F-15, and

HS-F-20 conditions relative to CK (Figure 5). These values suggest

greater reduction rate of leaf stomatal conductance and leaf

transpiration in the vegetative growth stage than the flowering bud

differentiation stage (Table 2).
3.5 Effects of heat stress on transpiration
and evapotranspiration

3.5.1 Hourly scale
Figure 6 shows that heat stress significantly affected hourly

transpiration rate in part of the daytime, except for the HS-V-20

condition (entire daytime). For instance, compared to CK, the hourly

transpiration rate was decreased significantly by 21.7%-28.6% during

the period 12:00-18:00 for the HS-V-5 condition, and by 19.0%-34.8%

and 20.8%-40.0%, respectively, during the period 10:00-18:00 for the
Frontiers in Plant Science 07
HS-V-10 and HS-V-15 conditions. Likewise, for the flowering bud

differentiation stage, the hourly transpiration rate was reduced

significantly by 21.2%-26.9% and 18.5%-25.8%, respectively, during

the period 12:00-16:00 for the HS-F-5 and HS-F-10 conditions

relative to CK; and by 17.2%-28.6% and 19.4%-33.3% respectively,

during 10:00 and 16:00 for the HS-F-15 and HS-F-20 conditions.

Specifically, the HS-V-20 condition significantly affected hourly

transpiration over the entire daytime period with a reduction rate

of 25.0%-42.3%.

Interestingly, heat stress significantly increased hourly

evapotranspiration rate for almost entire daytime hours (Figure 7).

Compared to CK, the hourly evapotranspiration of the HS-V-5, HS-

V-10, HS-V-15, and HS-V-20 conditions was increased by 22.2%-

37.5%, 25.0%-35.7%, 19.1%-29.0%, and 18.2%-28.1%, respectively,

during the period 8:00-18:00. Similarly, during daytime in the

flowering bud differentiation stage, the hourly evapotranspiration

was increased significantly by 23.5%-43.7% for the HS-F-5
A

B

D

E

FC

FIGURE 4

Response of stomatal density (A, D), length (B, E) and width (C, F) of gerbera to heat stress (HS) during vegetative growth (A–C) and flowering bud
differentiation stages (D-F). CK is the control treatment. Values are the mean ± SD (n=5). *, **, and *** represent the significant level at P<0.05, P<0.01,
and P<0.001, respectively.
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condition except for 18:00; and by 25.0%-42.9%, 20%-40.5%, and

21.4%-35.9%, respectively, for the HS-F-10, HS-F-15, and HS-F-20

conditions except for 8:00.

3.5.2 Daily scale
There was no significant difference (P > 0.05) in the daily

transpiration and evapotranspiration rate among all treatments

before imposing heat stress (Figure 8). The HS-V-5, HS-V-10, HS-

V-15, and HS-V-20 conditions decreased daily transpiration by

19.7%-22.2%, 18.9%-26.0%, 19.2%-27.3%, and 21.3%-31.8%,

respectively, compared to CK. During the recovery phase, there was

no significant difference in daily transpiration between the HS-V-5

condition and CK. However, daily transpiration could not recover

after the end of heat stress in the other treatments, remaining 11.2%-

14.4%, 14.9%-19.8%, and 21.2%-26.9% decrease for the HS-V-10, HS-

V-15, and HS-V-20 conditions, respectively (Figure 8).

During the flower bud differentiation stage, daily transpiration

was 12.8%-16.8%, 13.3%-16.9%, 12.1%-16.7%, and 13.6%-20.3% less

for the HS-F-5, HS-F-10, HS-F-15, and HS-F-20 conditions,

respectively, relative to CK. Plants of the HS-F-5 and HS-F-10

conditions exhibited a less than 10% reduction in daily

transpiration during the recovery phase, while the reduction rate

was 13.8%-16.3% and 14.8%-22.1% for the HS-F-15 and HS-F-20

conditions, respectively.

Different from daily transpiration, daily evapotranspiration was

increased during the heat stress period (HS-V-5: 20.5%-24.3%; HS-V-

10: 18.0%-24.5%; HS-V-15: 14.4%-23.7%; HS-V-20: 12.6%-22.8%).

However, during the recovery phase, the daily evapotranspiration

significantly reduced when the evaporation demand was almost the

same (Figure 9). Compared to CK, the reduction rates of daily
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evapotranspiration during the recovery phase were greater under

the HS-V-15 (11.2%~15.7%) and HS-V-20 (16.4%~22.7%) conditions

than the HS-V-5 and HS-V-10 (<10%).

S imi la r to the vege ta t ive growth s tage , the da i ly

evapotranspiration was increased by 13.5%-16.0%, 12.5%-15.9%,

11.0%-17.6%, and 8.4%-16.3%, respectively, for the HS-F-5, HS-F-

10, HS-F-15, and HS-F-20 conditions during the heat stress period.

During the recovery phase, the daily evapotranspiration was reduced

by less than 10.0% for the HS-F-5 and HS-F-10 conditions and by

12.0%-14.6% and 11.1%-19.2% for the HS-F-15 and HS-F-20

conditions. Table 2 also shows that heat stress occurred at different

growth stages had significant effect on the total daily transpiration

and evapotranspiration during the heat stress period and

recovery phase.
4 Discussion

Heat stress is one of the main factors influencing crop

evapotranspiration. As the increasing frequency and intensity of

heat stress worldwide (IPCC, 2021), the effect of heat stress on

evapotranspiration continues to receive more attentions. In this

study, we showed that varied duration of heat stress at different

growth stages had different effects on transpiration and

evapotranspiration of gerbera.

Short-term heat stress affects the hourly transpiration in the

period of high air temperature. For instance, the hourly

transpiration was significantly decreased during the period 12:00-

16:00 for the HS-V-5 condition (Figure 6), which is attributed to the

limitation of stomatal width and stomatal conductance. High
A

B D

C

FIGURE 5

Effects of heat stress (HS) during the vegetative growth (A, B) and flowering bud differentiation stages (C, D) on leaf stomatal conductance (gs; A, C) and
leaf transpiration (E; B, D) of gerbera. CK is the control treatment. Values are the mean ± SD (n = 3). *, **, and *** represent the significant level at
P<0.05, P<0.01, and P<0.001, respectively.
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temperature triggers the water-saving mechanism of plants, which

leads to partially closed stomata and smaller stomatal conductance, in

turn preventing excessive water loss (Leuning, 1990; Damour et al.,

2010; Medlyn et al., 2011). When the heat stress continued, the period

of inhibited hourly transpiration was further prolonged. For instance,

the hourly transpiration of the HS-V-10 condition was significantly

decreased from 10:00 to 18:00. At the same time, a marked decline

was also observed for root activity, stomatal size, and leaf area under

the HS-V-10 condition compared to CK. High temperature lasting for

a certain time significantly suppressed the root activity, which limited

the root water uptake from soil and thus the water supply to

aboveground organs (Nagel et al., 2009; Luo et al., 2020). The

smaller stomatal size also suggests a smaller effective area for

stomatal gas exchange (Bertolino et al., 2019). In addition, the heat
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stress gradually affects the development of leaf biomass, which in turn

affects the transpiration. The declined root activity induced by heat

stress limits the water and nutrients transport in plants, which

inhibits the leaf growth, hence indirectly affecting the transpiration

rate. Heat stress can also decrease the leaf area by inhibiting the cell

division and elongation, directly reducing the plant evaporative

surface (Schoppach and Sadok, 2013). In addition, it also affects

protective enzymes and proteins, damaging leaf function, accelerating

leaf senescence, and indirectly limiting transpiration (Balfagón et al.,

2020). When heat stress lasted 15 days during the vegetative growth

stage, a significant reduction in root biomass was observed. After 20

days of heat stress during the vegetative growth stage, the

development of roots, leaves, and stomata was restricted, and

inhibition of the transpiration by the HS-V-20 condition occurred
A

B

D

E

F

G

H

C

FIGURE 6

Diurnal variation of transpiration under different temperature treatments during the vegetative growth (A–D) and flowering bud differentiation stages
(E–H). *, **, and *** represent the significant level at P<0.05, P<0.01, and P<0.001, respectively. The error bars represent standard deviation (n=3).
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in the entire daytime, and reached the maximum extent with respect

to other conditions.

Heat stress at different growth stages also has varied effects on

transpiration. Plants are more sensitive to heat stress at the vegetative

growth stage than at the flowering bud differentiation stage (Table 2).

For instance, compared to CK, heat stress markedly reduced daily

transpiration by 18.9%-31.8% during the vegetative growth stage,

whereas by 12.1%-20.3% during the flowering bud differentiation

stage (Figures 8A, C). This different reduction rate of daily

transpiration for heat stress at different growth stages was also

supported by differences in the studied root, leaf, and stomata traits

under heat stress (Table 2). Plants in the vegetative growth stage
Frontiers in Plant Science 10
experience more extreme thermal environments than larger and older

plants at high radiant energy input as a result of weak convection

cooling potential (Villagarcıá et al., 2007; Jagadish et al., 2021). In

addition, the plants should have more heat tolerance in the flowering

bud differentiation stage than the vegetative growth stage. Therefore,

plants in the vegetative growth stage are more sensitive to and more

stressed by heat stress.

There are also different responses of transpiration and

evapotranspiration during the recovery phase. The daily

transpiration of the HS-V-5 condition decreased by less than 10%

in the early recovery stage, but by less than 5% in the late stage.

However, the reduction of daily transpiration during the recovery
A

B

D

E

F

G

H

C

FIGURE 7

Diurnal variation of evapotranspiration under different temperature treatments during the vegetative growth (A–D) and flowering bud differentiation
stages (E–H). *, **, and *** represent the significant level at P<0.05, P<0.01, and P<0.001, respectively. The error bars represent standard deviation (n=3).
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phase increased with duration of heat stress. This may be because that

short period (e.g., five days) of heat stress only limits the degree of

stomatal conductance, which is easily resumed when the air

temperature returned to normal. When heat stress lasted 10 days,

the functions of the root activity and leaf area suffered from damage,

and they could be recovered to a certain extent after the end of the

heat stress. This may explain the small reduction of transpiration

during the recovery phase. However, when the heat stress lasted 15

days, the plant biomass, especially the root and leaf, was inhibited,

which directly affected the ability of water supply and transpiration

during the recovery phase. Similar to the effect of heat stress on

transpiration during different growth stages, plants could quickly

recover after adversity during the flowering bud differentiation stage,

resulting in a smaller accumulation of damage compared to that

following adversity during the vegetative growth stage (Table 2).
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Interestingly, heat stress increased daily evapotranspiration in this

study (Figures 8B, D), and the increment rate was decreased as the

duration of heat stress increased. Heat stress led to an increase in the

potential evaporation rate (Figure 1B) as a result of increased VPD,

which increased the evaporation by 100%-115% (Figure 9) during the

heat stress period. This increased evaporation rate was higher than the

rate of inhibition of the transpiration rate of gerbera, thus increasing

evapotranspiration during the heat stress period. However, when the air

temperature returned to normal, the daily evapotranspiration

significantly decreased as a result of limited transpiration when the

potential evaporation rate was almost the same. The results reported

here is different from Qiu et al. (2022), who found that mean hourly

evapotranspiration of flooded rice was reduced by 12% during the heat

stress period, which may be attributed to that the rate of inhibition of

the transpiration was greater than the increased evaporation rate.
A

B D

C

FIGURE 8

Variation of daily transpiration (A, C) and evapotranspiration (B, D) exposed to different temperature treatments during the vegetative growth (A, B) and
flowering bud differentiation stages (C, D). The shading areas of each line represent standard deviation.
A B

FIGURE 9

Variation of daily evaporation (A, B) exposed to different temperature treatments during the vegetative growth (A) and flowering bud differentiation
stages (B).
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5 Conclusions

We found that the response of the hourly transpiration to heat

stress exhibited a temporal variation, with the duration of inhibition

during the course of the day and the inhibition amplitude becoming

greater as the duration of heat stress prolonged. The daily

transpiration was considerably decreased by heat stress, and the

amplitude of the decrease was greater for longer-lasting heat stress.

Transpiration was more sensitive to heat stress during the vegetative

growth stage than during the flowering bud differentiation stage. The

daily transpiration could recover only when the heat stress lasted for a

short period (e.g., five days) during the vegetative growth stage.

Interestingly, the daily evapotranspiration markedly increased

during heat stress period, as a result of disproportional effect of

heat stress between evaporation and transpiration. However, during

the recovery stage, daily evapotranspiration was reduced after heat

stress. This study suggests that heat stress induced variation in

evapotranspiration and its subsequent effect should be incorporated

in evapotranspiration models and climate scenarios projections.
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