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3D segmentation of plant root
systems using spatial pyramid
pooling and locally adaptive
field-of-view inference
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3Fraunhofer Institut für Integrierte Schaltungen (IIS), Fraunhofer Institute for Integrated Circuits
Institut für Integrierte Schaltungen (IIS), Division Smart Sensors and Electronics, Erlangen, Germany
Background: The non-invasive 3D-imaging and successive 3D-segmentation of

plant root systems has gained interest within fundamental plant research and

selectively breeding resilient crops. Currently the state of the art consists of

computed tomography (CT) scans and reconstruction followed by an adequate

3D-segmentation process.

Challenge: Generating an exact 3D-segmentation of the roots becomes

challenging due to inhomogeneous soil composition, as well as high scale

variance in the root structures themselves.

Approach: (1) We address the challenge by combining deep convolutional neural

networks (DCNNs) with a weakly supervised learning paradigm. Furthermore, (2)

we apply a spatial pyramid pooling (SPP) layer to cope with the scale variance of

roots. (3) We generate a fine-tuned training data set with a specialized sub-

labeling technique. (4) Finally, to yield fast and high-quality segmentations, we

propose a specialized iterative inference algorithm, which locally adapts the field

of view (FoV) for the network.

Experiments: We compare our segmentation results against an analytical

reference algorithm for root segmentation (RootForce) on a set of roots from

Cassava plants and show qualitatively that an increased amount of root voxels

and root branches can be segmented.

Results: Our findings show that with the proposed DCNN approach combined

with the dynamic inference, much more, and especially fine, root structures can

be detected than with a classical analytical reference method.

Conclusion: We show that the application of the proposed DCNN approach leads

to better andmore robust root segmentation, especially for very small and thin roots.

KEYWORDS

root phenotyping, root system analysis, computed tomography, weakly supervised
learning, sub-labels, scale invariance, flood-filling, convolutional neural networks
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1 Introduction

To optimize and selectively breed resilient and sustainable plant

species, automatic or interactive segmentation subterranean root

structures from reconstructed CT scans is of great importance for

phenotyping plants (Mooney et al., 2012; Atkinson et al., 2019).

Thus, the quantification of the root-system architecture reaction on

biotic and abiotic stress factors is possible. Up to now, most

optimization and breeding efforts have relied on phenotyping of

above ground structures and completely ignored ‘below-the-

ground’ structures.

In contrast to many conventional methods, such as soil-coring,

root washing or shovelomics (Trachsel et al., 2011), the non-invasive

scanning and reconstruction of CT-volumes of roots and their

successive 3D segmentation is a crucial and powerful approach in

this field of research [e.g. De Smet et al., 2012; Mooney et al., 2012;

Metzner et al., 2015; Ahmed et al., 2016; Atkinson et al., 2019).

However, these new possibilities for the non-destructive monitoring

of root systems demand high quality data sets of segmented data for

quantitative data analysis. This is important since a classical ground

truth via root excavation and washing, results in a loss of fine root

structure and interconnectivity of the whole root system. To this end,

the 3D segmentation of the root structures was mainly performed by

analytical algorithms based on classical image processing and image

analysis methods [e.g., Mairhofer et al., 2011; Flavel et al., 2012;

Mairhofer et al., 2015; Flavel et al., 2017; Gao et al., 2019;

Soltaninejad et al., 2020; Gerth et al., 2021; Phalempin et al., 2021;

Ferreira et al., 2022; Lucas & Vetterlein, 2022), which, however, are

not able to detect roots on all scales equally. See Figure 1 for an

example which contains challenging small and fine roots.

To overcome the limitations of the current analytical methods,

we propose an improved deep neural network based approach,

which is (a) able to adapt to different feature scales of the roots to be

delineated, (b) can be trained with noisy information, and (c)

furthermore is able to efficiently handle large scale 3D data sets of
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roots during inference. We make use of a classical deep

convolutional neural network (DCNN) architecture which is

enhanced by a ‘Spatial Pyramid Pooling’ (SPP) layer (He et al.,

2014) (see Section 4) to gain scale invariance for root segmentation

by supporting arbitrarily sized ‘field of views’ (FoVs) (see Section

3.4) as input sample and is furthermore using a weakly supervised

training scheme (Khoreva et al., 2017) (see Section 5).

The work is structured as follows: Section 2 gives an overview of

related work, while Section 3 introduces the 3D volumetric CT data

of plant root-structures used for training and testing of the modified

network. Section 3 also includes information about the labeling of

the needed ground truth from an analytical approach, motivates the

usage of size varied FoVs, and explains the proposed sub-labeling

technique yielding a fine-tuned reference data set.

Section 4 introduces the proposed architecture of the deep

neural network including the spatial pyramid pooling layer. In

Section 5 the novel training approach is presented including a

description of the weakly supervised training loop.

The novel inference algorithm is explained with a detailed walk-

through of its functionality in Section 6. Experiments and results are

presented in Section 7. Finally, a critical discussion is given in

Section 8 and the work is concluded in Section 9.
2 Related work

The challenging task at hand consist of a semantic segmentation

of each voxel within a data volume (acquired from reconstructed CT

scans) into the two labels L ∈ {‘root’, ‘non-root’} denoting either ‘root’

being foreground or ‘non-root’ being background voxels denoting

surrounding soil, air, or the planting pot (cf. Table 1). The underlying

challenge of this binarization relates to the strong variance of the root

diameters, which range from the storage root diameter of Ø = 10 –

30 mm, to lateral root extensions with diameters in the range of Ø =

0.2 mm, as well as varying scanning conditions.
A B

C

FIGURE 1

Challenges for small root segmentation: (A) one vertical 2D slice Si from volume V5 (see Table 1). Yellow box: stem of the cassava plant; red region:
planting pot; dark blue region: air; green box: example of soil mixture; magenta and orange marks: two branches of a very thin root. (B) Enlarged
version of the green box in (A) with marked root branches. (C) Adjacent slice Si+2 where the lower root branch (orange) passes a small stone (cyan)
with a similar appearance.
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In the past years various methods and algorithms addressing

this task have been proposed. See (Xu et al., 2018; Li et al., 2022) for

an excellent broad and deep overview of the research area. These

can be clustered in two groups, namely (a) traditional knowledge-

driven top-down image-processing and analysis methods, and (b)

more recently developed data-driven bottom-up approaches

employing deep neural network architectures and a large corpus

of labeled training data.

Examples of the first category include the ‘RootForce’ algorithm

(Gerth et al., 2021), which solves this task by analyzing the

curvature of the gray value profile of the root voxels using

classical image processing and analysis approaches. Using the

specific mean gray values of the two object types ‘root’ and ‘non-

root’, RootForce sorts out all objects which are not in a specific gray

value range and thereby generates a mask to indicate possible root

voxels. Based on this mask, Frangi’s vesselness approach (Frangi

et al., 1998) is applied to create two root volumes for small and large

roots, respectively.

Another analytical approach, referred to as ‘Rootine’, also

building upon Frangi’s vesselness filter was presented by Gao

et al. (2019) and Phalempin et al. (2021), and uses 3D hysteresis

thresholding to binarize the resulting image. A similar approach

employing region and volume growing method has been proposed

by Flavel et al. (2012) and later published under the name ‘Root1’

(Flavel et al., 2017).

Further analytical approaches have been suggested by

Mairhofer et al. (2011), who have developed the so-called

‘RooTrak’ algorithm. This approach makes use of slice wise level-

set techniques combined with the so-called Jensen-Shannon

divergence to segment plant roots in volumetric data sets. Later,

this procedure was expanded to enable the tracking of multiple

touching roots using the iterative closest point (ICP) algorithm to

match and separate multiple possible roots of different root systems

between slices (Mairhofer et al., 2015).

The second group of methods relate to deep-learning inspired

approaches, which have recently been introduced to this field of

research, e.g., a multi-resolution encoder-decoder network to

handle the diverse scales of root systems was proposed by

Soltaninejad et al. (2020). They propose a parallel processing

pipeline featuring a path of high resolution with a small receptive

field and a path of lower resolution but large receptive field to

segment 3D volume patches. This approach has been built on top of
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the well-known U-Net architecture (Ronneberger et al., 2015; Cicek

et al, 2016) used for semantic segmentation.

Smith et al. (2020) also employ a U-Net to automatically

segment rhizotrons in RGB photographs of Chicory root systems.

Here, the network was trained and validated on a set of 50 manually

labeled 2D images and compared to a baseline using Frangi’s

vesselness filter (Frangi et al., 1998). Using 3D-MRI data, the

work by Zhao et al. (2020) also utilized a U-Net architecture for

the segmentation of roots using custom loss modifications to reduce

erroneous disconnected roots.

Alternatively, Shen et al. (2020) make use of a slightly modified

DeepLabv3+ network architecture (Ayhan, 2020) to segment RGB

photographs of cotton root systems. Specifically, they introduced a

sub-pixel convolution to the up-sampling path of the model and

compared their results with manually annotated data as well with

the results of a U-Net based segmentation. Thesma and

Mohammadpour Velni (2023) propose a conditional generative

adversarial network (cGAN) to augment their available root data set

of RGB photographs from plant roots grown in clear gel. They

further used a SegNet trained on both synthetic and real data for

segmentation of fine root systems.

Our own proposed network (see Section 4) builds upon the

work by He et al. (2014), who introduced the so-called ‘Spatial

Pyramid Pooling network’ (‘SPP-network’) with the goal to alleviate

the fixed size constraint of input images for classical deep

convolutional neural Networks (DCNNs) (Schmidhuber, 2015;

Krizhevsky et al., 2017). After feature extraction with several

convolution layers and by introducing a pooling method, that

generates fixed size outputs from arbitrary sized inputs a pyramid

of feature maps is generated, ranging from a coarse-to-fine detail

level. This allows training a network with input data of varying

image sizes, resulting in a more robust classification as output with

respect to scale variance. Specifically, for this contribution we

employed this SPP-net (see Section 4) and extended it to the

domain of CT-data and 3D root segmentation.
3 Data

The data set used for this project was generated from fourteen

high-resolution CT root scans from different potted Cassava plants

with the same set of scanning and calibration parameters. From the
TABLE 1 Typical examples of different cassava root systems, 3D-segmented with RootForce (Gerth et al., 2021).

Training Validation

V1: 4,264,632 voxels V2: 10,462,217 voxels V3: 1,596,662 voxels V4: 3,577,330 voxels V5: 2,834,479 voxels
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projective raw data, cuboid volumes with spatial dimensions of

17.9 cm × 17.9 cm × 15.7 cm were reconstructed, and with a voxel

edge length of 175 mm resulted in data volumes of 1024 × 1024 ×

900 voxels per plant. For more details about the scanning see Gerth

et al. (2021)
3.1 Data description

Table 1 provides typical examples from the fourteen scanned

and 3D-segmented root systems of cassava plants. The bottom row

lists the count of detected root voxels within each volume. The 3D-

segmentations of the depicted root structures have been generated

by the RootForce algorithm (Gerth et al., 2021) with a vesselness

filter in the range of 0.2–0.5 mm resulting in a volume of small

roots, and furthermore used a 3D-Gauss filter (s = 0.5mm) to

support the extraction of large roots (see Section 2). Both obtained

volumes are binarized and merged yielding the final binary

root segmentation.

Figure 1A shows one vertical 2D image slice Si extracted from

volume V5. This side view depicts the large (bright) stem of the

cassava plant (denoted by the yellow box in the top center)

surrounded by the (dark) soil mixture, the planting pot below

(red region) and the air above (dark blue region). The soil mixture is

rather inhomogeneous with many components of differing gray

values, including small pebbles. To enhance visibility of the very

thin root structures depicted in the soil, the contrast was increased.

One challenge in this exemplary data is highlighted in the green

boxes in Figure 1A and enlarged Figure 1B, where two branches of a

very thin root (orange and magenta) are denoted. Figure 1C depicts

the two branches of the same root in the adjacent image slice Si+2,

(shifted two voxels perpendicular to the slicing plane) passing a

small stone (cyan) with very a similar roundish structure and gray

level values.
3.2 Data split

For the training, validating, and testing of the proposed SPP-

network (see Section 4) the fourteen CT scans were divided. Four

volumes (V1 – V4) were used as training data and one volume (V5)

for the validation of the deep neural network. The remaining nine

(V6 – V14) scans were used for testing. The training volumes were

chosen carefully with the distinct aim of providing a diverse set of

root examples despite the otherwise identical physical parameters.
3.3 Labeled training data

When training a DCNN to delineate the complex root

structures into the fore- and background labels ‘root’ and ‘non-

root’, a sufficient amount of adequately labeled ground truth data is

required. However, there is only limited availability of training data

with a satisfactory image and label quality, thus hindering the

training process. Since manual annotation of such CT data is

time consuming and error prone, segmentation results of the
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training data D = {V1, V2, V3, V4} (see Section 3.2) obtained

from the RootForce algorithm were used as label volumes L0 (see

Table 1) in an initial training data set T0 = (D, L0). The deep neural

network (see Section 4) was trained by a weakly supervised learning

approach, as proposed by Khoreva et al. (2017), to recursively refine

the data set. During the weakly supervised learning iterations, the

segmentation results of the network N0 from the first training

iteration are used as label volumes for subsequent training

iterations, see Section 5 for details.
3.4 Sample fields of view

Due to memory restrictions, an entire volumetric 3D scan of the

roots (with a total of 1024 × 1024 × 900 voxels) cannot be processed

at once. Therefore, we consider small sub-volumes or small 3D-

patches from the complete volumes as input samples. Even though

only the center voxel of each patch is classified into either label ‘root’

or ‘non-root’, the surrounding volume patch provides important

contextual information. Consequently, the reference label of one

sample is not a classification of the whole volume patch, but a binary

label for the center voxel, encoding either ‘root’ or ‘non-root’.

In order to detect thin and thick roots (see Table 1; Figure 1)

with equal accuracy, similar structural root features need to be

represented across scales. To restrict the introduction of additional

noise and expensive preprocessing during inference, scaling

techniques utilizing filtering were avoided. Instead, as all samples

originate from image data with the same voxel resolution, we vary

the edge length of the patches for each sample; hence, the training

sample size of an input patch varies only in the voxel count and thus

the dimensions of the cuboid, but not in the physical voxel size. In

the remains of this work, we will refer to the varying sample size as

‘field of view’ (FoV) which is created by extracting the neighboring

region around each voxel. This region can extend between r = 2 to

r = 7 voxels in each direction, hence resulting in cubic samples with

edge lengths in the range from l = 5 to l = 15 voxels.
3.5 Sub-labeling

Since every volumetric data sample corresponds to a distinct

voxel, which is either of class ‘root’ or class ‘non-root’, a naively

constructed training data set would inherit a skewed class

distribution, as there are much less root voxels than non-root

voxels present in each CT scan. Randomly drawing samples from

the pool of possible non-root voxels to match the count of root

voxels, could yield many trivial negative samples, such as volume

patches depicting only soil or air around the plant pot, see

Figure 1A. To provide an adequate training data set with an

ideally uniform class distribution, the applied data preprocessing

includes a categorization of the training and validation samples into

sub-labels, which distinguish the center voxel of the volume patch

from the surrounding voxels.

Because during the later inference, the proposed network (see

Section 4) shall be provided a volume patch, and its output should

predict one of the classes ‘root’ or ‘non-root’ for only its center voxel,
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it is important to train the network with a sufficient set of ‘difficult

negative’ examples. Specifically, in such ‘difficult negative’ samples,

some root voxels should be present in the volume patch, while the

center voxel is not of the class ‘root’. In this way, the network will be

prevented from classifying the volume patch as a whole and instead

is taught to differentiate between the contents in the center voxel

and its surrounding.

Furthermore, another challenge with respect to the application

of deep convolutional neural networks to plant root segmentation is

the misclassification of voxels depicting the plant pot as class ‘root’.

As the non-trivial geometry of the pot base (see Figure 1A) could

not be easily extracted or excluded by a mask, the sub-labels also

differentiate within the ‘non-root’ class, namely between ‘sediment’

and ‘else’ contents, where ‘else’ is used as collective term for all

voxels depicting the plant pot or air. This approach allows further

specification for the included samples of the negative ‘non-root’

class in the training and validation data. For example, ‘non-root’

samples, which contain roots in the surrounding but not in the

center voxel and are located next to the edges of the plant pot.

As depicted in Figure 2, for the categorization of the training

samples into adequate sub-labels, two label volumes VRoots and

VSediment are employed (Figure 2A): The first volume, VRoots, is a

binary volume and depicts an approximate labeling VRoots = Li of

the ‘root’/’non-root’ classification, which in the first approximation

is obtained from a RootForce segmentation (see Section 3.3). The

second label volume VSediment approximates a sediment

segmentation, which is generated from the inverse VRoots label

volume. Additional image processing steps are applied in order to

remove air pockets in the soil and the plant pot from the sediment

labeling. However, a conservative box-mask, which also excludes

several sediment voxels, was needed for the lower volume due to the

complex geometry of the pot bottom. Hence, it is assured that no

voxels from ‘pot’ or ‘air’ are contained in VSediment, and thereby the

sediment label volume helps differentiating between the content

classes ‘sediment’ and ‘else’. The original gray level CT-volume,

depicted in Figure 2A, only serves for a better description of the

process, as its information is not needed to generate the sub-labels.

The following steps are repeated for all possible radius sizes

r ∈ {2, 3, 4, 5, 6, 7} of the FoV: For every ‘interior voxel’ of both the
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approximated ground truth volume VRoots as well as the

approximated sediment label volume VSediment, sample patches,

which are centered on the current voxel and sized according to

the current radius r, are extracted and then used to categorize each

sample. The denotation of ‘interior voxels’ refers to those voxels,

which are at least d = ⌊r/2⌋ voxels away from the volume’s edges,

such that the FoV can be placed around the voxel without needing

to pad the volume.

Figure 2B depicts the interior voxels of the volume in white,

while for the FoV the center voxel is marked in red, and yellow

indicates the voxels in the surrounding regions. Exemplary resulting

patches are shown in Figure 2C.

As motivated earlier, the categorization of all volume patches

into sub-labels shall differentiate the occurring content

combinations of the center voxel and the surrounding voxels,

where the content classes are ‘root’, ‘sediment’, and ‘else’ –

surrogating ‘pot’ and ‘air’. Figure 2D shows the considered sub-

labels in a table-like structure, where the contents of the center voxel

are organized along the rows and the contents of the surrounding

voxels are organized along the columns. This is also reflected by the

respective color-coding of Figure 2B. The secondary table headers

are color-coded to match the three content types (‘root’, ‘sediment’

and ‘else’). In total nine different combinations of sub-labels are

considered. The first row contains the sub-labels, which correspond

to the original ‘root’ class, while all other sub-labels are of the ‘non

root’ class. Each table entry gives an exemplary depiction of the

three volume patches (edge colors indicate the affiliations to the

source volumes). With the two binary volume patches, VRoots and

VSediment, and some binary logical operators, every sample can now

be categorized into a unique sub-label. The output of this process is

a table for each FoV radius size r ∈ {2, 3, 4, 5, 6, 7}, containing the

total amount of available samples per sub-label and storing the

respective sample coordinates.

By specifying the sample counts per sub-label, a class-balanced

training data set can now be constructed. To this end, we define a

distribution, dependent on the difficulty and availability of each

sub-label.

This above-described procedure of sub-label generation is

repeated for all five CT scans used as training or validation
A B DC

FIGURE 2

2D description of the volume sample categorization into nine sub-labels (‘root-root’, ‘root-sediment’, ‘root-else’, ‘sediment-root’, ‘sediment-
sediment’, ‘sediment-else’, ‘else-root’, ‘else-sediment’ and ‘else-else’). (A) input data and pre-labeled masks VRoots and VSediment corresponding to
one scan; (B) extraction of individual volume patches according to the current FoV for each interior voxel; (C) example of the depicted contents
within the volume patches; (D) overview of possible sub-label combinations differentiating between combinations of content in the center voxel and
the surrounding voxels.
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volume. Where possible, similar distributions for every volume and

FoV combination were used. However, this goal is not always

attainable since the availability of the sub-label depends on the

spatial extend of the addressed root system and the FoV radius r.

Specifically for the later, the proportion of samples containing sub-

labels, which encode for a mix of content types, scales

proportionally with the FoV size.
4 Deep neural network architecture

For our experiments we employ a classical deep convolutional

neural network (DCNN) structure (Schmidhuber, 2015; Krizhevsky

et al., 2017) with a fully connected layer at the end as depicted

in Figure 3.

However, one known downside of this network structure is the

lack of sufficient scale invariance. This is a crucial issue as due to

their fractal geometry (Dannowski & Block, 2005) the root

structures depict strong similarities across different scales. Hence,

the DCNN needs to learn scale invariant features, which can be
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reused on different scales to detect all types of roots robustly. This

necessity is incorporated into the DCNN by including a ‘Spatial

Pyramid Pooling’ (SPP) layer (He et al., 2014). This SPP-layer

enables the network to learn and generalize scale-invariant features,

and furthermore, relieves the size constraint of the input samples,

which is inflicted by the fully connected layers. In order to utilize

both advantages, different sized volume patches – also referred to as

‘fields-of-view’ (FoVs) (see Section 3.4) – which are created in the

sub-labelling process (see Section 3.5) - are used as input for

training of the same network.

The DCNN incorporates a total of five successive convolutional

layers with an increasing count of channels to extract characteristic

features from the gray level input sample via 5 × 5 × 5 kernels.

The subsequent spatial pyramid pooling (SPP) layer (He et al.,

2014) consists of three parallel adaptive pooling layers, each

generating a feature description on a different fixed scale. The

sliding kernel of each pooling layer changes its size adaptively to

ensure fixed output dimensions. Thereby, the total complexity of

the feature description remains constant for arbitrarily sized inputs.

For this application a pyramid consisting of the three levels is used,
FIGURE 3

Schematic depiction of the employed network architecture. Specifically, the spatial pyramid pooling layer in the center of the network consists itself
of multiple internal layers, which are processed in parallel. As the input can be of arbitrary sizes, the input and output dimensions are generically
denoted as h × w × d.
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with each level having a cubic output shape with edge lengths of 1, 2,

and 4 voxels, respectively.

After flattening and concatenation, the output of the SPP-layer

is forwarded into the first layer of a classical Multi-Layer Perceptron

(MLP). Three fully connected layers reduce the extracted feature

vector to a final prediction of the two classes ‘root’ and ‘non-root’.

The last layer of the DCNN uses the softmax activation function to

scale the output value to the probability of belonging to the

respective class.

For regularization purposes, dropout (Srivastava et al., 2014) is

used with a probability of 40% after the convolution layers and

70% after the fully connected layers. ReLU is employed as

activation function.
5 Network training

Within the scope of this work, a so-called weakly supervised

training scheme as proposed by Khoreva et al. [26], is employed by

using the available CT training data (Section 3.1) with iteratively

improving label data from RootForce (Section 3.3). In each iteration,

the sub-labeling (Section 3.5) is used to balance the data set, and a

dynamic inference algorithm (Section 6) generates the

improved labeling.

Within the weakly supervised learning approach, a network

model Ni is trained on an iteratively improving training data set

Ti = (D, Li). It has been observed by Khoreva et al. [
26], that when re-

applying the network model Ni on the training data D, the output

Ni (D) = Oi of the network captures the shapes of the objects (in this

case the root structure) significantly better than the label data

during the training. This has inspired a recursive training

procedure, where the achieved output labels replace the training

labels Li+1 = Oi and together with the original training data D serve

as a new training data set Ti+1 = (D, Li+1) = (D, Ni (D)) for another

round of training.

Due to the generalizing capabilities of deep neural networks,

incorrect outlier-labels become more aligned to the majority of
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correct labels over the course of recursively re-evaluating the

training data with the neural network. Hence, a robustly trained

neural network will smooth out possible label noise and thus yield

an improved labeled training data set Ti+1 = (D, Li+1) = (D, Ni (D)).

However, the weakly supervised learning paradigm cannot

guarantee an improvement. Mistakes in the label data will not be

removed generally, but depending on the training scheme and data

set, label noise can be reduced by smoothing of the data-label

correspondences. An amplification of mistakes in the training data

set, resulting in ‘label drift’, was not observed for this work. While

difficult to verify, the fine-tuning of the training data set via sub-

labeling (see Section 3.5) might steer the training process towards

greater robustness and thereby avoid label drift. The recursive

training-evaluation cycle was repeated three times, each starting

with a new network model Ni from scratch.

Figure 4 summarizes the training iterations of the weakly

supervised learning scheme of the proposed SPP-network

(Figure 4E). As mentioned, the first iteration i = 0 uses the

segmentation calculated by the RootForce (Gerth et al, 2021)

algorithm as target labels L0 (Figure 4B). Each iteration applies

the sub-label categorization (Figure 4D) from Section 3.5 based on

the current approximated target labels Li (Figure 4C) and the gray

value CT data D (Figure 4A).

As shown in Figure 4F, during the inference cycle the training

and validation CT volumes were assessed with the custom

inference algorithm, see Section 6. According to the work by

Khoreva et al. [26] as well as our experiments, the resulting root

segmentation Oi shows improvements over the noisy label data Li.

In the next training iteration, this improved segmentation replaces

the previously used target label volume Li+1 = Oi, hence Ti+1 = (D,

Li+1) = (D, Ni (D)). With each iteration, all sub-steps are repeated,

and a new network Ni+1 is trained from scratch. A total of three

cycles (i \in {0, 1, 2}) of recursive training were iterated. The

resulting network N2 after the last cycle is fixed as final proposal.

In Section 7 and Section 8 the results of this last network model N2

applied on a completely disjoint test set are presented

and discussed.
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FIGURE 4

Schematic overview of the weakly supervised training loop. From gray value CT data D (A), together with corresponding label data Li (provided by
the RootForce algorithm for i=0) (B), the training data Ti = (D, Li) (C) is used to construct a sub-label balanced data set (D) which is then used to train
a SPP-network model Ni (E). The trained SPP-network Ni is applied on the training data D using the proposed dynamic interface (F), yielding a new
labeling Li+1 (G). In the next training iteration, this output is used as new (and improved) reference label Li+1 (H).
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During the training process, the cosine annealing learning rate

schedule was applied, as proposed by Loshchilov and Hutter (2016).

The combination of the learning rate schedule together with

Snapshot Ensembling (Huang et al., 2017) was investigated, and

showed that a schedule with only one cosine annealing cycle and no

ensembling was most promising with respect to the application and

the data. Thus, our schedule function had the form

ht =
1
2
h0 1 + cos

t
T
p

� �� �
, (1)

where ht ∈ R+ is the learning rate calculated at training step t ∈ N,
h0 ∈ R+ is the initial learning rate, and T ∈ N is the total count of

training steps. Moreover, T corresponds to the total count of

training samples |D|, divided by the batch size b ∈ N and the

update frequency of the schedule f ∈ N, T = |D|/bf. For all iterations

the batch size b was fixed to b = 256 and the update frequency to f =

4,000, where f is given in batches, i.e., the step index t increments

every 4,000 batches. At the end of the schedule the model has seen

all training samples once, though, the same voxels are seen multiple

times, once for each available FoV size.
6 Dynamic inference

Since the proposed network architecture (see Section 4) only

evaluates one voxel (based on its FoV) at a time, the process to

segment one complete root volume by iterating through every voxel

independently is very time consuming. Additionally, independent

voxel evaluations are prone tomisclassifications randomly distributed
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across the volume. Even though such misclassifications can be

addressed by adequate post-processing steps, as e.g., by a connected

component analysis (CCA, see Section 8.2), post-processing is usually

undesirable and suffers from inflexible thresholds.

Furthermore, the network’s architecture with the above

introduced SPP-layer was selected with the dedicated goal of

inferring root samples of arbitrary input sizes and scales.

Leveraging this advantage with a naïve voxel-wise sequential

inference becomes challenging, as it would require evaluating the

complete volume multiple times on different scales. This approach

would not only increase the inference time dramatically (up to an

order of multiple days) but would also require an adequate process

to merge the segmentations from different scales into one joint

result, which is a non-trivial challenge.

For these reasons a custom inference approach – based on the

well-known flood-filling paradigm from classical image processing –

was developed to not only speed up the inference of one root volume,

but also simultaneously improve the segmentation quality. Hence, in

an iterative process, only those voxels are chosen for evaluation,

which are most likely to contain a root. This selection of possible root

voxels is guided by previously evaluated voxels within a certain

neighborhood, hence, the independence of the aforementioned

voxel-wise inference can be disrupted. Also, this approach

eliminates the need for post-processing as it automatically

generates a connected root structure. Furthermore, the results are

improved by adaptively changing the size of the FoV which is used

for the classification of each voxel into the classes ‘root’ or ‘non-root’.

The workflow of the proposed inference algorithm is shown in

Figure 5 and will be discussed step by step in the next sections.
A B

C

FIGURE 5

Workflow of the inference algorithm. By iteratively evaluating only neighbor voxels of known roots (‘growing phase’), the algorithm works in a flood-
filling manner, by choosing 'yes' at (A). Different sizes for the field of view (FoV) support the trade-off between classification confidence and spatial
accuracy. The border of the root is detected adaptively in the ‘pruning phase’ with the most accurate/smallest FoV, by choosing 'yes' at (B). The
inference terminates when all queued voxels have been processed (C).
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6.1 Flood-filling approach

The iterative process starts at the top of the flow graph in Figure 5

by (manually) choosing a set of initial seed voxels, of which the user is

certain that at least one of them belongs to the class ‘root’. These seed

voxels are then pushed into a queue, together with the information that

at processing time the largest available FoV size should be used for

them. Even though the diagram in Figure 5 depicts the workflow for a

single voxel at a time, multiple voxels can be pulled from the queue at

once, to make use of the more efficient batch evaluation. When a voxel

is pulled off the queue, its FoV (with radius r) from the neighboring

voxels is extracted from the volume and prepared as a sample for the

network’s input layer. If the network classifies the actual center voxel as

‘root’, the downwards arrow from diamond (a) (in Figure 5) is followed.

In the example depicted in Figure 6A, a single seed voxel was

chosen. Its queued state is represented by a blue colored disk in the

respective voxel. The largest used FoV size in the example has a radius

of r = 3 voxels and an edge length of l = 7 voxels, the related voxels are

denoted in blue. Figure 6E summarizes the color codings of all

depictions. Next, in Figure 6B, the network has classified the seed

voxel as ‘root’with the given FoV (drawn as a red box with a red circle

in the center voxel) and the voxel is thus represented (labeled) with a

filled-in colored blue voxel. The process will then queue all yet unseen

neighboring voxels (of the current voxel) for further evaluation as it is
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shown in Figure 6C. This step is denoted as ‘growing phase’, since it

fills the queue and allows the detected root structure to grow. While

the queue is not empty, and the newly queued voxels are classified to

belong to the ‘root’ class, these steps are repeated. This is depicted in

Figure 5 by looping back to the top in diamond (c), hence iteratively

evaluating the collected and yet unseen neighbor voxels in the queue.

Figure 6D illustrates a slightly progressed state of the root

volume with a growing amount of already classified as well as

queued voxels. In contrast to a naïve brute-force approach, where

each voxel in the complete CT-volume is evaluated and classified

from top to bottom, this process operates similar to a classical

‘breadth-first’ flood-filling algorithm, as it starts at a seed voxel and

locally expands in every direction equally, until a stopping criterion

is met. Furthermore, to avoid evaluating every voxel in the volume,

the goal is to stop this growing or ‘flooding’ process at the boundary

of the already detected root structures. However, as these

boundaries are not known beforehand, they must be detected as

precisely as possible during the expansion process.
6.2 Boundary detection

To robustly detect the boundaries between the root structures

and the surrounding soil, advantages are made of the possibility to
A B D
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FIGURE 6

Simplified illustrations of iteration steps during the initial growing phase of the seed voxel (A–D), premature edge detection (F–J), tapering root (K–
O) and pruning phase (P-T). (E) shows a legend of the used color coding. Note that unseen '\emph{root}' and '\emph{non-root}' areas are depicted
as a simplification of the real, non-discretized structures.
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process FoVs of different spatial sizes. It can be assumed that large

FoVs will lead to predictions with a high degree of certainty, where

the network is confident in its classification, as it has much

contextual information on which to base its estimate.

Furthermore, it is assumed that small FoVs will lead to

predictions which are locally more accurate, since smaller FoVs

might detect the exact voxel position of a root-boundary with

higher spatial accuracy than a large FoV, as there exist fewer off-

center voxels competing for attention of the network. In contrast, a

large FoV can contain many root voxels, none of which are in the

center position. This effect could erroneously skew the prediction

towards the ‘root’ class, especially when those root voxels are located

directly next to a center voxel.

Under these considerations, the best achievable boundary

detection of the root structures will likely be computed with small

FoVs. For this reason, the proposed evaluation process starts with

the largest FoV around the seed voxels, since it allows going from

the most confident classification (large FoVs) to the spatially most

accurate one (small FoVs). Hence, if a voxel is pulled from the

queue and is classified as ‘non-root’, the size of the FoV is reduced to

a smaller radius and the same voxel is pushed in the queue again for

further evaluation. This extends the formerly mentioned loop in

Figure 5 by an alternative route, following the ‘no’-arrows from

diamond (a) and again from diamond (b), if the currently used FoV

is not the smallest one possible.

As depicted in Figure 6F, this effect can happen close to the

boundary of the root. Here, the currently processed voxel was

queued with the largest FoV with radius r = 3, and edge size 7.

However, in this example the network classifies the voxel as ‘non

root’, indicated by a colored cross in the figure. With this

classification result, the voxel is inserted in the queue again, now

with a smaller FoV. Hence, in Figure 6G the next smaller FoV with

radius r = 2 and edge size 5 is depicted with a green color-coding.

The reduced FoV size now helps the network to focus more on the

actual center voxel of the FoV. When the voxel is then classified as

‘root’, the following neighbor voxels will continue to use the smaller

FoV, as can be seen in Figures 6H, I respectively. If the voxel is still

classified as ‘non-root’, the FoV size is further reduced as shown in

Figure 6J. Here a neighbor of the previously discussed voxel was

classified as ‘non-root’ with a FoV of edge size 5. In this way, the

voxels of the boundary layers of the root structures are grown by

smaller FoVs. This especially comes into effect for regions in which

the gradient of the gray-level values promotes a premature edge

detection for larger FoVs.

An equivalent process takes place in regions in which the root

structure tapers off too much for large FoVs to correctly classify

them. This situation is shown in Figures 6K-O. Starting with a FoV

of edge size 5, a voxel classified as ‘non-root’ is queued again with a

smaller FoV of edge size 3, illustrated with an orange color-coding.

Using the smaller FoV, the voxel is then correctly classified as ‘root’

and the growing phase now continues along the thinner root

structure. The further progressed state in Figure 6O shows that

this effect can happen with multiple voxels at the same time. Note

that the processing order of the queued voxels in these sketches do

not follow the standard FIFO order of a queue, but rather the order

was chosen to illustrate the idea. During the inference process, the
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queued voxels are evaluated simultaneously as part of the

same batch.

As described above, the ‘growing phase’ leaves the FoV size

unchanged between the current voxel and the new neighbors which

are pushed in the process queue. The FoVs edge size will only be

decreased in areas, where a voxel has been classified as ‘non root’.

This approach will carry the high confidence levels of the large FoVs

through the already grown root structures and sacrifice it for a

higher spatial accuracy only where needed. In this way, the radius of

the FoV will decrease more and more until a given lower boundary

value of r = 1 and edge size of 3 is reached (depicted with an orange

color-coding). A classification as ‘non root’ with this FoV, as

indicated in Figure 6O, will lead to the next phase of the

process.Following the downward ‘yes’ arrow from diamond (b) in

Figure 5, the algorithm now knows with the highest confidence and

spatial accuracy, that the current voxel is not from the ‘root’ class

and marks it as such. However, this level of spatial accuracy cannot

yet be assured for the previously classified root voxels. To tackle this

problem, a so-called ‘pruning phase’ is initiated in the affected local

region. At this point, it is possible that the already grown structure

extends over the true root’s boundaries. In contrast to the

premature edge detection in the growing phase, the gradients of

the gray level values in the CT data can also promote a delayed edge

detection for larger FoVs.

Figure 6P shows an example with a FoV of edge length l = 5

voxels. In Figure 6Q the process queues the same voxel again with a

smaller FoV with radius r = 1 and an edge length l = 3, which is the

smallest FoV possible. As the voxel is already located considerably

across the root boundary, the smaller FoV classifies the voxel as

‘non root’ in Figure 6R. Since the smallest allowed FoV was already

used, this initiates the pruning phase in that region of the volume,

which allows to double check the currently proposed segmentation

by the larger FoVs.

Under these circumstances it may happen that neighboring

voxels, which have previously been classified as ‘root’ within a larger

FoV, will be re-evaluated using the smallest FoV in later iterations.

If the re-evaluation reveals misclassifications by the previously used

larger FoV, the pruning process is successful, and the root boundary

is corrected and shifted back by updating the classification result at

that voxel from ‘root’ to ‘non-root’.

Figure 6S shows this effect of requeuing a voxel sample with a

FoV of edge length l = 3, where previously a FoV of edge length l = 5

has predicted the class ‘root’ in an earlier iteration. When the re-

evaluation detects the opposing class, the process is repeated in such

a way that it again follows the downward arrow in Figure 5 from

diamond (b), resulting in another alternative loop.

Even though it only affects voxels, which were classified as ‘root’

by a FoV larger than the smallest one, this path also results in a

flood filling operation. Thereby, the boundary of the root is shifted

slightly backwards to where the most spatially accurate FoV detects

it to be. This is shown in Figure 6T, where in a slightly progressed

state of the process, more voxels have been pruned and queued for

re-evaluation. If the re-evaluation step confirms the previous result,

the pruning phase terminates, and no new neighbors will be pushed

to the queue. One example of this possibility is the lower neighbor

of the originally discussed voxel in Figure 6P. If all voxels in that
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region reach this state, the segmentation of the local root structure

can be considered complete.
6.3 Parallelization

Through the usage of the queue data structure, a parallel

implementation of the inference evaluation processes as well as

processes concerned with the enqueing of new neighbors is possible.

Thus, multiple growing and pruning phases can be performed at the

same time in different regions in the CT volume. This is also

indicated in the lower right corner of Figure 6T, where a new

pruning phase has started on the other side of the root. When the

queue is empty, the inference algorithm will terminate for the

whole volume.
7 Experiments and results

Using the data (Section 3) and the methods described above, a

CNN was trained, using a SPP-layer (Section 4) to improve the scale

invariance during the segmentation of root structures in CT data. A

weakly supervised training (Section 5) loop was applied to improve

noisy label data through the generalizing capabilities of neural

networks. Using three training loops, three networks were trained

from scratch, whose progress is presented in Section 7.1.

To create an adequate data set, a sub-labeling technique

(Section 3.5) was applied, which categorizes each label into a

more specific sub-label, by differentiating between content types

and location in each training sample. This approach enables a fine-

grained control over the diversity and difficulty of the training

samples. Even though the impact of this sub-labeling is difficult to

quantify, in Section 7.2 and Section 8.1, results are presented and

discussed with respect to classifying the plant pot (included in the

CT scans, see Figure 1) which was frequently misclassified by

networks trained without the sub-labeling technique.

For the testing phase, a novel inference approach was developed

(Section 6), which operates in a flood-filling (or volume growing)

scheme and can dynamically adapt the size of the field-of-view

(FoV) of the input samples to achieve an overall high-quality

segmentation. The results achieved with the proposed dynamic
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inference are compared with a naïve (brute-force) inference

algorithm as well as the reference RootForce segmentations

(Section 3).
7.1 Network training iterations

Figure 7 depicts the loss curves for the training (solid) and

validation (dotted) data set over all three training iterations. A vast

improvement from the first to the second iteration can be observed,

which also corresponds to an improvement of the label data

available for successive iterations. The improvement from the

second to the third iteration is significantly reduced. Hence it can

be concluded that the chosen net architecture (Section 4) has

exhausted its ability to generalize based on the available small

training data set (Section 3.2), as the training has reached a

minimum. Hence, the training was stopped after the third

iteration and the network was stored as ‘final network’ N2.
7.2 Test setup

Each of the three evaluated inference methods (RootForce, naïve

inference, dynamic inference) apply an effective volume mask to

reduce the region that needs processing; These are described here

for reference:
(1) Firstly, RootForce automatically detects the ‘air-soil’

transition at the top of the CT-volume and excludes all

‘air’ voxels above from further assessment. Some of the

CT’s bottom layers are excluded as well, since the possible

aggregation of water at the bottom of the pot causes higher

attenuation coefficients and after the CT reconstruction,

water aggregation yields CT gray level values similar to

those of root structures. Hence, RootForce tends to

misclassify humid soil as ‘root’ if these layers would not

be excluded. RootForce is able to estimates the maximal

layer depth dynamically, which corresponds to the humid

soil humidity.

(2) For the naïve inference algorithm with the DCNN, the plant

pot mask is applied, which was introduced in Section 3.5.
FIGURE 7

Showcase of the improvement, measured by the cross-entropy loss function, for the training (solid) and validation (dotted) curves over three weakly
supervised training iterations. Curves show original data points; no smoothing was applied.
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Fron
Thereby, the classification of many background voxels was

omitted, which saves approximately a third of the necessary

computation time.

(3) For the proposed dynamic inference, only the masked

bottom of the pot was excluded. As mentioned in Section

3.5, one goal was to develop and train a network which does

not misclassify the plant pot voxels as ‘root’ voxels. To test

this, the test data volumes were inferred without any mask

of the pots, and it was found that the mantle area of the pot

is successfully absent from the segmentation. However, the

bottom of the pot was falsely included in the segmentation

every time a root branch reached down far enough. Hence,

for the presented results the pot bottom was masked during

inference to have a fair comparison with the other methods,

as extra voxels from the pot bottom would overshadow the

voxel count of the small roots and render a quantitative

comparison more challenging. Furthermore, when

visualizing the 3D structure (see Figure 8), the pot

bottom practically eliminates the contrast needed to

recognize small roots in the foreground.
Two exceptions were made for the dynamic inference results,

which are marked by an asterisk in Figure 8 and Table 2, namely

volumes V13 and V14. Here the volumes were initially inferred with a
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mask that left the upper ridge of the pot bottom accessible to the flood-

filling operation. This led to a segmented ring in V14, where the upper

ridge around the pot was falsely classified as ‘root’. This in turn allows

the network to find additional small roots that otherwise would not

have been connected to the main root-structure, as the mask of the pot

acts as a natural barrier to the detection of root branches that first grow

to the bottom of the pot and then reach back up. In these exceptions,

the additionally detected small roots were preserved, while the ring

artifacts belonging to the pot bottom were deleted in a post-processing

step with another mask. By this approach, the ability of the proposed

network to classify roots that were not detected by the reference

method RootForce is better demonstrated. Moreover, these upward

growing roots are a prominent example of the network correctly

classifying the pot mantle as ‘non-root’, since long segments of those

branches practically stick directly to the plant pot. While this results in

a disconnected segmentation structure, it enables a more sensible

comparison of the voxel counts.

In contrast to the reference segmentation method RootForce,

the proposed DCNN approach is able to detect and segment plant

structures above ground. Nevertheless, the comparison has been

restricted to root regions below ground.

For the initialization of the proposed dynamic inference algorithm,

single seed voxels were used, which were a-priori known to be part of

the ‘root’ class. These positions are usually not known exactly, however,
FIGURE 8

Fused renderings of the segmented 3D root systems from the test data, obtained from RootForce and the proposed DCNN N2. The two volumes
marked with an asterisk ∗ had an additional post-processing step (see text). Colors decode the segmentation methods. Yellow: intersection between
voxels segmented by the proposed DCNN with a 50% threshold and RootForce. Green: additionally detected root branches by the DCNN with a 50%
threshold. Blue: further additionally detected root branches by the DCNN with a 20% threshold. Red: root segments only discovered by RootForce.
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they can be found via thresholding within the main plant stem.

Alternatively, a small set of voxels enclosing a region in the volume

that is likely to contain a root can be used as seed voxels.
7.3 Visualization

In the following, the test data segmentations are presented with

a visual comparison, based on a fused rendering of the 3D structure

of the proposed dynamic inference method using N2 as DCNN

approach and the reference method RootForce (see Figure 8).

Additionally, the segmentation results of the dynamic inference

are visually compared to the segmentation of the same network

using a naïve inference algorithm, as depicted in Figure 9.

The affiliation between classified voxels and the underlying

segmentation approach is denoted via set notation. Firstly, the set of

all voxels segmented by the RootForce approach is denoted as SRF.

Secondly, the set of all voxels segmented by the proposed network N2

(from the third training iteration) and using a threshold q = 50% on the

class probabilities (the network has a confidence above 50% that a voxel

belongs to the ‘root’ class) is referred to as SN50. Finally, the network

segmentation using a threshold of q = 20% is denoted by SN20.

The voxel coloring scheme in Figures 8, 9 decodes the

segmentation method and is denoted in set notation in Table 2,

where the ‘\’ sign denotes the difference of two sets (e.g. ‘A\B’

translates to ‘set A without set B’): ‘yellow’, SN50 ∩ SRF indicates the

intersection between all voxels segmented by the proposed DCNN
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N2 and the voxels proposed by RootForce; ‘green’, SN50 \ SRF denotes

additionally detected root branches by the DCNN; ‘blue’, SN20 \

(SN20 ∪ SRF) relates to further additionally detected thin root

branches with the lower 20% threshold; ‘red’, SRF \ SN50 indicates

root segments, which are only discovered by RootForce. To obtain a

quantitative comparison of the investigated methods, in Table 2 the

voxel counts for each color domain are listed separately.

For visualization purposes, the opacity of a one voxel thick layer

around the yellow surface was set to zero in both Figures 8, 9.

However, no root branches were deleted, and hence the qualitative

extent and structure of the root system is not altered. This

eliminates hollow red or green structures which wrap around the

yellow domain and thereby reveals the true extent of the

segmentations intersection. Nevertheless, this effect yields some

apparent discrepancies in the voxel counts in Table 2 when

comparing it to the figures, as the voxel counts still include these

hidden voxels. This effect is later discussed in Section 8.1. A similar

procedure could have been applied to the surface of the blue

regions. However, since the overlapping voxels are less significant

in their count, and thus do not disturb the visualized information,

this was neglected.
8 Discussion

In Section 8.1 the segmentation results on the test data set are

compared between the proposed DCNN N2 segmentations and the
TABLE 2 Comparison of root voxel counts for the test data from the reference method RootForce (SRF) and the proposed DCNN approach with
thresholds of 50% and 20% on the class probabilities (SN50, SN20).

Color Domain
Voxel counts

V6 V7 V8 V9 V10 V11 V12 V13* V14*

Red SRF \ SN50 90,904 106,012 111,695 6,303 86,306 77,135 74,401 82,957 235,468

Yellow SRF ∩ SN50 3,091,392 5,124,173 6,743,898 229,747 4,460,024 4,943,356 1,845,211 3,563,454 4,973,605

Green SN50 \ SRF 79,988 4,944,945 130,176 17,067 198,783 88,672 88,683 69,804 500,967

Blue SN20 \ (SRF ∪ SN20) 51,126 2,213,364 76,944 16,357 163,549 53,569 56,548 92,750 337,683
fro
The two volumes marked with an asterisk ∗ had an additional post-processing step (see text).
A B C

FIGURE 9

Comparison of the DCNN N2 segmentation results from a naïve inference approach and the proposed dynamic inference algorithm for volume V6.
(A) Naïve inference with FoV r = 5, (B) naïve inference with FoV r = 5 + CCA, (C) proposed novel dynamic inference. Color-coding is identical to
Figure 8. Yellow: intersection between voxels segmented by the proposed DCNN with a 50% threshold and RootForce. Green: additionally detected
root branches by the DCNN with a 50% threshold. Blue: further additionally detected root branches by the DCNN with a 20% threshold. Red: root
segments only discovered by RootForce.
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analytical reference approach (RootForce). Differences between the

naïve and dynamic inference approaches are discussed and

highlighted in Section 8.2. Performance considerations for the

inference methods are outlines in Section 8.3. Finally, the

shortcomings of the proposed methods and an outlook for

possible improvements are presented in Section 8.4.
8.1 Comparing to the reference

Figure 8 shows the segmented root systems of all test volumes

(V6 – V14). Generally, in comparison the segmentation results of the

proposed DCNN N2 approach and the analytical reference method

(RootForce) are quite similar, and most of the root structures are

detected by both algorithms (yellow voxels in Figure 8). However, in

all test volume the proposed deep neural network detected

numerous additional thin root branches with the 50% threshold

(green voxels in Figure 8), and even more with the 20% threshold

(blue voxels in Figure 8), which have not been discovered with the

reference approach RootForce (of which exclusively detected voxels

are red in Figure 8).

As one major finding, the quality of the root surface is increased

using the proposed deep neural network approach. This effect is

noticeable when focusing on the storage roots and comparing the

count of different colored ‘blobs’, which are mostly misclassifications,

attached to the root surface. For most of the test volumes, the red

colored blobs outnumber the green and blue blobs. Thus, even with

the low confidence threshold (q = 20%), the proposed DCNN

approach yields competitive results.

The achieved voxel counts of detected root structures are listed

in Table 2 and can be used for a quantitative assessment of the

different colored domains. The higher segmentation quality of the

proposed approach is hinted at by an increased count of detected

root voxels. However, there is a noticeable lack of visible, red-

colored voxels in relation to visible green- and blue-colored voxels

in Figure 8 and the comparatively small difference in voxel counts in

Table 2. This results from excluding voxels for an unbiased visual

comparison, as explained in Section 7.3.

The excluded voxels of the red domain (voxels exclusively

detected by RootForce) are concentrated along the surface of thin

root branches, while excluded voxels of the green and blue domains

(voxels exclusively detected by the DCNN) are scattered on the

surface of large storage roots in similar quantity as the individual

voxels which are still visible as dark dots on the yellow surface. Most

voxels exclusively found by RootForce (red) widen the commonly

detected (yellow) root branches, while voxels exclusively found by the

proposed network approach (green, blue) extend the structure by new

thin root branches. In terms of a qualitative comparison, there is a

difference between detecting more surface voxels (like RootForce)

versus detecting more root branches (like the DCNN). Contrary to

the detection of wider branches, previously unknown root branches

yield additional and desired information about the overall structure

of the investigated plant root systems, especially when considering the

ambiguity of ‘correctly’ discretizing a continuous surface with voxels.

The most noticeable flaws of the proposed DCNN approach are

the large, misclassified regions in the test volumes V7, V10, and V14.
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These regions prohibit a useful comparison via voxel counts, since

the misclassified voxels outnumber the ones that make up the small

root branches, and hence cannot be easily separated from the true

root system. Investigation of the cause for such errors showed an

altered gray level profile in the affected areas, which was caused by

higher water content in the soil and lead to an increase of the gray

level values in the CT reconstruction. Unfortunately, these

increased gray levels are very similar to the gray levels of many

root structures. This observation indicates that the trained network

has been fine-tuned to a specific soil mixture with a certain water

saturation level which results in a characteristic gray level

distribution adjacent to the plant. Hence, the obvious cause of

this observed effect is the identical scanning parameters for the CT

data acquisition of training data.

Focusing on the segmentation results of the DCNN with the

lower threshold (q = 20%, ‘blue’), further significant improvements

in detecting thin root branches can be observed. Using the lower

threshold, the network detects the same root voxels as when using

the higher threshold (q = 50%), and further extends the

segmentation. Many of the test volumes (see Figure 8, Table 2)

have a similar amount of green- and blue-colored root branches,

meaning using the lower threshold (q = 20%) resulted in nearly

twice the amount of detected root voxels. A few small root branches

are also detected by the reference method as well as the proposed

network with q = 20%, but not with the 50% threshold. Two

examples of this are in volume V6 (mainly red and partially blue

branch, growing from the center to the lower right) and in volume

V12 (furthest branch to the right, growing downwards).

Generally, the lower threshold (q = 20%) also comes with the

cost of an increased count of misclassified voxels. However, the

effect is more subtle than expected, since most misclassifications

happen in regions, where the network already struggles with a

higher threshold (q = 50%), e.g., at the humid sediment in volumes

V7, V10, and V14. Though, misclassifications of soil lumps sticking to

the root surface are more frequent with lower threshold compared

to RootForce.

Some roots that follow the outer edge of the plant pot, as

depicted for volumes V8, V13 and V14, highlight the success of the

proposed and employed sub-labeling technique. In such situations,

other networks models with the same network architecture and

trained without the sub-labels, have frequently initiated the

inference algorithm to follow the plant pot (by ‘flood-filling’) as

well. This argument can also be made for the bottom of the plant

pot as a counter example, since it was not focused on in training by

the sub-labels (see Section 3.5). Note that the pot bottom was

excluded from the segmentations in Figure 8 by a post-processing

step as explained in the previous section.

It can be argued that the problem of the misclassification of the

base of the pot shows the advantage of properly applying the

proposed sub-labeling technique, as it allowed for exact control

over samples from the pot mantle but not the pot bottom (see

Section 3.5). More precisely, specifically choosing samples from the

approximated segmentations of the pot mantle to augment the

training data, resulted in successfully teaching the network to not

recognize the ‘pot’ voxels as ‘root’ voxels. However, due to the

complicated geometry of the pot bottom, no reference
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segmentations were available from which specific samples could

augment the training data. Therefore, the alternative of randomly

sampling from the bottom volume to statistically include

challenging samples in the training data was used. Unfortunately,

this did not focus learning on such samples sufficiently and hence

was not successful in teaching the network to identify voxels from

the pot bottom as ‘non-root’. This problem could be alleviated by

possibly increasing the training samples from the pot bottom.

However, this also could alter the proportion of multiple sub-

labels to an unknown degree and therefore opposes the principle of

fine-tuning the composition of the training data.
8.2 Comparing to the naïve inference

As described in Section 6, the naïve algorithm iterates through

every voxel in the volume independently. This approach has the

disadvantage that mostly ‘non-root’ voxels are queried, since they

constitute most voxels in a volume and thus, waste expensive

computation time. Moreover, this approach is more vulnerable to

misclassifications as the deep neural network never connects the

queried results within one volume, leading to a cluttered 3D

structure (see Figure 9A). Here, a helpful post-processing step is

the application of a ‘connected component analysis’ (CCA), which

extracts the largest detected structures and removes most of the

clutter. In Figure 9 the segmentations from the proposed DCNN N2

from the third training iteration are depicted, comparing the naïve

and dynamic inference methods. To aid the visualization, the

reference segmentation (RootForce) is included in the illustrations

for an identical color-coding to Figure 8. In Figure 9A, the raw

output of the naïve inference algorithm is depicted for Volume V6.

It is obvious that there exists a lot of clutter, namely

misclassifications, generated by the network (depicted as green-

and blue-colored voxels), which obscure the view onto the root

structure in the center.

Figure 9B shows the result after applying the connected

component analysis (CCA) which deletes all structures consisting

of less than 1,000 connected voxels. This results in only some larger

clumps of soil in the segmentation. Some large, misclassified

structures are part of the pot (top left) and some topsoil sticking

to the pot (top right, background). Also, small root structures that

have been detected by the network, become visible in this view.

Those are found around the root in the lower half of the illustration.

The segmentation result of the proposed dynamic inference is

depicted in Figure 9C. Since the proposed dynamic inference

approach automatically generates only one single connected

component, unwanted structures in the volume are automatically

discarded. However, this comes at the cost of possibly undetected

root sections, which could have been correctly classified by the

network using the naïve inference (cf. Figure 9B) but remain hidden

for the flood-filling approach. For example, in Figure 9B there are

three thin green root branches visible in the foreground

(horizontally centered). In Figure 9C one of them is missing in

the segmentation using a threshold of \theta = 50% but detected by

the lower 20% threshold (colored in blue). Another branch (colored
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in red with some blue depicted in Figure 9C), indicates that only the

reference method (RootForce) and the deep neural network with

threshold q = 20% was able to detect it, while the same branch is

colored yellow in Figure 9B, indicating that the network with

threshold q = 50% can detect it as well when it is not blocked off

by the flood-filling process.

In conclusion, an obvious tuning parameter is q, thresholding
the class probability of the network output. Lower thresholding

(e.g., q = 20%) is able to segment thinner and finer roots, however, is

also susceptible to more misclassifications. For the naïve algorithm,

this means also more unwanted large, connected components

which are harder to separate from the desired root branches, as

can be seen in Figure 9B by the additional blue soil clumps. The

segmentation of the dynamic algorithm is affected more positively

by a low threshold, since it increases the connectivity of the root

components as described above, while other parts of the

segmentation are barely altered. This, on one hand, leads to more

detected thin roots, which are connected to the main-root structure,

but on the other hand, leads to a slightly rougher root surface on a

few branches. This can be seen in Figure 9C by the thin blue root

branches and the blue dots along the yellow surface respectively.

We also note that the naïve inference only uses one FoV for all

queries, while the proposed dynamic inference adaptively changes

the radius r of the FoV. A FoV with edge length l = 5 was applied for

the naïve inference. Using larger FoVs with a constant radius would

lead to less, but still obstructing, clutter in the raw segmentation and

would furthermore fail to detect thin root branches. When

investigating the effect of varied FoV sizes of the dynamic

algorithm, it becomes apparent that most voxels are evaluated

with the largest, initial FoV size. Adaptation to smaller sizes

happens only at the direct root boundaries or very thin root

structures with small local voxel counts. Hence, the effect is not

statistically significant for the voxel count. However, using only

larger FoVs with the flood-filling approach misses most of the thin

roots and yields thicker root structures overall, due to the missing

pruning step.

Furthermore, for the naïve inference the count of root segments

kept after the CCA is dependent on a hyper-parameter. This could

be set in such a way that only the largest connected component, or

components which fulfill known geometric requirements such as

elongation restrictions, are kept in the volume. This could yield

segmentations, which closer resemble the segmentation of the

proposed dynamic algorithm. However, choosing adequate

criteria to discard disconnected components becomes challenging

since small and thin roots are easily caught erroneously when trying

to declutter the segmented volume.

Some of the soil lumps in Figure 9B can also show up within

the dynamic inference, if its initialization consists of guessing

where possible root voxels are located in the volume, e.g., by

selecting a small surface of seed voxels in the volumes center. As

long as the root structure crosses the surface, all parts of the roots

will be detected as shown in Figure 9C. If some single soil lumps

– depicted in Figure 9B – happen to cross this surface, they

would be included in the segmentation of the dynamic inference

as well.
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8.3 Performance

In the following, the evaluation times of the different inference

methods are compared. Improvements are mainly achieved with

respect to the naïve method, as the RootForce algorithm is based on

classic image processing methods whose run-time is

highly optimized.

The RootForce algorithm always needs the same time duration

to evaluate a volume of a fixed size. For our test volumes (1024 ×

1024 × 900 voxels, see Section 3) this amounts to approximately 10

minutes on an Intel Xeon CPU (E5-2620v4@2.10GHz) with 256 GB

system RAM.

Evaluation with the naïve method also takes the same time for a

fixed volume size. However, the run-time significantly depends on

the used FoV size. The limiting factor is the VRAM used on the

graphics card for each batch. For sequential processing on one

GeForce GTX 1080 Ti GPU, conducted measurements with FoV

edge lengths of l = 5 and l = 15, allowed for batches of size 214 =

16384 samples and 29 = 512 samples respectively, and resulted in

evaluation times of roughly 120 and 3,000 minutes respectively.

The run-time of the dynamic inference algorithm is dependent

on the amount of connected root voxels, which are present in the

volume, whereby the connectivity is decisively dependent on the

used threshold on the class probability. A more subtle influence

comes from the structure of the root itself. Since more voxels are

queued simultaneously during the flood-filling of thicker roots, the

evaluation can leverage a better parallelization via the batch size.

Contrary, in thin roots, voxels are queued more sequentially which

results in smaller batches per query. For a maximal speedup, the

parallel processing capabilities mentioned in Section 6.3 are utilized.

With four GeForce GTX 1080 Ti GPUs (in one computation node),

the smallest root system (V9) can be segmented in 5 minutes, the

largest root system (V8) needs up to 25 minutes. Misclassifications

as in V7 also cost extra time, which in this case amounted to

36 minutes.

For comparison we assume the best conditions for the naïve

algorithm, i.e., inference with FoV of edge length l = 5 and perfect

speedup for parallelization (i.e., the measured processing time of

120 minutes is divided by the count of used GPUs). When using

four GPUs, the naïve algorithm can be quicker for exceptionally

large root systems, however for our testing volumes this was not the

case. When using more than four GPUs (in multiple computation

nodes) the naïve algorithm will surpass the dynamic algorithm,

since the communication overhead for parallel processing of the

naïve algorithm is trivial and hence, has an advantageous

scaling property.

However, when scaling with respect to volume size, the dynamic

algorithm will have an advantageous scaling property, since the

fraction of root voxels to volume size grows slower than the total

voxel count in the volume. Therefore, less queries are required in

the dynamic algorithm to process a large volume. Even more so, if

no mask is available to generously reduce the processed region for

the naïve algorithm (see Section 7.2). Scaling with respect to volume

size applies to larger objects or objects of the same size being

scanned with a higher voxel resolution.
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8.4 Shortcomings and outlook

One general complication of evaluating the quality of the

proposed set of methods is the unobtainable, pristine ground

truth data of the root structure. Even manual annotation would

most likely not yield the desired quality, due to the error-prone fine

structures and low contrast gray levels (see Section 3.1). Hence, the

exact structure and total voxel count of the true root system is never

known, and thus, it cannot be stated how many root branches are

left undetected or are falsely segmented. Furthermore, it is

challenging – if not even impossible – to decide whether

undetected small roots are the result of a lack in generalization

capabilities of the proposed deep network model or are due to too

many false negative samples in the training data set or changes in

the scanning system. Essentially, this effect blurs the line when

deciding at which point the deep neural network starts overfitting to

the true data distribution, as the network model possibly learns

unknown characteristics of the flawed training data set, which can

then not be called out by the validation and test data sets inheriting

the same flaws. In this case, ‘successfully’ learning generalizations of

adequate features on the flawed data might be equivalent to a data

set specific adaptation, i.e., overfitting, when considering the

unknown ground truth data. Nevertheless, typical cues for

overfitting do not show up on the available training curves for the

data sets (see Section 7.1).

An obvious shortcoming of the investigated approach is the

problem of the bottom of the plant pot. Hence, for future extensions

and applications, it is advisable to use plant pots with either a more

trivial geometry or obtaining an alternative segmentation of the

plant pot for the sub-labels (see Section 3.5) and thus focus more on

the negative samples during the training. Alternatively, if the range

of future application is limited, using a segmentation of the plant

pot as mask to prohibit network queries outside the sediment region

is also a viable option, since using such a mask during the inference

run has no disadvantages for the computation time (see

Section 8.3).

The comparison between the proposed dynamic inference and

the naïve inference algorithm shows that inference by flood-filling

can be a drawback if the root structure is not one single connected

component as seen from a certain threshold. Basically, root

branches which would be detected by the deep network model

will not show up in the dynamic inference segmentation, when the

branch is by accident disconnected from the main root structure.

Increasing the connectivity of the detected root structures is

equivalent to an increase in the network’s fidelity, which requires

a training data set of high quality. If increased computation times

can be handled or tolerated, an alternative approach could be to use

the naïve inference with a conservative CCA as post-processing (see

Section 8.2). The remaining components in the volume could be

separated into soil lumps and root branches by a shallow learning

model and basic features computed from the geometry of the

connected region.

The most significant disadvantage of the proposed DCNN-

based segmentation approach is the lack of diverse CT scans of

roots. All described experiments were carried out on scans of the
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same (Cassava) plant type, grown in the same soil mixture and

captured with the same scanning parameters and CT scanner (see

Section 3). Alternating any of these influencing factors will

considerably change the problem statement in the form of the

gray level distributions. This would limit the current network model

in scope and usefulness, as the discussion on the humidity levels in

the sediment already indicated (see Section 8.1). Generalizing the

proposed network at this level will require a careful composition of

diverse CT scans for the training procedure, and most likely a larger

network architecture. Other possible approaches could be to train a

generative model, to map arbitrary CT scans of root systems to a

common generalized latent space, in which a simple model like ours

could be used for final segmentations.

A drawback of the dynamic inference algorithm is that it was

specifically developed to work with single voxel predictions from

the DCNN. This requires significantly more forward passes through

the neural network to evaluate every voxel, than modern image-to-

imageDCNNs, like the U-Net (Smith et al., 2020; Soltaninejad et al.,

2020), could achieve. Nevertheless, a trade-off between fast

computation time (e.g., by using U-Net architectures) and

carrying semantic context between individual predictions (e.g., by

using flood-filling procedures) has to be made. A promising

direction for future research was proposed by Januszewski et al.

(2018) (and recently evaluated by Gruber et al. (2021)) who

integrated the flood-filling approach directly into an image-to-

image DCNNs framework called “Flood-Filling-Networks”.
9 Conclusion

In this work, we presented a modified deep convolutional neural

network architecture including a spatial pyramid pooling layer

paired with a dynamic inference algorithm and a sub-labeling

method, which combined are capable of segmenting 3D plant

root-structures automatically in CT reconstruction volumes. An

analytical segmentation algorithm was used as reference and

baseline, whose outcome was also used for a weakly supervised

training scheme of the proposed network model. By incorporating

the spatial pyramid pooling layer in the network model, the

detection and segmentation of arbitrarily sized root samples in

different scales was enabled. Furthermore, the use of sub-labels was

introduced in the training phase to extract the most essential

samples from the available sparse training data. Thereby, the

learning process can be guided to find a robust optimum. To

infer large CT-volumes of plant roots within reasonable time

scales, a dynamic inference algorithm was presented which

operates in a flood-filling (or volume growing) manner and

adapts the sample size of each query to yield a high-

quality segmentation.

The achieved results of the novel root-structure segmentation

approach were qualitatively (by visualization) and quantitatively (by

voxel count) compared with the analytical reference segmentation

algorithm as well as by comparing the proposed dynamic to a naïve

inference procedure. It was shown that the proposed novel

delineation approach for root structures shows a significant

improvement by segmenting previously hard to detect thin and
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fine root branches. However, some root branches are still left

undetected with the applied weakly supervised learning approach,

as not all real-world (“in the wild”) possibilities have been

considered in the available training data yet. Nevertheless, the

proposed approach shows the advantage that inference of new

volumetric root data is applicable without pre- or post-processing

steps and has an advantageous scaling property of computation

time for larger volumes.

In summary we conclude that the proposed novel deep-learning

based segmentation approach for root-structures in CT-volumes

improves and extends the possibilities of an analytical reference

method, by detecting much more fine and small root branches.
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